
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Bunshin: Compositing Security Mechanisms
through Diversification

Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee, Georgia Institute of Technology

https://www.usenix.org/conference/atc17/technical-sessions/presentation/xu-meng

BUNSHIN: Compositing Security Mechanisms through Diversification

Meng Xu, Kangjie Lu, Taesoo Kim, Wenke Lee
Georgia Institute of Technology

Abstract
A number of security mechanisms have been proposed
to harden programs written in unsafe languages, each
of which mitigates a specific type of memory error. In-
tuitively, enforcing multiple security mechanisms on a
target program will improve its overall security. However,
this is not yet a viable approach in practice because the ex-
ecution slowdown caused by various security mechanisms
is often non-linearly accumulated, making the combined
protection prohibitively expensive; further, most security
mechanisms are designed for independent or isolated uses
and thus are often in conflict with each other, making it
impossible to fuse them in a straightforward way.

In this paper, we present BUNSHIN, an N-version-
based system that enables different and even conflicting
security mechanisms to be combined to secure a program
while at the same time reducing the execution slowdown.
In particular, we propose an automated mechanism to
distribute runtime security checks in multiple program
variants in such a way that conflicts between security
checks are inherently eliminated and execution slowdown
is minimized with parallel execution. We also present
an N-version execution engine to seamlessly synchronize
these variants so that all distributed security checks work
together to guarantee the security of a target program.

1 Introduction
Memory errors in programs written in unsafe languages
(e.g., C/C++) have been continuously exploited by attack-
ers [14]. To defeat such attacks, the security community
has deployed many security mechanisms such as widely
deployed W⊕X, which prevents code injection attacks
by making Writable memory not eXecutable, and ASLR,
which prevents attacks (e.g., code reuse) by making the
address of target code/data unpredictable. However, re-
cent attacks [34, 35] have shown that these mechanisms
are not difficult to bypass. As such, more advanced tech-
niques have been proposed. For example, SoftBound [28],
CETS [29], and AddressSanitizer [33] (ASan) provide a
high memory safety guarantee, CFI [1] and CPI [25]
effectively mitigate control flow hijacking attacks, Mem-
orySanitizer [36] (MSan) can mitigate information leaks
caused by uninitialized read, and UndefinedBehaviorSan-
itizer [27] (UBSan) can detect the causes of undefined
behaviors (e.g., null pointer dereference).

However, despite the large number of software harden-
ing techniques proposed, few of them actually get adopted
in practice. One reason is that the slowdown imposed by
these mechanisms erases the performance gains that come

from low-level languages. Another reason is that each
proposed technique tends to fix only specific issues while
leaving the program vulnerable to other attacks. Compre-
hensive security protection is often demanded by mission-
critical services such as web servers or cyber-physical
systems in which a single unblocked attack could lead to
disastrous consequences (e.g., heartbleed [16]).

In order to achieve comprehensive program protection,
an intuitive method is to combine several techniques and
enforce them together in a target program. Unfortunately,
this is often not viable in practice for two reasons: 1) Run-
time slowdown increases unpredictably after fusing dif-
ferent techniques. For instance, in an already highly opti-
mized build [29], combining Softbound and CETS yields
a 110% slowdown–almost the sum of each technique
individually; 2) Implementation conflicts prevent direct
combination because most techniques are not designed
with compatibility in mind. For instance, MSan makes the
lower protected area inaccessible, while ASan reserves
the lower memory as shadow memory. Re-implementing
these techniques for better compatibility requires signifi-
cant engineering effort if it is even possible.

In the meantime, hardware is becoming cheaper and
more powerful. The increasing number of CPU cores
combined with larger cache and memory size keeps boost-
ing the level of parallelism, making it practical to improve
software security through a technique known as N-version
programming [5, 9, 20, 44]. As part of this trend, the
N-version scheme is particularly suitable to multi-core
architectures because replicas can run on cores in parallel.

An N-version system typically requires careful con-
struction of N variants that are both functionally similar
in normal situations and behaviorally different when un-
der attacks. Hence, although each program version may
be vulnerable to certain types of attacks, the security of
the whole system relies on the notion that an attacker
has to simultaneously succeed in attacking all variants in
order to compromise the whole system. This property of
the N-version system gives us insight on how to provide
strong security to a program and yet not significantly de-
grade its end-to-end performance. That is, by distributing
the intended security to N program variants and synchro-
nizing their execution in parallel, we can achieve the same
level of security with only a portion of its running time
plus an overhead for synchronization. Hence, the chal-
lenges lie in how to produce the program variants in a
principled way and how to synchronize and monitor their
executions efficiently and correctly.

USENIX Association 2017 USENIX Annual Technical Conference 271

In this paper, we introduce BUNSHIN, an N-version-
based approach to both minimize the slowdown caused
by security mechanisms and seamlessly unify multiple
security mechanisms without re-engineering efforts to
any individual mechanism. In short, BUNSHIN splits the
checks required by security mechanisms and distributes
them to multiple variants of a program in automated and
principled ways to minimize execution slowdown. By
synchronizing the execution of these variants, BUNSHIN
guarantees comprehensive security for the target program.

While the N-version mechanism has been well studied
primarily for fault-tolerance [5, 9, 21], BUNSHIN aims at
improving a program’s security and enabling the composi-
tion of multiple security mechanisms with automated pro-
tection distribution mechanisms. In addition, BUNSHIN is
a practical system as it does not require extra modification
to the system or compilation toolchain. BUNSHIN sup-
ports state-of-the-art mechanisms like ASan, MSan, UB-
San, Softbound, and CETS. We have tested it on a number
of C/C++ programs, including SPEC2006, SPLASH-2x,
PARSEC benchmarks, Nginx, and Lighttpd web servers.
Through three case studies, we show that 1) the slowdown
for ASan can be reduced from 107% to 65.6% and 47.1%
by distributing the sanity checks to two and three variants,
respectively; 2) the slowdown for UBSan can be reduced
from 228% to 129.5% and 94.5% by distributing the sub-
sanitizers to two and three variants, respectively; and 3)
the time overhead for unifying ASan, MSan, and UBSan
with BUNSHIN is only 4.99% more than the highest over-
head of enforcing any of the three sanitizers alone. In
summary, our work makes the following contributions:

• We propose an N-version approach to enable differ-
ent or even conflicting protection techniques to be
fused for comprehensive security with efficiency.

• We present an improved NXE design in terms of
syscall hooking, multithreading support, and execu-
tion optimization.

• We have implemented BUNSHIN and validated the
effectiveness of BUNSHIN’s NXE and the protection
distribution mechanisms in amortizing the slowdown
caused by state-of-the-art security mechanisms.

The rest of the paper provides background informa-
tion and compares BUNSHIN with related works (§2),
describes the design and implementation of BUNSHIN
(§3, §4), presents evaluation results (§5), discusses its
limitations and improvements (§6), and concludes (§7).

2 Background & Related Work
2.1 Memory Errors vs. Sanity Checks
Memory errors occur when the memory is accessed in
an unintended manner [37]. The number of reported
memory errors is still increasing [14] and severe attacks
(e.g., heartbleed [16]) exploiting memory errors emerge
from time to time. We provide a taxonomy in Table 1

Memory Error Main Causes Defenses

Out-of-bound r/w lack of length check SoftBound [28]
format string bug ASan [33]
integer overflow
bad type casting

Use-after-free dangling pointer CETS [29]
double free ASan [33]

Uninitialized read lack of initialization MSan [36]
data structure alignment
subword copying

Undef behavior pointer misalignment UBSan [27]
divide-by-zero
null pointer dereference

Table 1: A taxonomy of memory errors. We assume the pro-
gram is not malware. This taxonomy is mainly derived from
two systematic survey papers [37, 38].

to summarize the errors. In particular, any vulnerability
that may change a pointer unintentionally can be used
to achieve out-of-bound reads/writes. Use-after-free and
uninitialized read are usually caused by logic bugs (e.g.,
double-free and use-before-initialization) or compiler fea-
tures (e.g., padding for alignment). Undefined behaviors
can be triggered by various software bugs, such as divide-
by-zero and null-pointer dereferences.

How to defend a program against memory errors has
been extensively studied in recent years. For each cat-
egory in Table 1, we are able to find corresponding de-
fenses. In this paper, we are particularly interested in
the sanitizer-style techniques because they thoroughly en-
force sanity checks in the program to immediately catch
memory errors before they are exploited.
2.2 N-version System
The concept of the N-version system was initially intro-
duced as a software fault-tolerance technique [9] and was
later applied in enhancing software security [5, 20, 39, 44].
In general, the benefit of the N-version system is that an
attacker is required to simultaneously compromise all
variants with the same input in order to take down the
whole system. To achieve this benefit, an N-version sys-
tem should have at least two components: 1) a variant
producer that generates diversified variants based on pre-
defined principles and 2) an execution engine (NXE) that
synchronizes and monitors the execution of all program
variants. We differentiate BUNSHIN with related works
along these two lines of work.
Diversification. Diversification techniques represent the
intended protection goal of an N-version system, for ex-
ample, using complementary scheduling algorithms to sur-
vive concurrency errors [39]; using dynamic control-flow
diversity and noise injection to thwart cache side-channel
attacks [11]; randomizing sensitive data to mitigate pri-
vacy leaks [8, 45]; running multiple versions to survive
update bugs [20]; using different browser implementa-
tions to survive vendor-specific attacks [44]. Diversifica-

272 2017 USENIX Annual Technical Conference USENIX Association

tion can also be done in load/run time such as running
program variants in disjoint memory layouts to mitigate
code reuse attacks [7, 10, 41].

Differently, BUNSHIN aims to reduce the execution
slowdown and conflicts of security mechanisms. To
achieve this goal, two protection distribution mechanisms
are proposed. Partial DA checking [31] also attempted
to improve the performance of dynamic analysis with the
N-version approach. However, it does not provide any pro-
tection distribution mechanism; instead it just insecurely
skips checking some syscalls to improve performance.
In addition, attacks can be completed by exploiting the
vanilla variant before other protected variants find out. In
contrast, BUNSHIN proposes two principled diversifica-
tion techniques to achieve this goal and also presents a
more robust NXE with thorough evaluation.

NXE. Depending on how the program variants are gen-
erated, an NXE is designed to synchronize variants at
different levels, such as instruction/function level [39],
syscall level [7, 10, 21, 24, 32, 42] or, file/socket IO
level [44]. BUNSHIN shares some common features with
other syscall-based NXE systems, including syscall diver-
gence comparison (both sequence and arguments), virtual
syscall and signal handling, and a leader-follower exe-
cution pattern backed by a ring-buffer-based data struc-
ture for efficient event streaming [21, 24, 42]. However,
BUNSHIN differs from these works in the following ways:

Syscall hooking. Prior works hook syscalls using a
customized kernel [10], which jeopardizes its deploya-
bility; using the Linux ptrace mechanism, which causes
high synchronization overhead due to multiple context
switches per each syscall [7, 10, 32, 42]; or binary-
rewriting the program to redirect a syscall to a trampo-
line [21], which may break the semantics of the program
when replacing an instruction with fewer bytes with one
with more bytes. MvArmor [24] leverages Dune [3] and
Intel VT-x. However, it incurs a high overhead for syscalls
that needs passthrough and is also subject to the limita-
tions of Dune (e.g., signal and threading). To tackle these
issues, BUNSHIN hooks syscalls by temporarily patching
the syscall table with a loadable kernel module.

Multithreading support. Multithreading support varies
in proposed NXEs, such as allowing only processes to
be forked, not threads [10]; enforcing syscall-ordering
across the threads [21, 24, 32], which can easily cause de-
viations, as not all threading primitives involves syscalls
(e.g., pthread_mutex_lock); and using CPU page fault ex-
ception to synchronize all memory operations [7], which
leads to high overhead. None of these works are evaluated
on multithreading benchmarks like PARSEC or SPLASH-
2x. ReMon [42] seems to have a similar level of support
for multithreading as BUNSHIN—race-free programs by
injecting synchronization agents into the compiled binary,

as discussed in [40]. BUNSHIN borrows the weak de-
terminism concept from the deterministic multithreading
(DMT) domain and fully describes its design and imple-
mentation details to support it. BUNSHIN also identifies
its limitations and potential solutions.
2.3 Security/performance Trade-offs
Another approach to fit security into the performance bud-
get is to devise a subset of protections from a full-fledged
technique. Compared with Softbound [28], which handles
both code and data pointers, CPI [25] only instruments
code pointers, which are less prevalent but more critical
to code-reuse attacks [34]. Since the number of sanity
checks inserted is dramatically reduced, CPI reduces the
performance overhead from about 70% to 8.4%. Sim-
ilarly, ASAP [43] keeps less commonly executed (i.e.,
less costly) checks and removes hot checks. However,
selective protections sacrifice security. The assumption
that security is proportional to sanity check coverage is
not valid in many cases. More specifically, say a program
contains two exploitable buffer overflow vulnerabilities;
eliminating only one does not actually improve the se-
curity, as one bug is enough for the adversary to launch
the attack. Unlike CPI and ASAP, BUNSHIN is a novel
concept to reduce the slowdown caused by security mech-
anisms without sacrificing any security.

3 Design
In a typical N-version system, program variants are exe-
cuted in parallel and synchronized by an execution engine
to detect any behavior divergence. The whole system
terminates only when all variants have terminated. There-
fore, the overall runtime of an N-version system can be
decomposed into two parts: 1) the time required to exe-
cute the slowest variant, and 2) any additional time used
for variant synchronization and monitoring.
3.1 Protection Distribution Principle
BUNSHIN’s protection distribution applies to sanitizer-
style techniques, which have three properties: 1) They en-
force security via instrumenting the program with runtime
checks; 2) All the checks instrumented are independent of
each other in terms of correctness; and 3) A sanity check
alters control flow when and only when the check fails,
i.e., the program behaves normally when no memory er-
rors or attacks are present. The majority of memory error
prevention techniques are sanitizer-style, including stack
cookies, CFI, CPI, SAFECode, ASan, MSan, UBSan,
Softbound, and CETS, which is also the foundation of
profiling-guided security retrofitting such as ASAP [43]
and Multicompiler [19].

These properties allow BUNSHIN to 1) measure run-
time overhead imposed by the sanitizer as well as remove
sanity checks; 2) split the program to allow only portions
of the program to be instrumented with sanity checks; 3)
split the set of security techniques to allow only selected

USENIX Association 2017 USENIX Annual Technical Conference 273

checks to be enforced; and 4) produce functionally simi-
lar program variants such that BUNSHIN can synchronize
their executions and reason about behavior divergences.
BUNSHIN distributes checks with two principles.

Check distribution takes a single security technique
(e.g., ASan) as it is and distributes its runtime checks on a
program over N program variants. Specifically, BUNSHIN
first splits the program into several disjoint portions and
then generates a set of variants, each with only one portion
of the program instrumented by the technique. Since only
a fraction of the code is instrumented with security checks,
the slowdown for each variant is smaller compared with a
fully instrumented program. And given that all portions
of the target program are covered through the collection
of the variants, the security protection is the same as if
the security mechanism is applied to the whole program.

In the example of ASan, the splitting unit is every func-
tion in the program and for a 3-variant split, after check
distribution, each variant has 1⁄3 functions instrumented
with sanity checks and the other 2⁄3 uninstrumented, while
collectively, all functions are covered.

It is worth noting that instrumentations added by sani-
tizers fall into two categories: metadata maintenance (e.g.,
bound and alias information in the example of ASan or
SoftBound) and sanity checks. BUNSHIN does not re-
move instructions related to metadata maintenance, as
removing them will break the correctness of a sanitizer.

Sanitizer distribution takes multiple security tech-
niques and distributes them over N variants. Specifi-
cally, BUNSHIN first splits these security mechanisms
into several disjoint groups whereby each group contains
security mechanisms that are collectively enforceable to
the program, i.e., they do not conflict with each other.
Since only a subset of the intended protections is en-
forced on each variant, the slowdown for each variant
is smaller compared with the case when all protection
techniques are enforced on the same program (if ever pos-
sible). Another important benefit of sanitizer distribution
is that by distributing security mechanisms to multiple
program variants, any conflicts between them (e.g., ASan
and MSan) can be avoided without re-engineering these
security mechanisms. Since all intended protections are
enforced through the collection of variants, the overall
protection is the same as if all mechanisms are applied to
the whole program.

In the example of UBSan, the splitting unit is every
sub-sanitizer in UBSan, such as integer-overflow and
divide-by-zero. For a 3-variant split, after check distri-
bution, each variant has a disjoint set of sub-sanitizers (i.e.,
integer-overflow appears in only one variant), while
collectively, all sub-sanitizers are covered.

Due to space constraints, interested readers may find
a formal modeling of BUNSHIN’s protection distribution
principles at http://arxiv.org/abs/1705.09165.

Costs
profiling

Security
mechanisms

Variant
compiling

Variant
generator

Source code

Variants
Overhead

distribution
(e.g., ASan, MSan, UBSan)

opt.

opt.

w/ ASanw/ UBSan

w/ MSan w/ ASan

...

full

selective

...

Figure 1: Variant generator workflow

3.2 Automated Variant Generator
Figure 1 illustrates the high-level workflow of the variant
generator. The generator first compiles the target program
without any security mechanisms enforced and runs it
with the profiling tool to get a baseline profile. In the
check distribution case, the generator then compiles and
profiles the program with the intended security mecha-
nism. In the sanitizer distribution case, the generator
compiles and profiles the program multiple times, each
time with one of the intended security mechanisms. The
overhead profile is derived by comparing the security-
enforced profiles with the baseline profile. In the next
step, the generator runs the overhead distribution algo-
rithm with the intended number of splits (the N value)
and creates N build configurations for the compilers, each
corresponding to one program variant. The goal is to dis-
tribute the overhead measured by the profiling step fairly
to each variants such that all variants finish execution
at approximately the same time. Finally, the generator
compiles the program N times, each with a different build
configuration, to get N program variants.

Profiling. BUNSHIN relies on profiling to obtain the
runtime slowdown numbers as the inputs to the overhead
distribution algorithm. We choose to explicitly rely on
profiling because it is a reliable way to obtain the actual
cost of a particular sanity check without making assump-
tions about the nature of the program or the sanitizer.
It also takes in the effect of not only extra CPU cycles
required to run the check, but also the side effects on
cache-line usage, register pressure, or memory alloca-
tions. However, the profiling approach does require an
adequate and representative workload to simulate the us-
age patterns in a production environment. Fortunately,
for many projects, such a workload is often available in
a form of test suites, which can be directly used to build
a profile. More sophisticated profiling tools [2, 15] are
orthogonal to BUNSHIN and can be leveraged to improve
the overhead profiling if necessary. After profiling, the
sanity checks are distributed to N variants in a way that
the sum of overhead in each variant is almost the same.

Variant compiling. Variant compiling for check distri-
bution is essentially a "de-instrumentation" process that
involves deleting the instructions that are only used for

274 2017 USENIX Annual Technical Conference USENIX Association

http://arxiv.org/abs/1705.09165

Userspace

Kernel syscall id
arg1, arg2, ...

syscall id'
arg1', arg2', ...

return value
buf1, buf2, ...

①
②

③
④

⑤ ➋

➌

Variants
w/ ASanw/ UBSan w/ MSan w/ ASan

v1 v2 v3 v4

$ bunshin --leader v1 --followers v2,v3,v4

➊
Sync Slot

Ring
Buffer

return value
buf1, buf2, ...

Figure 2: General synchronization procedure. The synchro-
nization is triggered when the syscall is trapped into kernel, as
denoted by 1 1 in both the leader and follower path. The
leader then checks-in the syscall arguments to the shared slot
(2), executes the syscall (3), and turns-in the execution re-
sults in the shared slot (4). A follower first checks whether the
syscall arguments stored in the slot match its own arguments (2
) and if they match, directly fetches the results from sync slot
(3) without actually performing the syscall. The difference
between lockstep mode and ring-buffer mode lies in whether
step 3 for the leader can be performed before step 2 for all
followers is completed.

sanity checks instrumented by sanitizers. In order to col-
lect such instructions for deletion, BUNSHIN uses data
and control dependence information maintained during
the compilation process and performs backward slicing
to automatically collect sanity check-related instructions
and discard them. Variant compiling for sanitizer distri-
bution is trivial, as it can be done by simply compiling
the program with the compilation settings a user would
normally use for those sanitizers, as long as the sanitizers
used to harden the program are collectively enforceable.

3.3 N-version Execution Engine
BUNSHIN’s NXE synchronizes the executions of N pro-
gram variants and makes them appear as a single instance
to any external entity. We present and justify various
design efforts to improve BUNSHIN’s NXE in efficiency
and robustness.

Strict- and selective- lockstep. To synchronize the
leader and the follower instances, a lockstep at syscalls is
required. BUNSHIN provides two lockstep modes: strict-
lockstep and selective-lockstep. In strict-lockstep mode,
the leader executes the syscall only if all followers have
arrived and agreed on the syscall sequence and arguments.
This ensures the security guarantee—the attack cannot
complete in either instance. The downside is that variants
are frequently scheduled in and out of the CPU due to the
necessary waiting, leading to higher runtime slowdown.

We observed that many attacks always trigger certain
syscalls before the actual damages are caused. For exam-
ple, with ASLR enabled, attacks (e.g., ROP) generally
leak an address first via I/O write syscalls and then use
the leaked address to construct subsequent attack pay-

loads. Based on this observation, BUNSHIN also provides
the selective-lockstep so that users can choose to pre-
vent the attacks with higher performance. Specifically,
BUNSHIN uses the ring-buffer mechanism to synchro-
nize instances—the leader executes at near full speed and
keeps dumping the syscall arguments and results into the
shared ring buffer without waiting, unless the buffer is
full. The followers consume the syscall arguments and
results at their own speed. Meanwhile, lockstep is still
enforced for the selected syscalls (e.g., write related), as
illustrated in Figure 2. Our evaluation §5.2, shows that
selective-lockstep reduces the synchronization overhead
by 0.3%-6.3% compared with the strict-lockstep mode.

In short, strict-lockstep should perfectly preserve the
security guarantee of the underlying sanitizer, while
selective-lockstep is an option we provide when ASLR is
enabled, as any remote code-reuse attacks (e.g., return-to-
libc and ROP) will have to first leak code/data pointers
to bypass ASLR. Selective-lockstep is able to stop such
attacks by catching the leaks at I/O writes. In fact, any
information leak attempt that involves a pointer will be
detected at I/O writes. A detailed analysis of the security
guarantees provided by BUNSHIN is evaluated in §5.3.
Multi-threading. BUNSHIN supports multi-
process/thread programs by assigning each group of
leader-follower processes to the same execution group,
and each execution group has its own shared buffers. The
starting processes of leader and follower variants form
the first execution group, and when the leader forks a
child, the child automatically becomes the leader in the
new execution group. The child of a follower variant
automatically becomes a follower in the new execution
group. In fact, for daemon-like programs, (e.g., Apache,
Nginx, sshd), simply separating parent and children pro-
cesses into different execution groups can be sufficient
to eliminate syscall sequence variations caused by non-
deterministic schedulers because for those programs, each
thread/process is highly independent of the others and
hardly ever or never updates shared data.

However, for general-purpose multi-thread programs,
synchronizing shared memory accesses is necessary to
ensure that the leader and followers have consistent views
on shared data. This can be achieved by enforcing all fol-
lowers to follow exactly the same order of shared memory
accesses as the leader (strong determinism), which can
hardly be achieved without a high performance penalty, as
evidenced in the deterministic multi-threading (DMT) do-
main [4, 30]. As a compromise, inspired by Kendo [30],
BUNSHIN ensures only that all followers follow exactly
the same order of all lock acquisitions as the leader (weak
determinism). For example, if thread 1 in the leader ac-
quires a mutex before thread 2 passes a barrier, the same
order will be enforced in all followers. For programs with-
out data races, strong determinism and weak determinism

USENIX Association 2017 USENIX Annual Technical Conference 275

offer equivalent guarantees [30]. BUNSHIN achieves this
with an additional 8.5% overhead on SPLASH-2x and
PARSEC benchmarks (§5.2).

We argue that ensuring weak determinism is sufficient
for the majority of multi-thread programs, as race-free
programming is encouraged and tools have been proposed
to help developers eliminate data races [17, 18]. However,
should this becomes a problem in the future, BUNSHIN is
capable of plugging in sophisticated DMT solutions such
as DThreads [26] with minor adjustments.
Sanitizer-introduced syscalls. Memory safety tech-
niques generally issue additional syscalls during program
execution to facilitate sanity checks. With all sanitizers
we tested, i.e., ASan, MSan, UBSan, Softbound, CETS,
CPI, and SAFECode, all introduced syscalls can be cate-
gorized into three classes: 1) pre-launch data collection,
2) in-execution memory management, and 3) post-exit
report generation. To illustrate, before executing the main
function, ASan goes through a data collection phase by
reading various files in /proc/self directory (on Linux
system). During program execution, ASan issues addi-
tional memory-related syscalls for metadata management.
Upon program exit, ASan might invoke external programs
to generate human readable reports.

Given that variants instrumented with different sanity
checks are expected to have diverged syscall sequences,
BUNSHIN needs to address this issue to avoid false alerts.
In achieving this, BUNSHIN 1) starts synchronization only
when a program enters its main function; 2) ignores all
the memory management-related syscalls; and 3) stops
synchronization by registering as the first exit handler.

We verified that all the syscall divergences caused by
the aforementioned sanitizers are successfully resolved.
Although this is only an empirical verification, we believe
this can be a general solution because any practical se-
curity mechanism should not alter program semantics in
normal execution states, which, reflected to the outside
entities, are syscall sequences and arguments.

4 Implementation
4.1 Automated Variant Generator
Profiling. To obtain overhead data for check distri-
bution, BUNSHIN instruments the program with perfor-
mance counters based on how the underlying sanitizer
works. As a prototype system, BUNSHIN currently mea-
sures the execution time of all program functions based
on the observation that the majority of memory-related
security checks (as discussed in §2.1) operate at function
level. We discuss how to perform profiling instrumenta-
tion in a generic way in §6. Obtaining profiling data for
sanitizer distribution is easy, as no extra instrumentation
is needed. BUNSHIN runs the program with each security
mechanism individually enforced and obtains the overall
execution time.

Check removal. BUNSHIN removes sanity checks at
function level and the process consists of two steps:

In the discovery step, BUNSHIN compiles a baseline
version and an instrumented version of the same program
and then uses an analysis pass to dump the added/modified
basic blocks per function. Among these basic blocks,
BUNSHIN considers a basic block that 1) is a branch
target, 2) contains one of the known sanity check han-
dler functions (e.g., in the case of ASan, functions pre-
fixed with __asan_report_), and 3) ends with the special
LLVM unreachable instruction as a sink point for secu-
rity checks. This is based on the properties of sanitizers,
as a sanity check should preserve program semantics,
i.e., special procedures are only invoked when a sanity
check fails. Instrumentations for metadata maintenance
involves neither sanity check functions nor unreachable
instructions and hence are filtered out in this step.

In the removal step, BUNSHIN automatically recon-
structs sanity checks based on the observation that sanity
checks are instructions that branch to the sink points found
in discovery step. After identifying the branching points
and the corresponding condition variables, BUNSHIN per-
forms a recursive backward trace to variables and instruc-
tions that lead to the derivation of the condition variable
and marks these instructions during tracing. The back-
ward trace stops when it encounters a variable that is not
only used in deriving the value of the condition variable
but also used elsewhere in the program, an indication that
it does not belong to the sanity check. Removing the
sanity check is achieved by removing all marked instruc-
tions found in the above process. This functionality is
implemented as an LLVM pass.

4.2 N-version Execution Engine

Pthreads locking primitives. BUNSHIN enforces weak
determinism discussed in §3.3 by re-implementing the
full range of synchronization operations supported by
pthreads API, including locks, condition variables, and
barriers. BUNSHIN introduces a new syscall, synccall,
specifically for this purpose. synccall is exposed to pro-
cesses under synchronization by hooking an unimple-
mented syscall in an x86-64 Linux kernel (tuxcall). In
the kernel module, BUNSHIN maintains an order_list
to record the total ordering of locking primitive exe-
cutions. When a leader thread hits a primitive, e.g.,
pthread_mutex_lock, it calls synccall to atomically put
its execution group id (EGID) in the order_list and wake
up any follower threads waiting on its EGID before exe-
cuting the primitive. When a follower thread hits a primi-
tive, the call to synccall will first check whether it is the
thread’s turn to proceed by comparing its EGID and the
next EGID in the order_list. The thread will proceed if
it matches; otherwise, it puts itself into a variant-specific
waitqueue. If the primitive may cause the thread to sleep

276 2017 USENIX Annual Technical Conference USENIX Association

(such as a mutex), the thread wakes up its next sibling in
the waitqueue, if there are any, before sleeping.

Hooking pthreads’ locking primitives is done by plac-
ing the patched primitives in a shared library, which is
guaranteed to be loaded earlier than libpthread.

The drawbacks of this implementation are also obvious:
1) BUNSHIN is unable to handle multi-thread programs
that are built with other threading libraries or that use non-
standard synchronization primitives (e.g., using futex
directly); 2) The performance overhead of BUNSHIN in-
creases linearly with the usage frequency of these primi-
tive operations. Fortunately, the majority of multi-thread
programs are compatible with pthreads and locking prim-
itives are only used to guard critical sections, which rep-
resent only a small fraction of execution.
Shared memory access. Similar to the approach used
by MSan to trace uninitialized memory accesses, when-
ever BUNSHIN detects mapping of shared memory into
the variant’s address space (by the indication of mmap
syscall with specific flag combinations), it creates shadow
memory copies of the same size and then marks them as
"poisoned" state HWPOISON whereby any access attempts
to the mapped memory will also lead to an access attempt
to the shadow copy, which eventually triggers a signal
(SIGBUS). Upon capturing the signal, memory access is
synchronized in the normal way syscalls are handled, i.e.,
compare and copy content of the accessed address from
the leader’s mapping to the followers mapping.
Workflow. BUNSHIN can be started with the path to
each variant and the program arguments. BUNSHIN first
informs the kernel module to patch the syscall table and
then sets the LD_PRELOAD environment variable to the
library containing patched virtual syscalls and pthread
locking primitives. It then forks N times and launches
one program variant in each child process. After that,
BUNSHIN pauses and waits for status change of the vari-
ants. If any of the variant process is killed due to behavior
divergences, BUNSHIN alerts and aborts all variants. Oth-
erwise, it exits when all variants terminate.

5 Evaluation
In this section, we first evaluate BUNSHIN’s NXE in
terms of robustness and efficiency. In particular, we run
BUNSHIN on various programs and empirically show that
BUNSHIN is capable of handling the majority of them
with low overhead and no false alarms. We also empiri-
cally test whether BUNSHIN can provide the same level
of security guarantee as the underlying sanitizers, in other
words, whether BUNSHIN might compromise the security
by partitioning the program or splitting the sanitizers.

We then showcase how to accelerate ASan-hardened
programs with check distribution and UBSan-hardened
programs with sanitizer distribution. We use another case
study – combining ASan, MSan, and UBSan – to show

that BUNSHIN is capable of unifying security mechanisms
that have conflicted implementations.

We also evaluate BUNSHIN in terms of hardware re-
source consumption, which could limit BUNSHIN’s appli-
cability, and report the performance of BUNSHIN under
various levels of system load.
Experiment setup. The experiments are primarily con-
ducted on a machine with Intel Xeon E5-1620 CPU (4
cores) and 64GB RAM running 64-bit Ubuntu 14.04
LTS, except the experiment on scalability, which is done
with Intel Xeon E5-2658 (12 cores), and the experiment
on RIPE benchmark, which is done on a 32-bit virtual
machine. For evaluations on web servers, we dedicate
another machine to launch requests and measure server
response time. The client machine is connected to the
experiment machine with a direct network cable. The
associated network card permits 1000Mb/s bandwidth.
Unless stated otherwise, the NXE is configured to run in
strict-lockstep mode for stronger security guarantee.
5.1 NXE Robustness
We use a mixed sample of CPU-intensive and IO-intensive
programs for experiments, including SPEC2006 bench-
mark representing single-thread programs, PARSEC, and
SPLASH-2x benchmark for multi-threaded programs,
and Nginx and Lighttpd as representative server pro-
grams. For each sample program, we compile it with the
LLVM compiler framework and run the same binary on
BUNSHIN’s NXE, i.e., BUNSHIN will synchronize identi-
cal N binaries. This is to (empirically) verify the robust-
ness of BUNSHIN’s NXE design.

We do not observe false positives in any experiments
on SPEC, SPLASH-2x, Nginx, and Lighttpd. How-
ever, BUNSHIN is only able to run on six out of 13
programs in the PARSEC benchmark. raytrace would
not build under clang with -flto enabled. canneal,
facesim, ferret, and x264 intentionally allow for data
races. fluidanimate uses ad-hoc synchronization and
hence, bypassing pthreads APIs and freqmine does not
use pthreads for threading. These represent the limitation
of BUNSHIN’s NXE: enforcing only weak determinism
on pthreads APIs.
5.2 NXE Efficiency & Scalability
Figure 3 and Figure 4 show the efficiency evaluation of
the NXE under both strict- and selective-lockstep modes
when synchronizing 3 variants. For the SPEC2006 bench-
mark, the average slowdowns for the two modes are 8.1%
and 5.3%, respectively. The overhead is sightly higher on
multi-threaded benchmarks (SPLASH-2x and PARSEC) –
15.7% and 13.8%. This is due to the additional overhead
for recording and enforcing the total order of locking prim-
itive acquisitions. The selective-lockstep mode reduces
the overhead by 0.3%-6.3% in the benchmark programs.

We further evaluate the efficiency of BUNSHIN’s NXE

USENIX Association 2017 USENIX Annual Technical Conference 277

perlbench

bzip2

gcc

m
cf

m
ilc

nam
d

gobm
k

dealII

soplex

povray

hm
m

er

sjeng

libquantum

h264ref

lbm

om
netpp

astar

sphinx3

xalancbm
k

A
verage

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

Strict Selective

Figure 3: Evaluation of BUNSHIN’ NXE efficiency with
SPEC2006.

barnes

cholesky

fft

fm
m

lu(cb)

lu(ncb)

ocean(cp)

ocean(ncp)

radix

radiosity

volrend

w
ater(ns)

w
ater(s)

blackscholes

bodytrack

dedup

stream
cluster

sw
aptions

vips

A
verage

0%

5%

10%

15%

20%

25%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

Strict Selective

Figure 4: Evaluation of BUNSHIN’s NXE efficiency with
SPLASH-2x and PARSEC (number of threads = 4).

on two server programs, lighttpd, representing single-
thread servers, and nginx, representing multi-threaded
servers. We synchronize 3 variants and for nginx, we run
4 worker threads, the default value after installation. We
simulate various workload situations by using 64 (light),
512 (heavy), and 1024 (saturated) concurrent connections
and simulate HTTP requests to files of 1KB and 1MB.

The results are shown in Table 2. A noticeable dif-
ference is that the percentage overhead when requesting
small files (e.g., 1KB), is significantly larger compared
with requesting large files (e.g., 1MB). The reason is that,
while the absolute value of overhead is comparable in
both situations, it can be better amortized into the net-
working time of a large file, therefore leading to smaller
relative overhead. We believe that in real-world settings
when the servers are connected to LANs and WANs, even
the overhead for smaller files can be amortized in the
networking time, leading to unnoticeable overhead.

Figure 5 shows the scalability of BUNSHIN’s NXE in
terms of total number of variants synchronized. We use
a 12-core machine for this experiment as the number of
variants should not exceed the number of cores available.
As the number of variants goes from 2 to 8, the overhead
increases from 0.9% to 21% accordingly. The primary
reason for overhead increase is the LLC cache pressure,
as the cache miss rates increase exponentially when more
variants are executed in parallel. Recently added CPU
features such as Intel Cache Allocation Technology [22]
might help to mitigate this problem.
5.3 Security Guarantee
BUNSHIN does not remove any sanity checks, but only
distributes them into multiple variants. In strict-lockstep
mode, BUNSHIN should not compromise the intended se-
curity guarantee, as no variant can proceed with a syscall
without the arrival of other variants. Conceptually, the
only way to compromise all variants is to launch an at-
tack that is out of the protection scope of the underlying

Config Conn Base Strict Selective

lighttpd 64 10.3 11.9 15.3% 11.8 14.6%
1 Process 512 8.71 10.5 20.5% 10.1 15.7%
1K File 1024 8.48 10.4 22.6% 10.1 19.3%

lighttpd 64 974 994 2.05% 992 1.85%
1 Process 512 959 972 1.35% 970 1.15%
1M File 1024 955 964 0.91% 961 0.63%

nginx 64 9.81 11.6 18.7% 11.2 14.3%
4 Threads 512 8.46 10.3 21.9% 9.88 16.8%
1K File 1024 8.20 10.2 24.4% 9.63 17.4%

nginx 64 950 967 1.79% 964 1.47%
4 Threads 512 985 999 1.40% 996 1.12%
1M File 1024 979 998 1.94% 995 1.63%

Ave. (1KB) 20.56% 16.4%
Ave. (1MB) 1.57% 1.31%

Table 2: Performance of lighttpd and nginx under BUNSHIN’s
NXE, Performance measured as the processing time per request
(unit. µs). We use apachebench as test driver and run each
experiment 1000 times to reduce the effect of network noise.

sanitizer. Given that there is no attack window between
variants, if an input sequentially compromises all variants
without causing a divergence, it means the input bypasses
all sanity checks. In this case, the attack will also succeed
even if all checks are enforced in one variant (i.e., no
BUNSHIN). In other words, the attack is essentially not
in the protection scope of the underlying sanitizers and
hence will not be in the scope of BUNSHIN.

On the other hand, the selective-lockstep mode might
introduce an attack window between the variants that al-
low an attacker to potentially compromise them one by
one. However, BUNSHIN remains effective if the window
is small enough. To quantify the attack window, we mea-
sure the syscall distance between the leader and the slow-
est follower during our experiments. For CPU-intensive
programs (SPEC2006, PARSEC, and SPLASH-2x), the
average number of syscall gap is 5 while for IO-intensive
programs (lighttpd and nginx), the average number of
syscall gap is only 1. The gap is small because even in
selective-lockstep mode, the variants are still strictly syn-
chronized at IO-related syscalls. We believe that this is a
small enough time frame to thwart attackers.

To empirically confirm that real-world attacks can be
thwarted even in selective-lockstep mode, we first evalu-
ated BUNSHIN on the RIPE benchmark with check distri-
bution on ASan. In particular, in compiling the programs
generated by the RIPE benchmark, we go through the nor-
mal check distribution procedure to produce two variants,
and then launch and synchronize them with our NXE.
The results in Table 3 confirm that BUNSHIN does not
compromise the intended security guarantee of ASan.

To further verify this, we applied BUNSHIN to five
real-world programs, nginx, cpython, php, openssl, and
httpd, which contain known vulnerabilities that can be
detected by ASan (to evaluate check distribution) and
UBSan (to evaluate sanitizer distribution). Similar to
the RIPE benchmark case, we apply BUNSHIN on these
vulnerable programs to produce two variants and later

278 2017 USENIX Annual Technical Conference USENIX Association

perlbench bzip2 gcc mcf milc namd gobmk dealII soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk Average
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

2 variants 4 variants 6 variants 8 variants

Figure 5: Scalability of BUNSHIN in terms of synchronizing 2 to 8 variants. For each program, we show the synchronization
overhead over the baseline execution. On average, the overhead almost doubled with 2 more variants synchronized. Different
programs show slightly different patterns in overhead growth. One of the reasons could be their differences in cache sensitivity [23].

Config Succeed Probabilistic Failed Not possible

Default 114 16 720 2990
ASan 8 0 842 2990

BUNSHIN 8 0 842 2990

Table 3: We first run the RIPE benchmark on vanilla 32-bit
Ubuntu 14.04 OS, and 114 exploits always succeed and 16
succeed probabilistically. After adding ASan in the compilation,
only 8 exploits succeed. After applying check distribution on
the programs, still the same 8 exploits succeed.

Program CVE Exploits Sanitizer Detect

nginx-1.4.0 2013-2028 blind ROP ASan Yes
cpython-2.7.10 2016-5636 int. overflow ASan Yes

php-5.6.6 2015-4602 type confusion ASan Yes
openssl-1.0.1a 2014-0160 heartbleed ASan Yes
httpd-2.4.10 2014-3581 null deref. UBSan Yes

Table 4: Empirically test BUNSHIN’s security guarantee with
real-world programs and CVEs.

launch and synchronize them with our NXE. We then use
the same exploit that triggered the warnings from ASan or
UBSan to drive the program under BUNSHIN and check
to see whether the same warnings are raised. The result
show that all exploitation attempts are detected (Table 4).

For a concrete example, we applied BUNSHIN to
nginx-1.4.0, which contains bug CVE-2013-2028 that
can be detected by ASan. We use check distribution to
produce two variants, A and B and use three published
exploits [6, 12, 13] to test whether they can succeed in ex-
ploiting the vulnerable nginx protected under BUNSHIN.
The result shows that, when the overflow is triggered, vari-
ant A issues a write syscall (trying to write to stderr)
due to ASan’s reporting, while B does not. A further
investigation on the protection distribution report shows
that the vulnerable function ngx_http_parse_chunked is
instructed to be protected by variant A, which explains
why variant A issues the write syscall.
Attacking BUNSHIN. Given the attack window in
selective-lockstep mode, an attacker might be able to com-
plete some simple attacks before detection, such as killing
child threads/processes, closing file/sockets, or exhaust-
ing resources by allocating large chunks of memory, etc.,
provided that the attacker can inject shellcode or reuse
program code to invoke the call and place the arguments
of syscall in correct addresses. An attacker might also
launch denial-of-service attacks by sending compromised
variants into infinite loops that do not involve synchronize
syscalls (in both modes) or sleep/pause indefinitely (in

selective-lockstep mode).
Another attack vector is BUNSHIN’s variant moni-

tor. For example, an attacker might intentionally crash
BUNSHIN with unhandled non-deterministic sources such
as uninitialized data (e.g., some encryption libraries in-
tentionally use uninitialized data as a source of entropy,
although such a practice is discouraged). In addition, al-
though we take care to keep the variant monitor simple
and secure, it is not guaranteed to be bug-free. Therefore,
if an attacker compromises the variant monitor, he/she
might be able to circumvent syscall synchronization.

5.4 Check Distribution on ASan
We show the effectiveness of check distribution in accel-
erating the performance of programs instrumented with
ASan. The reason we choose ASan for the case study is
twofold: 1) ASan is representative of how memory error
detection techniques are generally enforced – introduc-
ing runtime sanity checks. In addition, the majority of
checks placed in the program are independent of each
other and hence satisfy the assumption of check distri-
bution. 2) ASan provides a relatively high coverage on
memory safety and hence is appealing for long-living
processes (like server programs) to thwart attackers at
runtime. However, the slowdown by enforcing ASan to
the whole program is the main obstacle in making it use-
ful in production. We hope this experiment will provide
insights on how to use ASan through BUNSHIN.

The case study is done with the SPEC2006 bench-
mark programs using the train dataset for profiling and
reference dataset for the actual performance measure-
ment. On average, the runtime slowdown caused by ASan
is reduced from 107% (enforced to the whole program) to
65.6% (2 variants) and 47.1% (3 variants), respectively,
about 11% more than 1⁄2 and 1⁄3 of the original slowdown.
Due to space constraints, we show only results for the
more complex case (3 variants) in Figure 6.

However, we also observed two outliers that do not
show overhead distribution: hmmer and lbm. After inves-
tigating their execution profile, we observe that there is
a single function that accounts for over 95% of the ex-
ecution time and the slowdown caused by ASan. Since
BUNSHIN performs sanity check distribution at the func-
tion level, the overhead is inevitably distributed to one
variant, causing that variant to be the bottleneck of the en-
tire system. However, concentrating functionalities in one

USENIX Association 2017 USENIX Annual Technical Conference 279

perlbench bzip2 gcc mcf milc namd gobmk dealII soplex povray sjeng libquantum h264ref omnetpp astar sphinx3 xalancbmk hmmer lbm Average
0%

50%

100%

150%

200%

250%

300%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

Whole program 3-variants (per variant) 3-variants (overall)

Figure 6: Effectiveness of check distribution on ASan with three variants. For each program, we show the total overhead if ASan is
applied to the whole program as well as per-variant overhead and BUNSHIN overall overhead. The two programs on the right are
outliers that do not show overhead distribution.

perlbench bzip2 gcc mcf milc namd gobmk dealII* soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk* Average
0%

50%

100%

150%

200%

250%

300%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

All UBSan checks 3-variants (per variant) 3-variants (overall)

Figure 7: Effectiveness of sanitizer distribution on UBSan with three variants. For each program, we show the total overhead if
all checks of UBSan are enforced as well as per-variant overhead and BUNSHIN overall overhead. For dealII and xalancbmk, the
overhead number is 4x larger than what is shown in the figure.

single function is rarely seen in the real-world software
we tested, including Python, Perl, PHP Apache httpd,
OrzHttpd, and OpenSSL; hence, we do not believe these
outliers impair the practicality of BUNSHIN.
5.5 Sanitizer Distribution on UBSan
UBSan is a representative example to illustrate why col-
lectively enforcing lightweight sanity checks might lead
to significant overall slowdown. UBSan contains 19
sub-sanitizers, each with overhead no more than 40%.
However, adding them leads to over 228% overhead on
SPEC2006 benchmarks, making UBSan a perfect exam-
ple to exercise sanitizer distribution.

Similar to the ASan case study, the test case is done
with SPEC2006 programs using train dataset for profil-
ing and reference dataset for experimentation. On aver-
age, the runtime caused by UBSan is reduced from 228%
(enforced all checks) to 129% (2 variants) and 94.5% (3
variants), respectively, about 15% more than 1⁄2 and 1⁄3 of
the original slowdown. Due to space constraints, we show
only the results for the more complex case (3 variants)
in Figure 7. This deviation from the theoretical optimum
is a bit larger compared with the ASan case study because
we only have 19 elements in the set and hence are less
likely to get balanced partitions across variants. However,
it still shows the effectiveness of sanitizer distribution in
accelerating the overall performance.
5.6 Unifying LLVM Sanitizers
In theory, BUNSHIN is capable of unifying any security
mechanism that falls in the sanitizers definition in §3.1.
The reason we choose LLVM sanitizers (ASan, MSan,
UBSan) for the case study is mainly because: collectively,
they provide almost full protection against memory error,
which we have not seen in any other work. Unifying
them through BUNSHIN might give some insight on how
to achieve full memory error protection without any re-
engineering effort to these sanitizers.

In this case study, each variant is simply the program
compiled with one of the sanitizers with the default com-
pilation settings. We measure the execution time of each
program variant when running by itself and also the total
execution time of BUNSHIN. The result is reported in Fig-
ure 8. On average, the total slowdown of combining these
sanitizers is 278%, with only 4.99% more compared with
merely enforcing the slowest sanitizer among the three. In
other words, paying a little slowdown for synchronization
helps bring additional protection provided by the other
two sanitizers.

5.7 Hardware Resource Consumption

Memory. Since all variants are loaded into memory for
parallel execution, the basic memory usage is almost lin-
ear to the number of variants. This is an inherent trade-off
for execution time. In addition, whether check distribu-
tion helps to split memory overhead caused by a sanitizer
depends on the sanitizer’ internal working, In the case
study of ASan, although each variant executes only a
portion of the sanity checks, it still needs to shadow the
whole memory space as required by ASan. Therefore, the
memory overhead of ASan still applies to each variant.
However, the memory overhead can be distributed for
shadow stack-based techniques. By definition, sanitizer
distribution can be used to distribute memory overhead
to multiple variants. In the UBSan case study, the mem-
ory overhead of each variant is the sum of all enforced
sub-sanitizers’ overhead.

CPU cycles. BUNSHIN’s NXE utilizes spare cycles
in a multi-core CPU for efficient variant synchroniza-
tion. If the CPU does not provide sufficient parallelism,
BUNSHIN will not be able to improve the performance;
instead, it will only introduce more performance over-
head. An evaluation on C/C++ programs in the SPEC2006
benchmark shows that the average synchronization over-
head is 103.1% when running BUNSHIN on a single core.

280 2017 USENIX Annual Technical Conference USENIX Association

perlbench bzip2 gcc* mcf milc namd gobmk dealII* soplex povray hmmer sjeng libquantum h264ref lbm astar omnetpp sphinx3 xalancbmk* Average
0%

50%

100%

150%

200%

250%

300%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

ASan MSan UBSan All combined

Figure 8: Performance result of each LLVM sanitizer respectively as well as the overall performance overhead when unified under
BUNSHIN. gcc cannot run with MSan, therefore, we exclude the evaluation on it. For dealII and xalancbmk the overhead number is
4x larger than what is shown in the figure.

perlbench bzip2 gcc mcf milc namd gobmk dealII soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk Average
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
un

tim
e

re
la

tiv
e

to
ba

se
lin

e

2% base 2% sync 50% base 50% sync 99% base 99% sync

Figure 9: Evaluation of BUNSHIN execution engine under various workload levels. The experiment is done with the configuration
of synchronizing 2 variants. We use the system-stressing tool stress-ng to add background workloads including CPU tasks, cache
thrashing, and memory allocations and deallocations. We maintain the background load level at 50% and 99%, respectively. The 2%
load for the baseline case is due to the kernel and OS background services.

Although BUNSHIN is not suitable for devices with
a single core, it does not mean that BUNSHIN requires
exclusive cores to work. In fact, due to OS-level task
scheduling, BUNSHIN can exploit free cycles in the CPU
as long as not all cores are fully utilized. Figure 9 shows
that BUNSHIN’s performance is stable under various load
levels. The average slowdown due to synchronization is
10.23% and 13.46%, respectively, when the CPU is half
and fully loaded, slightly higher than the case when the
load is small (8.1%). The results prove that the perfor-
mance of BUNSHIN is stable across various load levels.

6 Discussion
Trading-off resources for time. There is no doubt
that BUNSHIN’s parallelism consumes more hardware
resources; hence BUNSHIN is not suitable for cases where
hardware resources are scarce. In fact, BUNSHIN’s design
is inspired by the popularity of multi-core processors
and large-size cache and memory, and trade-off resource
usages for execution time. BUNSHIN empowers users to
make use of available hardware resources to improve both
security and runtime performance and sheds lights on
how to solve a difficult problem —speeding up hardened
programs without sacrificing security —with simply more
hardware resources, which are easy to obtain.
Sanitizer integration. BUNSHIN currently has no in-
tegration with the sanitizers, i.e., it does not require de-
tailed knowledge of how a sanitizer works in order to
"de-instrument" the sanity checks. Although this gives
BUNSHIN great flexibility, it also prevents BUNSHIN
from further optimization. For example, ASan still shad-
ows the whole memory space even when only a subset of
sanity checks is performed per program variant, thus lead-
ing to increased memory usage in every variant. To solve
this, we could modify ASan’s logic in a way such that
only a portion of the memory space is shadowed in each

variant; in other words, we can distribute the memory
overhead to all program variants as well.

Finer-grained sanity check distribution. As shown in
the case of hmmer and lbm, sanity check distribution at
the function level might be too coarse grained if one or
a few functions dominate the total execution. Therefore,
to enable finer-grained overhead distribution, we plan to
look into performing both profiling and check removal at
the basic block level.

7 Conclusion
We presented BUNSHIN, an N-version system that seam-
lessly unifies different and even conflicting protection
techniques while at same time reducing execution slow-
down. BUNSHIN achieves this with two automated vari-
ant generation strategies (check distribution and sanitizer
distribution) for distributing security checks to variants
and an efficient parallel execution engine that synchro-
nizes and monitors the behaviors of these variants. Our
experiment results show that BUNSHIN is a practical sys-
tem that can significantly reduce slowdown of sanitizers
(e.g., 107% to 47.1% for ASan, 228% to 94.5% for UB-
San) and collectively enforce ASan, MSan, and UBSan
without conflicts with only 4.99% incremental overhead.

8 Acknowledgment
We thank our shepherd, Ittay Eyal, and the anonymous re-
viewers for their helpful feedback. This research was
supported by NSF under award DGE-1500084, CNS-
1563848, CRI-1629851, CNS-1017265, CNS-0831300,
and CNS-1149051, ONR under grant N000140911042
and N000141512162, DHS under contract No. N66001-
12-C-0133, United States Air Force under contract No.
FA8650-10-C-7025, DARPA under contract No. DARPA
FA8650-15-C-7556, and DARPA HR0011-16-C-0059,
and ETRI MSIP/IITP[B0101-15-0644].

USENIX Association 2017 USENIX Annual Technical Conference 281

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.

Control-flow integrity. In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (CCS), Alexan-
dria, VA, November 2005.

[2] Matthew Arnold and Barbara G. Ryder. A framework for reducing
the cost of instrumented code. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, June 2001.

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazieres, and Christos Kozyrakis. Dune: Safe user-level access
to privileged CPU features. In Proceedings of the 10th Sympo-
sium on Operating Systems Design and Implementation (OSDI),
Hollywood, CA, October 2012.

[4] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and
Dan Grossman. Coredet: A compiler and runtime system for
deterministic multithreaded execution. In Proceedings of the 15th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Pittsburgh,
PA, March 2010.

[5] Philippe Bergheaud, Dinesh Subhraveti, and Marc Vertes. Fault
tolerance in multiprocessor systems via application cloning. In
Proceedings of the 27th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Toronto, Canada, June
2007.

[6] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres,
and Dan Boneh. Blind return oriented programming (brop), 2014.
http://www.scs.stanford.edu/brop.

[7] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Diver-
sified process replicÃę for defeating memory error exploits. In
Proceedings of the 2007 International Performance, Computing,
and Communications Conference (IPCCC), New Orleans, LA,
April 2007.

[8] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and
A. Prasad Sistla. Preventing information leaks through shadow
executions. In Proceedings of the 2008 International Conference
on Software Engineering (ICSE), Anaheim, CA, December 2008.

[9] Liming Chen and Algirdas Avizienis. N-version programming: A
fault-tolerance approach to reliability of software operation. In
Fault-Tolerant Computing, 1995, Jun. 1995.

[10] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,
Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and
Jason Hiser. N-variant systems: A secretless framework for secu-
rity through diversity. In Proceedings of the 15th Usenix Security
Symposium (Security), Vancouver, Canada, July 2006.

[11] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen,
and Michael Franz. Thwarting cache side-channel attacks through
dynamic software diversity. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[12] Exploit Database. nginx 1.3.9-1.4.0 - dos poc, 2013. https:
//www.exploit-db.com/exploits/25499.

[13] Exploit Database. nginx 1.3.9/1.4.0 x86 - brute force exploit, 2013.
https://www.exploit-db.com/exploits/26737.

[14] CVE Details. Vulnerabilities By Date, 2016. http://www.
cvedetails.com/browse-by-date.php.

[15] Evelyn Duesterwald and Vasanth Bala. Software profiling for
hot path prediction: less is more. ACM SIGARCH Computer
Architecture News, December 2000.

[16] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halder-
man, Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann,
Jethro Beekman, Mathias Payer, and Vern Paxson. The matter of
heartbleed. In Proceedings of the 2014 Conference on Internet

Measurement Conference, IMC ’14, 2014.

[17] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman,
and Hans-J. Boehm. Ifrit: interference-free regions for dynamic
data-race detection. In Proceedings of the 23th Annual ACM Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Tucson, AZ, October 2012.

[18] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In Proceedings
of the 31st ACM Symposium on Principles of Programming Lan-
guages (PoPL), Venice, Italy, January 2004.

[19] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler,
and Michael Franz. Profile-guided Automated Software Diversity.
In Proceedings of the 2013 International Symposium on Code
Generation and Optimization (CGO), Shenzhen, China, February
2013.

[20] Petr Hosek and Cristian Cadar. Safe software updates via multi-
version execution. In Proceedings of the 35th International Con-
ference on Software Engineering (ICSE), San Francisco, CA, May
2013.

[21] Petr Hosek and Cristian Cadar. Varan the unbelievable, an efficient
n-version execution framework. In Proceedings of the 20th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Istanbul, Turkey,
March 2015.

[22] Intel. Improving real-time performance by utilizing cache allo-
cation technology, 2015. http://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf.

[23] Aamer Jaleel. Memory characterization of workloads using
instrumentation-driven simulation, 2010. http://www.jaleels.
org/ajaleel/publications/SPECanalysis.pdf.

[24] Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and
efficient multi-variant execution using hardware-assisted process
virtualization. In Proceedings of the 46th International Conference
on Dependable Systems and Networks (DSN), Toulouse, France,
June 2016.

[25] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George
Candea, R. Sekar, and Down Song. Code pointer integrity. In
Proceedings of the 11th Symposium on Operating Systems Design
and Implementation (OSDI), Broomfield, Colorado, October 2014.

[26] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads:
Efficient and deterministic multithreading. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, October 2011.

[27] LLVM. UndefinedBehaviorSanitizer (UBSan) is a fast undefined
behavior detector, Feb. 2015. http://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[28] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and
Steve Zdancewic. SoftBound: Highly compatible and complete
spatial memory safety for C. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Dublin, Ireland, June 2009.

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler enforced temporal safety for C. In
Proceedings of the 2010 International Symposium on Memory
Management (ISMM), Toronto, Canada, June 2010.

[30] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In Proceedings
of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
Washington, DC, March 2009.

[31] Luis Pina and Cristian Cadar. Towards deployment-time dynamic
analysis of server applications. In Proceedings of the 13th Inter-

282 2017 USENIX Annual Technical Conference USENIX Association

http://www.scs.stanford.edu/brop
https://www.exploit-db.com/exploits/25499
https://www.exploit-db.com/exploits/25499
https://www.exploit-db.com/exploits/26737
http://www.cvedetails.com/browse-by-date.php
http://www.cvedetails.com/browse-by-date.php
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

national Workshop on Dynamic Analysis (WODA), Pittsburgh, PA,
October 2015.

[32] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz.
Orchestra: Intrusion detection using parallel execution and mon-
itoring of program variants in user-space. In Proceedings of the
ACM EuroSys Conference, Nuremberg, Germany, March 2009.

[33] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitry Vyukov. AddressSanitizer: A fast address sanity
checker. In Proceedings of the 2012 ATC Annual Technical Con-
ference (ATC), Boston, MA, June 2012.

[34] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceed-
ings of the 14th ACM Conference on Computer and Communica-
tions Security (CCS), Alexandria, VA, October–November 2007.

[35] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS), Washington, DC,
October 2004.

[36] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer:
fast detector of uninitialized memory use in C++. In Proceedings
of the 2015 International Symposium on Code Generation and
Optimization (CGO), San Francisco, CA, February 2015.

[37] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal war in memory. In Proceedings of the 34th IEEE Sympo-
sium on Security and Privacy (Oakland), San Francisco, CA, May
2013.

[38] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and
Herbert Bos. Memory errors: The past, the present, and the
future. In Proceedings of the 15th International Conference on
Research in Attacks, Intrusions, and Defenses (RAID), Amsterdam,
Netherlands, September 2012.

[39] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Detecting and surviving data races using comple-
mentary schedules. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP), Cascais, Portugal, Octo-
ber 2011.

[40] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Boss-
chere, Per Larsen, and Michael Franz. Taming Parallelism in a
Multi-Variant Execution Environment. In Proceedings of the ACM
EuroSys Conference, Belgrade, Serbia, April 2017.

[41] Stijn Volckaert, Bart Coppens, and Bjorn De Sutte. Cloning your
gadgets: Complete ROP attack immunity with multi-variant exe-
cution. IEEE Transactions on Dependable and Secure Computing,
13(4):437–450, July 2016.

[42] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei
Homescu, Per Larsen, Bjorn De Sutter, and Michael Franz. Secure
and efficient application monitoring and replication. In Proceed-
ings of the 2016 ATC Annual Technical Conference (ATC), Denver,
CO, June 2016.

[43] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Jo-
hannes Kinder. High system-code security with low overhead. In
Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[44] Hui Xue, Nathan Dautenhahn, and Samuel T. King. Using repli-
cated execution for a more secure and reliable web browser. In
Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2012.

[45] Aydan Yumerefendi, Benjamin Mickle, and Landon P. Cox.
Tightlip: Keeping applications from spilling the beans. In Pro-
ceedings of the 4th Symposium on Networked Systems Design and
Implementation (NSDI), Cambridge, MA, April 2007.

USENIX Association 2017 USENIX Annual Technical Conference 283

