
T-SGX: Eradicating Controlled-Channel Attacks
Against Enclave Programs

Ming-Wei Shih†,⋆, Sangho Lee†, and Taesoo Kim
Georgia Institute of Technology

{mingwei.shih, sangho, taesoo}@gatech.edu

Marcus Peinado
Microsoft Research

marcuspe@microsoft.com

Abstract—Intel Software Guard Extensions (SGX) is a
hardware-based trusted execution environment (TEE) that en-
ables secure execution of a program in an isolated environ-
ment, an enclave. SGX hardware protects the running enclave
against malicious software, including an operating system (OS),
a hypervisor, and even low-level firmwares. This strong security
property allows the trustworthy execution of programs in a hostile
environment, such as a public cloud, without trusting anyone (e.g.,
a cloud provider) between the enclave and the SGX hardware.
However, recent studies have demonstrated that enclave programs
are vulnerable to an accurate controlled-channel attack: Since
enclaves rely on the underlying OS, a curious or potentially
malicious OS can observe a sequence of accessed addresses by
intentionally triggering page faults.

In this paper, we propose T-SGX, a complete mitigation
solution to the controlled-channel attack in terms of compatibility,
performance, and ease of use. T-SGX relies on a commodity
component of the Intel processor (since Haswell), Transactional
Synchronization Extensions (TSX), which implements a restricted
form of hardware transactional memory. As TSX is implemented
as an extension (i.e., snooping the cache protocol), any unusual
event, such as an exception or interrupt, that should be handled in
its core component, results in an abort of the ongoing transaction.
One interesting property is that the TSX abort suppresses the
notification of errors to the underlying OS, which means that
the OS cannot know whether a page fault has occurred during
the transaction. T-SGX, by utilizing such property, can carefully
isolate effects of attempts to tap running enclaves, thereby
completely eradicating the known controlled-channel attack.

We have implemented T-SGX as a compiler-level scheme
that automatically transforms a normal enclave program into
a secured one. We not only evaluate the security properties of
T-SGX, but also demonstrate that it applies to all the previously
demonstrated attack targets including libjpeg, Hunspell, and
FreeType. In addition, we evaluate the performance of T-SGX
by porting ten benchmark programs of nbench to the SGX
environment. The results are promising; that is, T-SGX incurs on
average 50% runtime overhead, which is an order of magnitude
faster than state-of-the-art mitigation schemes.

† The two lead authors contributed equally to this work.
⋆ The author did part of this work during an intership at Microsoft Research.

I. INTRODUCTION

Hardware-based trusted execution environments (TEEs)
have become one of the most promising solutions against
various security threats, including malware, remote exploits,
kernel exploits, hardware Trojans, and even malicious cloud op-
erators [27]. ARM’s TrustZone [1] and Samsung’s KNOX [50]
are now widely deployed on mobile phones and tablets. To
secure traditional computing devices, such as laptops, desktops,
and servers, the trusted platform module (TPM) [60], Intel’s
Trusted Execution Technology (TXT) [16], and Software Guard
Extensions (SGX) [24] have been developed and are being
adopted into mainstream products. Among these hardware-
based TEEs, Intel SGX is getting considerable attention because
it can be the basis for practical solutions in an important
security domain: the trustworthy public cloud, which provides
strong guarantees of both confidentiality and integrity, which
are known to be the biggest obstacle to wider cloud adop-
tion [27, 59]. Homomorphic encryption [14] has been proposed
as a software-only solution to this problem, but, so far, it is
too slow for practical uses. More critically, sensitive operations
are often executed on potentially malicious clients [13, 36, 41],
which significantly weakens the overall, end-to-end security of
the system. In contrast, hardware-based Intel SGX provides
strong security guarantees for running enclaves in combination
with Intel’s efforts on formal verification of the hardware spec-
ification and implementation of cryptographic operations [26].
The resulting security guarantees enable a variety of new
applications, including data analytics [51], MapReduce [12],
machine learning [46], Tor [31], network function virtualization
(NFV) [53], and library OSs [4, 61, 62].

While Intel SGX draws significant attention to communities
because of its strong security guarantees, researchers have
recently demonstrated two critical side-channel attacks against
SGX programs, namely, the page-fault- and cache-based
side-channel attack [10, 54, 65]. The page-fault-based side-
channel attack, also known as the controlled-channel attack,
is particularly dangerous because it gives the malicious OS
complete control over the execution of SGX programs. In
contrast, the cache-based side-channel attack have to passively,
thus non-interactively, monitor the execution from the outside.
Specifically, to launch a controlled-channel attack, the malicious
OS can stop an enclave program, unmap the target memory
pages, and simply resume its execution. By using the leaked
addresses, researchers [65] could reconstruct input text and
image files from running enclave programs [4]. Similarly,
the pigeonhole [54] attack could extract bits of encryption
keys from cryptographic routines in OpenSSL and libgcrypt.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23193

In response to the controlled-channel attack, two types of
countermeasures have been proposed, namely, obfuscating
memory accesses [9, 49, 54] and isolating page faults [19, 54],
but both are limited in terms of performance or compatibility.
First, memory access obfuscation suffers from huge perfor-
mance degradation: up to 4000× overhead without significant
developer effort [54]. Second, more efficient schemes, such as
self-paging [19] and contractual execution [54], require new
page-fault delivery mechanisms that do not exist in mainstream
processors and are unlikely to be included in them in the
foreseeable future. For example, Intel considers side-channel
attacks as out of scope for SGX [26] and is unlikely to disrupt
core processor components to accommodate such proposals.

In this paper, we propose a new, practical enclave design,
T-SGX, that can protect any enclave program against controlled-
channel attacks. At a high level, T-SGX transforms an enclave
program such that any exception or interrupt that occurs during
the execution is redirected to one specific page (see §V-B). We
provide strong security guarantees against controlled-channel
attacks under a conservative threat model (see §VII). T-SGX
realizes this mechanism with a commodity hardware feature,
Intel Transactional Synchronization Extensions (TSX), that
was introduced with the Haswell processor. The key enabling
property of TSX is the way it aborts an ongoing transaction
when encountering an erroneous situation, such as a page
fault or interrupt. In particular, when a page fault occurs, TSX
immediately invokes a user-space fallback handler without
notifying the underlying OS. The fallback handler recognizes
whether the very recent attempt to execute a code page or access
a data page has triggered a page fault. If it did, T-SGX carefully
terminates the program. Further, TSX ensures that such traps
and exceptions are never exposed to system software including
the OS and a hypervisor, implying that the controlled-channel
attack relying on page-fault monitoring is no longer possible
with T-SGX because even the OS cannot know whether a page
fault has occurred. However, obtaining a working, efficient
TSX-secured enclave binary requires careful program analysis.
First, TSX is very sensitive to cache usage; it treats cache
conflicts and evictions as errors [25, §15.3.8.2]. Thus, we have
to carefully compose transactional code regions based on their
memory access patterns. Second, TSX treats any interrupts
and exceptions as errors (e.g., timer and I/O interrupts), so we
cannot run a code region for a long time even if it makes
no memory accesses. Third, setting up a TSX transaction
is very expensive (around 200 cycles on our test machine
with an Intel Core i7-6700K 4 GHz CPU), which implies a
naïve solution, wrapping individual instructions with TSX, is
impractical. Finally, we need to carefully arrange transactional
code regions in memory to hide transitions between them from
attackers (see §V-B).

T-SGX is based on a modified LLVM compiler satisfying
the following three important design requirements. One is that
T-SGX automatically transforms a normal enclave program
into a secured version, all of whose code and data pages are
wrapped with TSX. Another requirment is that T-SGX isolates
the specific page for the fallback handler and other transaction
control code, called springboard, from the original program’s
code and data pages to ensure that exceptions including
page faults and timer interrupts can only be triggered on the
springboard. The OS can still identify whether an exception has
occurred at the springboard, but this does not reveal any mean-

ingful information. Lastly, T-SGX ensures that no unexpected
transaction aborts caused by benign errors (e.g., transaction
buffer overflow and timer interrupts), by carefully splitting a
target enclave program into a number of small execution blocks
satisfying the TSX cache constraints. A conservative splitting
strategy (e.g., secure individual basic blocks) significantly slows
down T-SGX (§VIII). We develop compiler-level optimization
techniques such as loop optimizations and cache usage analysis
that maximize the size of execution blocks (§VI). Our evaluation
results show the effectiveness of T-SGX in terms of security,
compatibility, and performance. We applied T-SGX to three
previous controlled-channel attack targets including libjpeg,
Hunspell, and FreeType and demonstrated that the attack can
no longer work. In addition, applying T-SGX to these programs
require no source code modifications. We also checked the
overall overhead of the programs. On average, the execution
time increased by 40% and the memory consumption increased
by 30%. Moreoever, we applied T-SGX to a popular benchmark
suite, nbench, and confirmed that the performance overhead of
T-SGX was 50% on average.

In summary, this paper makes the following contributions:

• New security mechanism. We develop a new security
mechanism, T-SGX, that protects enclave programs
from a serious threat: the controlled-channel attack.
At compilation time, T-SGX transforms an enclave
program into a secure version without requiring anno-
tations or other manual developer efforts, and, most
important, it does not require hardware modifications.

• Novel usage of TSX. To the best of our knowledge,
T-SGX is the first attempt to use TSX to detect
suspicious exceptions. Mimosa [18] was the first
application of TSX to establish a confidential memory
region, but it focuses on detecting read-write or write-
write conflicts, which is the original use case of TSX.
In contrast, we use TSX to isolate exceptions such as
page faults and redirect them to a user space handler
under our control.

• Springboard and program analysis. The properties
of TSX (e.g., cache- and interrupt-sensitivity) limit
developers apply TSX to only a small protion of a
program. Our springboard design and program analysis
make a breakthrough: we can run any program in
transactions without compatibility problems.

• Evaluation and analysis. We evaluated the security
and performance of T-SGX by applying it to two repre-
sentive groups of programs: three previous controlled-
channel attack targets including libjpeg, Hunspell, and
FreeType and a benchmark suite, nbench. The results
show a 40% and a 50% performance degradation on
the first and the second group, respectively. T-SGX is
also easy to use; that is, it transforms all the programs
with no source code modification.

The remainder of this paper is organized as follows. §II
explains details about Intel SGX and TSX. §III describes
controlled-channel attacks in depth. §IV provides the ideal
system model. §V explains the design of T-SGX. §VI depicts
how we implemented T-SGX. In §VII we conduct a security
analysis of T-SGX. §VIII shows our evaluation results. §IX
considers limitations of T-SGX. §X discusses related work. §XI
concludes this paper.

2

II. HARDWARE PRIMITIVES AND MOTIVATION

In this section, we explain two hardware primitives sup-
ported by Intel CPUs: SGX for trusted computing and TSX
for transactional memory. We also study how they handle
CPU exceptions, since exceptions including page faults are the
controlled channels a malicious OS can use to attack enclave
programs [65].

A. Intel SGX

Intel Software Guard Extensions (SGX) is a set of exten-
sions to the x86 instruction set architecture that aims to enable
a hardware-based TEE, such that the Trusted Computing Base
(TCB) consists of only the code and data that reside in a secure
container (enclave) and the underlying hardware components.
An SGX-enabled processor enforces new memory access
semantics over an enclave such that the code and data within
an enclave are inaccessible to all external software, including
the operating system and the hypervisor. A dedicated physical
memory region is allocated at boot time for enclave instantiation.
To prevent known memory attacks such as memory snooping,
SGX relies on a Memory Encryption Engine (MEE) to encrypt
the enclave memory content. The enclave memory can only
be decrypted when entering the CPU package during enclave
execution. SGX provides a flexible programming model that
allows an application to instantiate an enclave as part of its
address space via the SGX instruction set. The enclave code
and data are measured during the enclave initialization process.
This measurement forms an enclave’s identity, which a remote
party can verify by means of remote attestation [23, 30]. In
addition to the hardware-based protection mechanisms, SGX
relies on the operating system to help with enclave initialization,
exception handling, and resource management.

B. Intel TSX

In this section, we explain Intel Transactional Synchro-
nization Extensions (TSX), which is Intel’s implementation
of hardware transactional memory (HTM) [20]. HTM was
originally proposed to reduce the overhead of acquiring locks
for mutual exclusion and to simplify concurrent programming.
With HTM, a thread can transactionally execute in a critical
section without any explicit software-based lock such as a
spinlock or mutex. If a transaction completes without conflict,
all of its read and write attempts are committed to memory.
Otherwise, all of intermediate read and write attempts are
rolled back (never exposed to the real memory) and a fallback
(or abort) handler that was registered at the beginning of the
transaction is invoked. The fallback handler decides whether to
retry the transaction. Intel TSX supports two different interfaces,
namely, hardware lock elision (HLE) and restricted transactional
memory (RTM). For the discussion of this paper, we focus
only on RTM.

Intel TSX provides four instructions: XBEGIN, XEND, XABORT,
and XTEST. A thread can initiate a transactional execution
using XBEGIN and terminate it using XEND. It can use XABORT to
terminate a transaction and XTEST to test whether it is currently
executing in a transaction.

Figure 1 shows a code snippet that uses TSX. It first executes
_xbegin() (i.e., XBEGIN) to begin a transaction. If it succeeds,
_xbegin() returns _XBEGIN_STARTED and continues to execute

1 unsigned status;
2

3 // begin a transaction
4 if ((status = _xbegin()) == _XBEGIN_STARTED) {
5 // execute a transaction
6 [code]
7 // atomic commit
8 _xend();
9 } else {

10 // abort
11 }

Fig. 1: A basic example of Intel TSX. _xbegin() initiates a transaction
region to execute [code] and _xend() closes the region. An exception
at [code] makes the control flow go to the else block.

the code inside the if block (line 6). If there is no conflict,
the program will eventually execute _xend() (i.e., XEND) to
atomically commit all the intermediate results. However, if
there is a conflict or an exception (§II-C), the transaction is
rolled back and the program executes the else block (line 10)
to handle the error.

Technical details. Understanding the technical details of the
TSX implementation [34] is important because such details
can explain why TSX exhibits the described behavior (§II-C2).
During a transaction, HTM needs a buffer to store intermediate
data read or written, so it can commit them to memory at the end
of the successful transaction. Instead of introducing a separate
buffer, TSX uses the L1 cache as a buffer. This choice was made
not only to avoid extra storage requirements, but also to simplify
the implementation of TSX; it piggybacks on the existing cache
coherence protocol to detect memory read or write conflicts
without introducing complex new logic. The cache coherence
protocol maintains data consistency between the caches of
different cores such that TSX can detect data conflicts at the
granularity of cache lines and roll back a transaction when a
conflict occurs.

C. Exceptions inside SGX and TSX

During execution, a CPU can encounter various exceptions,
such as page faults, general protection faults, and interrupts.
When an exception occurs, the CPU calls the corresponding
exception handler managed by the OS to resolve the problem
or gracefully terminate execution. The CPU handles exceptions
that occur during enclave and transactional execution differently
from those that occur during normal execution.

1) SGX: Asynchronous Enclave Exit (AEX): Although SGX
assumes the underlying OS could be malicious, it relies on the
OS for exception handling. SGX takes special provisions to
minimize information leakage during exception handling. Any
exception or interrupt that arrives during enclave execution
causes an Asynchronous Enclave Exit (AEX). Figure 2 depicts
how the AEX is conducted. The processor first stores the
enclave’s register context and the exit reason (exception code)
in a region of enclave memory called the state save area (SSA)
and loads synthetic values into the registers. In the case of
page faults, the processor provides the OS only with the base
address of the faulting page and not with the exact address.
It then transfers control to the regular OS kernel exception
handler. Eventually, the exception handler will return control to
a user mode trampoline function outside the enclave, which can
call the ERESUME instruction. ERESUME will restore the enclave’s
saved register context and resume enclave execution.

3

Kernel space

Enclave

❸
❹ return

User space

Trampoline

Host program

Exception
handler

SSA

Registers❶ store

❷ synthetic

Application
exception handler

❺

❻ restore

✪

exit

ERESUME

EENTER

Fig. 2: Steps of an SGX asynchronous enclave exit (AEX). 1 The
processor stores register values and the exit reason into the state
save area (SSA) inside the enclave. 2 The processor loads synthetic
data into registers. 3 The enclave exits directly to the kernel space
exception handler. 4 The exception handler handles the interrupt and
returns to the trampoline. 5 The trampoline resumes the enclave. 6
The processor restores the stored register values and resumes enclave
execution. In addition, the trampoline can call an application exception
handler inside the enclave to handle exceptions the OS cannot process.

Limitation. Although the AEX hides the register context
and the exact address of an exception, information about the
exception still leaks to the OS. For example, after each page
fault, the OS learns which page the enclave attempted to
access. This information is the basis for the controlled-channel
attack [65].

2) TSX: Transaction Abort: When two transactions conflict
with each other (e.g., their read and write sets overlap), one
will be canceled, and thus aborted (see §II-B). TSX also aborts
a transaction when encountering an exception because a ring
transition is not possible while executing a transaction. In the
case of synchronous exceptions that occur during the execution
of a specific instruction (e.g., page fault, general protection
fault, divide-by-zero), the exception is not delivered to the
OS because TSX intentionally suppresses it ([25, §15.3.8.2]).
On the other hand, an asynchronous exception (e.g., timer
interrupt and I/O interrupt) will be delivered right after a
transaction is aborted and rolled back, because suppressing such
interrupts would make user-space processes non-preemptable,
which would interfere with OS scheduling.

D. Taking Control of Exception Handling

Using TSX inside SGX enclaves makes it possible to route
exceptions such as page faults to TSX abort code inside the
enclave and not to the ring-0 exception handler of the untrusted
OS. This deprives attackers of all information about page faults
and allows the enclave to identify potential attacks. We describe
a design based on this observation in §V.

III. CONTROLLED-CHANNEL ATTACK REVISITED

In this section, we briefly explain the controlled-channel
attack [65] (called pigeonhole attack in [54]) that allows a
malicious OS to infer sensitive computation and data inside a
TEE such as Haven [4] and InkTag [21]. We limit the discussion
to attacks against SGX, which is the focus of our paper and
which provides stronger security guarantees than a trusted
hypervisor (e.g., InkTag).

A. Threat Model

We explain the threat model of the controlled-channel attack.
Note that our system, T-SGX, assumes the same threat model.

First, the attack assumes that an OS can manage (e.g., map
and unmap) enclave memory pages although it cannot see their
contents. Whenever an enclave program attempts to access an
unmapped page, the OS will receive a page fault to handle
it; then the handler either remaps the page and resumes the
program or generates an access violation error. However, this
attack does not assume that the OS knows the exact offset of
a page fault because TEEs can hide this information from the
OS.

Second, the attack assumes that an attacker knows the
detailed behavior of a target enclave program, especially its
memory access patterns according to inputs. The attacker has
already analyzed a target enclave program’s source code and/or
binary in detail to obtain the information. Also, this attack
ignores programs with obfuscated memory access patterns (e.g.,
Oblivious RAM (ORAM) [40, 49]) because they do not have
visible behavior characteristics.

Third, the attack assumes that an attacker cannot arbitrarily
run a target enclave program. Due to remote attestation, a user
will know how many times his/her enclave program is executed
in the public cloud such that it is difficult to run the target
enclave program many times without the user’s approval.

Fourth, the attack relies only on a noise-free side channel:
page fault information. Other noisy side channels, including
cache and memory bus, are out of the scope for this paper.

B. Controlled-channel Attack

The controlled-channel attack uses page faults as a control-
lable side channel. Since a malicious OS can manipulate the
page table of an enclave program, it can know which memory
pages the enclave program wants to access by setting a reserved
bit in page table entries and monitoring page faults.

In contrast to a normal execution environment, the malicious
OS cannot see the exact faulting address but only the page frame
number because SGX masks the exact address, as explained
in §II-C1. To overcome this limitation, the controlled-channel
attack analyzes sequences of page faults rather than individual
page faults.

The final step of the controlled-channel attack is correlating
the page fault sequences with the results of offline, in-depth
analysis of a target enclave program. This allows the attacker
to infer the input to the enclave program if the memory access
pattern of the program varies sufficiently with the input.

Effectiveness. The original controlled-channel attack was
demonstrated against three popular libraries: FreeType, Hun-
spell, and libjpeg. The evaluation results show that the attack can
accurately infer the input text and images to the libraries [65].
Shinde et al. [54] use a similar attack to extract bits of
cryptographic keys from the OpenSSL and libgcrypt libraries.

C. Known Countermeasures

A few countermeasures against controlled-channel attacks
have been discussed, but most of them are neither practical nor

4

secure. Intel has revised its SGX specification to support an
option for recording page faults and general protection faults
in the SSA [24]. However, this countermeasure is incomplete
because a malicious OS can cause the SSA to be overwritten
(details in §III-D). Second, Intel has suggested static and
dynamic analysis to eliminate all feasible input-dependent code
and data flows [26]. But, this requires significant developer
effort and incurs non-negligible performance overhead. Third,
Shinde et al. [54] have proposed deterministic multiplexing,
a software-only solution against the controlled-channel attack.
However, its performance overhead is tremendous without
developer-assisted optimizations. Finally, Shinde et al. also
have proposed a new execution model (contractual execution)
that makes a contract between the enclave program and the
OS to ensure that a specified number of memory pages reside
in the enclave. Their proposal, however, requires modifications
to core processors components. Such changes appear difficult
and unrealistic.

D. Overwriting Exit Reason

As mentioned in §II-C1, the SSA stores the exit reason for
each AEX. However, we found that a malicious OS can easily
overwrite the exit reason by sending an arbitrary interrupt to
an enclave program because the SSA stores only the last exit
reason1. This makes an enclave program unaware of page faults,
even if it uses an option SECS.MISCSELECT.EXINFO=1 to record
page faults and general protection faults.

We experimentally confirmed that a malicious OS can
overwrite the exit reason of a page fault by using a fake
general protection fault. When a page fault is generated, a
corresponding address is stored in SSA.MISC.EXINFO.MADDR and
PFEC is stored in SSA.MISC.EXINFO.ERRCD for later use [24].
However, a general protection fault could overwrite these
fields: it stores 0 in SSA.MISC.EXINFO.MADDR and GPEC in
SSA.MISC.EXINFO.ERRCD. We have found that a malformed
Advanced Programmable Interrupt Controller (APIC) interrupt
generates a general protection fault. The OS can program the
APIC to generate such interrupts and thus general protection
faults during enclave execution. Therefore, if a malicious OS
generates a malformed APIC interrupt for an enclave program
right after handling a page fault, the fields in the SSA are
overwritten such that an enclave program cannot know whether
or not a page fault has occurred. Further, the OS can generate
another normal interrupt (e.g., a timer interrupt) later to even
clear up the GPEC flag. Thus, we conclude that relying on
the exit reason cannot protect an enclave program from the
controlled-channel attack.

IV. SYSTEM MODEL

In this section we explain our ideal system model. An
ideal enclave (uncontrollable enclave) protects any enclave
program from the security threats explained in §III. The basic
requirement of the uncontrollable enclave is to enable an enclave
program to know every interrupt and page table manipulation,
and stop its normal execution when it detects that the OS has
unmapped any of its sensitive memory pages.

1There is an SSA stack for handling nested exceptions. However, this
overwriting attack is not about nested exceptions because it sends a new
interrupt right after handling the previous interrupt.

Controller
page

Secured
code page

Secured
code page

Secured
data page

interrupt

Enclave

Kernel space

User space

Host
Program

page fault

page fault

Client

Remote
control/attestation

Fig. 3: The uncontrollable enclave model. It consists of secured and
controller pages. The secured page is not interrupted by the OS and
its page fault is delivered to the controller page instead of to the OS.
The controller page manages control and data flows between secured
pages and handles page faults generated by accessing secured pages.

To achieve these goals, the uncontrollable enclave allows an
enclave program to have two kinds of memory pages: secured
pages and controller pages, as shown in Figure 3. First, the
secured pages are unobservable pages containing all code and
data of an enclave program. The OS cannot interrupt the enclave
program when it executes or accesses the secured pages, and it
cannot monitor page faults generated due to the execution or
access of these pages. Since secured pages are uninterruptible,
the uncontrollable enclave needs to ensure that execution with
secured pages is short (e.g., up to the interval of a timer
interrupt) to prevent a malicious enclave program from fully
occupying a CPU core. Also, when the uncontrollable enclave
detects that any of the secured pages are unmapped, it treats
the OS as malicious.

Second, the controller pages relay the control and data flow
between the secured pages, check whether access to the secured
pages is hindered by the OS (i.e., unmapped), and interact with
the OS for scheduling and system calls. The OS can interrupt
their execution and monitor page faults generated by accessing
them. However, revealing their behavior does not leak much
information because they are just trampoline pages and the
actual execution of an enclave program is performed inside the
secured pages.

The uncontrollable enclave ensures that no page fault
sequence (i.e., inter-page accesses) is revealed to an OS. First,
when the uncontrollable enclave identifies that a secured page
is unmapped, it stops its execution. This could reveal up to a
single page fault to the OS. Second, the enclave program can
let its remote client know whether or not it has successfully
terminated by sending an acknowledgment message. A lack
of acknowledgment also means that there was a problem.
Third, the uncontrollable enclave prevents the OS from running
the enclave program arbitrarily. To achieve this, the enclave
program checks whether its client allows the OS to run itself
during a remote attestation process. The remote client would
completely disallow any further execution if the program did
not send acknowledgment messages before. Note that it is
natural to assume that an enclave program runs in the cloud
and its remote client controls its execution.

Based on these requirements, we implement a prototype
scheme, T-SGX. T-SGX does not ensure perfect information
leakage prevention, but we believe it is sufficient to make the
known controlled-channel attacks impractical (see §VII for
details).

5

1 // original code
2 void foo(char *msg, size_t len) {
3 const char *secret = "key";
4 ...
5 }
6

7 // protected code
8 void ecall_foo(char *msg, size_t len) {
9 if ((status = _xbegin()) == _XBEGIN_STARTED) {

10 foo(msg, len);
11 _xend();
12 } else {
13 // abort: e.g., page fault detected
14 abort_handler();
15 }
16 }

Fig. 4: A straw man example that wraps the entire enclave code in a
TSX transaction to prevent controlled-channel attacks.

V. DESIGN

In this section, we describe in detail the design of T-SGX,
which is a practical realization of the uncontrollable enclave
model (§IV). In particular, we explain how to realize the model’s
various components using Intel TSX.

A. Overview of the TSX-based Design

This section describes a working instantiation of our
architecture that relies only on a widely deployed standard
processor feature (TSX). This approach yields a practical and
effective side-channel mitigation that can be used today.

Intuitively, the main value of TSX as a side-channel
mitigation lies in its ability to suppress page faults and other
synchronous exceptions. A page fault that occurs during a TSX
transaction will not be delivered to the untrusted ring 0 page
fault handler. Instead, the processor will abort the transaction
and transfer control to the transaction’s abort code. Thus, our
strategy will be to run enclave code inside transactions and to
place a trusted exception handler in the TSX abort code path.

Figure 4 shows a simple example of an enclave program and
its TSX-based transformation. The code between _xbegin and
_xend is executed as a transaction. The else branch contains
the abort code path. TSX guarantees that any page fault that
occurs while executing foo(msg,len) is suppressed and control
is transferred directly to the abort_handler in the else branch.

A simple design idea could be to wrap the entire enclave
program in a single TSX transaction. However, for typical
programs, such transactions will never complete because (a)
TSX will abort a transaction if its write or read set is too large
to fit into the L1 or L3 cache, respectively, and (b) long-running
transactions are highly likely to be aborted by interrupts. Thus,
we have to partition the program into small execution blocks
and wrap each execution block in a transaction.

This requires the ability to perform detailed static analysis
as well as a number of program transformations. For this
reason, we integrate T-SGX into the compiler. As the source
code is compiled into an enclave binary, T-SGX computes an
appropriate partitioning into execution blocks and makes sure
each execution block is protected by TSX by conservatively
placing XBEGIN and XEND instructions (see §V-C for details).

xbegin()
...
xend()... Page B (unmapped)

xbegin()
...
xend()

...

Page A

Execution
flow

Page fault

Fig. 5: Careless usage of TSX revealing a page fault. An attacker can
monitor the page fault at Page B because a transition between Page
A and Page B is not in a transaction.

B. The Springboard

Using many small transactions entails a new problem. As
page faults are not suppressed across transactions, an attacker
may still see all page faults he/she is interested in, unless
transactions are carefully arranged in memory. Figure 5 shows
an example in which the transition between two transactions
is leaked because they are at a page boundary. An attempt to
execute the first instruction on page B causes an observable
page fault outside a transaction.

T-SGX solves this problem by placing all code that executes
outside transactions on a single page. We call this page the
springboard. Figure 6 displays the code that performs the
transitions between consecutive transactions. An important
property of this code is that it does not access memory on
any other page (e.g., stack, heap). Upon receiving an enclave
function call from the host, the entry function begins by jumping
to the springboard.begin block, which starts a transaction
with an XBEGIN instruction followed by a jump to the start
of first the block (call in this example). At the end of each
block, the T-SGX compiler inserts two instructions that load
the address of the next block into a register and jump to
the springboard.next block. Code on the springboard then
ends the current transaction (XEND), begins the next transaction
(XBEGIN), and jumps to the start of the next block, as indicated
by the register value provided by the previous block. Right
before the end of execution, springboard.end ends the last
transaction (XEND).

T-SGX also places the transaction abort code on the
springboard page. Like the code that transitions between
transactions, the abort code also executes outside a transaction.
It is thus subject to page faults, and we ensure that it does not
access memory outside the springboard. With this code layout,
the only enclave page for which access could possibly result
in a page fault is the springboard. This could happen (a) at the
transaction transition (springboard.next, springboard.begin),
and at springboard.end in Figure 6 and (b) in the transaction
abort code (springboard.abort).

Example. Figure 7 shows how a host program and an OS
interact with an enclave program secured by T-SGX.

1) The host program uses the SGX EENTER instruction
to call a function inside the enclave.

2) EENTER transfers control to the enclave’s springboard.
The springboard starts the first transaction and jumps
to the first execution block. As execution blocks
complete and jump back to the springboard, the spring-
board completes and initiates transactions and jumps

6

1 springboard:
2 springboard.next:
3 xend
4 springboard.begin:
5 xbegin springboard.abort
6 jmpq *%r15
7

8 springboard.end:
9 xend

10 jmpq *%r15
11

12 springboard.abort:
13 # (abort handler code)
14 ...
15 # resume execution
16 jmp springboard.begin

1 # entry point to the function wrapper
2 entry_point:
3 leaq EB.start(%rip), %r15
4 jmp springboard.begin
5 EB.start:
6 # (load parameters)
7 call _function
8 # (save return value)
9 leaq EB.end(%rip), %r15

10 jmp springboard.end
11 EB.end:
12 ...
13 enclu[EEXIT]
14

15 # transformed function
16 _function:
17 subq $40, %rsp
18 ...
19 leaq EB.1(%rip), %r15
20 jmp springboard.next
21 EB.1:
22 ...
23 leaq EB.2(%rip), %r15
24 jmp springboard.next
25 EB.2:
26 ...

Fig. 6: Transaction transition code on the springboard and at the end
of each execution block (denoted EB).

to subsequent execution blocks. While these execution
blocks may be distributed over many memory pages,
only the springboard contains code that is not wrapped
in a transaction.

3) If an exception occurs inside an execution block, the
processor transfers control directly to the abort handler
whose address is specified at XBEGIN.

4) The abort handler determines whether it has to restart
the transaction or terminate the enclave program. The
operating system will only see exceptions on the
springboard page.

C. Execution Blocks

This section explains how the T-SGX compiler partitions
a program into execution blocks that can be executed as
transactions. We begin with a simple partitioning scheme that
yields correct and functional programs. After that, we introduce
various optimization techniques that drastically reduce the
overhead of the simple scheme.

T-SGX computes the control flow graph of the program and
tests for each basic block if it satisfies the transaction limits
imposed by TSX and an execution time bound we establish. In
particular, T-SGX makes a conservative estimate of the write
and read sets of the basic blocks with respect to a cache model,
as explained in §V-C1. We approximate execution time by
counting the number of instructions in the basic block. Most
basic blocks satisfy the two constraints. The remaining basic
blocks are split by T-SGX into smaller blocks until all split
blocks satisfy the transaction constraints. The resulting set of
blocks is the partitioning into execution blocks under the basic
scheme.

1) Transaction Constraints: TSX imposes strict bounds on
the read and write sets of each transaction. The write set must
fit into the L1 data cache. That is, the L1 data cache must be
able to hold all memory writes of a transaction.

For example, on Skylake processors, the L1 data cache
has a size of 32 kB. It is 8-way set associative with 64-byte

Kernel space

Enclave
entry point

❷ execution

❸ abort

❹ terminate (or interrupted)

User space

abort handler

springboard (R-X)
xend()
xbegin()
jmp r15
xend()
jmp r15

push rbp
mov rax, rbx
...
// jmp EB1
mov EB1, r15
jmp next

Host
program

❶ EENTER

mov rbx, rcx
...
// jmp EB2
mov EB2, r15
jmp next

Exception
handler

begin:
next:

entry

EB1

transactional regions
control flows

EEXIT/AEX

...
mov entry, r15
jmp begin

end:

Fig. 7: Overall procedure of T-SGX: 1 A host program calls an
enclave program. 2 Enclave execution is managed by the springboard
that jumps into execution blocks scattered across multiple pages.
The execution blocks jump back to the springboard when they are
successfully executed. 3 When an exception occurs in a execution
block, control goes directly to the abort handler on the springboard.
4 The enclave program either terminates or is interrupted. The OS
can only identify the page containing the springboard.

8 ways

64 slots...

...

...

...

...

...

0xc0000
0xc0040
0xc0080
0xc00c0
0xc0100
0xc0140
0xc0180
0xc01c0
0xc0200

Main memory L1 cache

Fig. 8: Mapping of memory addresses to L1 cache slots.

cache lines. We can visualize this cache as eight copies (ways)
of a 4 kB page partitioned into 64 slots of size 64 bytes
(see Figure 8). The 64-byte cache line size is the granularity
at which cache space is assigned. Multiple write operations
within a single 64-byte aligned 64-byte address range occupy
a single cache line. This 64-byte line is mapped to the slot in
the L1 cache at the same page offset. A memory access within
the 64-byte line causes it to be loaded into one of the eight
ways at the corresponding slot in the L1 cache. This will cause
the previous content of the of the way to be evicted from the
L1 cache.

As the write set of a transaction must be kept in the L1
cache until the end of the transaction, a transaction will fail if
its write set includes more than eight cache lines that map to
a single slot. The T-SGX compiler uses this cache condition
to determine if the write set of an execution block is too large.
If it is, it will split the execution block into smaller units (as
explained above).

Since the exact addresses of memory write operations may
not be known at compile time, we have to use a conservative
approximation. That is, given uncertainty about the addresses of
memory accesses at run time, we assume the worst possibility.
This may cause T-SGX to split the program into unnecessarily
small execution blocks. However, it guarantees that the write
set will fit into the L1 cache.

7

1 # TSX Basic
2 EB:
3 ...
4 leaq loop.header(%rip), %r15
5 jmp springboard.next
6 loop.body:
7 ...
8 incq 32(%rsp)
9 leaq loop.header(%rip), %r15

10 jmpq springboard.next
11 loop.header:
12 ...
13 cmpq $100, 32(%rsp)
14 leaq loop.body(%rip), %r15
15 jbe springboard.next
16 leaq loop.end(%rip), %r15
17 jmp springboard.next
18 loop.end:
19 ...

1 # T-SGX
2 EB:
3 ...
4 leaq loop.header(%rip), %r15
5 jmp springboard.next
6 loop.body:
7 ...
8 incq 32(%rsp)
9 loop.header:

10 ...
11 cmpq $100, 32(%rsp)
12 jbe loop.body
13 leaq loop.end(%rip), %r15
14 jmp springboard.next
15 loop.end:
16 ...

Fig. 9: An example of the loop optimization.

More precisely, we distinguish between three types of
memory accesses. First, addresses that are known completely
at compile time can be mapped directly to a cache slot. Second,
memory accesses given by an unknown base address and a
known fixed offset (e.g., rsp+8, rsp+16) are grouped by the
base pointer. We compute the maximum number of occupied
ways separately for each group (base pointer) and add the
maxima over all groups. Third, we model an access whose
address is completely unknown as occupying one way of every
slot. Finally, we add the largest way-count from each of the
three cases to obtain an upper bound on the L1 requirements
of the execution block.

We use a similar strategy to analyze the read set of execution
blocks, and we count instructions as a proxy for execution time.

D. Optimization Techniques

An empty transaction with XBEGIN and XEND costs about 200
cycles. This can have a significant performance impact on the
end-to-end application run time (see §VIII). The simple, basic-
block-based partitioning uses basic block boundaries as the
default place to begin and end transactions. However, it is often
possible to place transactions around larger units of program
execution, such as loops or functions. This subsection describes
optimization techniques that follow this strategy and that can
remove most of the overhead of the simple partitioning. Note
that these optimizations do not interfere with OS scheduling,
since interrupts cause transactions to be aborted (§II-C2).

1) Loops: Simple partitioning places transactions inside the
loop body. That is, every iteration of even the simplest loops
(e.g., memcpy()) is at least one separate transaction. Our first
optimization technique is to pull the transaction out of the loop
where possible. Rather than creating a transaction for every
loop iteration, we create a single transaction for the entire loop
execution.

The main difficulty is to determine the write set of a loop.
In general, this is not a tractable problem. However, in practice,
many loops have simple relationships between the iteration
number and the addresses of memory accesses in that iteration.
For example, we frequently observe a simple linear relationship.
That is, during the k-th iteration, the loop will access address

a+ b ∗ k, where a and b are constants known at compile time.
We use data-flow analysis to determine such relationships.

Given the write set of the loop, we perform the tests
of §V-C1 to determine if the optimization can be applied. If
the test fails because the number of loop iterations is too large
or unknown, we can still apply the optimization by partially
unrolling the loop. For example, if for up to 100 iterations
the write set of the loop fits into the L1 cache, we place a
transaction around every 100 iterations of the loop. This allows
us to amortize the transaction cost over possibly many loop
iterations (see Figure 9).

2) Functions and if-statements: This optimization attempts
to merge all execution blocks within a function into a single
execution block covering the entire function. We attempt to
compute the write and read sets and instruction count for the
entire function. If the function is complicated (e.g., contains
loops), this may not succeed, and we do not optimize the
function. If we can obtain the read and write sets and the
instruction count and if they pass the tests of §V-C1 then we
merge the entire function into a single execution block.

Similarly, if we can determine the read and write sets of if-
then-else statements and if they meet the conditions of §V-C1,
we merge the if-then-else statement into a single execution
block.

E. Abort Sequence

If a transaction fails, TSX will transfer control to the abort
address specified in the XBEGIN instruction. T-SGX places this
address on the springboard.

A simple version of the abort code restarts the transaction
unconditionally until it succeeds. The appeal of this design lies
in its simplicity. The abort code is stateless and only a few
instructions long. However, if a transaction has to access a page
that has been unmapped, this design will restart the transaction
indefinitely, which is not an optimal defense strategy (§VII).

The alternative is for the abort code to monitor transaction
aborts for signs of attacks and to stop program execution if an
attack is detected. Lacking hardware support for distinguishing
between page faults and regular interrupts as the cause of a
transaction abort, we use the following criterion. If a transaction
aborts more than n times, the abort code will terminate program
execution, where n is a parameter that must be chosen such that
the likelihood of seeing n consecutive transaction aborts due to
benign causes under normal operation is very low. Based on the
analysis of §VIII-B4, we set n = 10. The controlled-channel
attack [65] requires millions of page faults to obtain sensitive
information, so that 10 would be a reasonable threshold to
defeat it.

Aborting execution when an unmapped page is detected
may leak to the attacker that the enclave was trying to access
this page. However, as explained in §VII, this strategy ensures
that the attacker does not learn anything else through the page
fault channel.

An implementation difficulty arises from the fact that the
attack detection code is not stateless, as it has to count the
number of times a transaction is aborted. In order to maintain
the important springboard property that the only memory

8

accesses of springboard code outside transactions are execute
accesses to the springboard page, we store the counter in a
CPU register that we reserve in the compiler.

F. Preventing Reruns

The decision to run the enclave should be made by its
owner and not by the attacker. This can be easily enforced by
having the enclave code wait for a cryptographically secured
authorization before it accesses sensitive data. We make this
authorization an optional part of T-SGX.

The attack model of [65] assumes that the victim runs
only once. Furthermore, the use model described in [65] (a
remote user controlling a SGX-protected Haven instance or
VM in the cloud via a remote desktop protocol) effectively
includes an authorization to run (the remote user’s commands)
that is cryptographically secured (through the remote desktop
protocol).

G. External calls

T-SGX places an XEND before calls from the enclave into
the untrusted part of the address space (an EEXIT instruction).
Similarly, T-SGX places a XBEGIN instruction close to the
enclave entry points specified in the SGX Thread Control
Structures (TCSs).

H. Illegal instructions

The T-SGX compiler ensures that no instructions that are
illegal under SGX or TSX are generated for an enclave binary.
This is unproblematic, as those instructions are not necessary
to generate regular application code.

VI. IMPLEMENTATION

We have built a prototype of T-SGX based on the LLVM
compiler. Our prototype produces T-SGX-enabled binaries that
can be run in an enclave just like the original binary. Our
prototype can handle arbitrary C and C++ code.

The main part of our prototype is integrated into the back-
end of LLVM. It starts by performing the analysis described
in §V based on the basic blocks produced by LLVM. After
that, it modifies the instruction sequence as it is being emitted
by LLVM. In particular, it places two instructions (to load the
address of the next execution block into the r15 register and
to jump to the springboard) at the end of each execution block.
In the case of 64-bit code, we reserve the r15 register for this
purpose (i.e., to communicate the address of the next block to
the springboard). Jump and call instructions (including indirect
jumps and calls) are also made to jump to the springboard with
the destination address loaded into r15.

As TSX uses the rax register, we reserve a second register
to save the value of rax at the end of each execution block
that writes to rax and to restore it at the beginning of each
execution block that reads rax before writing to it.

Our prototype also includes a plugin to the LLVM front-end
that injects a function wrapper for each exported function into
the LLVM intermediate representation. The entire prototype
consists of 4,110 lines of C++ code.

VII. SECURITY ANALYSIS

For T-SGX-based enclave programs, the attacker can only
observe page fault locations (faulting addresses) on (a) the
springboard page and (b) the unsecured pages containing
function wrappers for the external enclave entry points. The
latter can be ignored, as they do not access sensitive data.

Furthermore, as shown below, the attacker cannot use
page faults to obtain deterministic notification when enclave
execution accesses the springboard. These two properties of
T-SGX disable the two main uses of the page-fault channel
in the attacks of [65] and [54]: (a) leaking page numbers of
memory accesses and (b) giving the attacker synchronization
points that allow him/her to track the the victim’s execution.
An example of the latter is the strategic unmapping of code
pages in [65] such that, every time the victim calls a function
that accesses sensitive data (looking up a word in the Hunspell
hash table, rendering a character, decoding an 8 × 8 pixel
block of an image), a page fault interrupts (stops) the victim
and invokes the attacker, who can then advance him/her state
machine and update the set of unmapped pages. By blocking
these two mechanisms, T-SGX effectively protects enclave
programs against the known page-fault-channel-based attacks.

For the full-strength T-SGX variant that requires the enclave-
owner’s consent to run the enclave program (§V-F) and that
aborts enclave execution as soon as a page fault is detected
(§V-E), a stronger statement can be made: The attacker will
learn at most one page access by the victim. Recall that the
attacks of [65] required millions of page faults.

Given a reliable attack detection mechanism, the argument
is straightforward. The first time one of the victim’s transactions
aborts, T-SGX will detect an attack and stop the execution. As
the attacker will not be able to run the victim again, he/she
cannot observe more than the one page access that caused the
springboard to abort the execution. Whether the attack detection
described in §V-E is sufficiently robust is arguable.

Attack detection. For enclave execution, it is reasonable
to require that the enclave encounters no unexpected page
faults. Thus, attack detection reduces to detecting page faults
for T-SGX-secured pages. The problem would be trivial if
the TSX hardware would distinguish between page faults
and interrupts in the eax value provided to the abort handler.
Lacking such hardware support, our abort handler declares an
attack after a small number of consecutive transaction failures.
This approximation is motivated by our evaluation (§VIII):
Transactions tend to be short (1,000 to 2,000 cycles), and we
have never observed more than three consecutive transaction
aborts or false positives.

Restarting the transaction several times before aborting
enclave execution could, in principle, give the attacker an
opportunity to observe that the page has been accessed and
to make the page accessible before the springboard terminates
enclave execution. However, it appears that the attacker would
have to rely mainly on other mechanisms (beyond the page-
fault channel) to detect that the page had been accessed. In
other words, while we cannot exclude the possibility that the
attacker could gain more information, it appears that he/she
would have to rely primarily on powerful mechanisms beyond
the page-fault channel (e.g., cache side channels), which is not
the focus of T-SGX.

9

Attacks on the Springboard. We noted above that the attacker
cannot obtain deterministic notification of springboard accesses
through the page-fault channel. More precisely, the attacker
cannot force page faults on springboard accesses.

Before execution of sensitive enclave code starts, the
springboard must be mapped and accessed since any sensitive
code is called from the springboard. The attacker can, of course,
unmap the springboard in the page tables at any time. However,
accesses to springboard will continue to succeed (without
causing page faults) as long as the springboard’s mapping
is in the TLB. Furthermore, this mapping is unlikely to be
evicted quickly from the TLB, as the springboard is accessed
very frequently (§VIII).

All reliable methods for removing the springboard’s map-
ping from the TLB (e.g., flushing the TLB) require the attacker
to run code on the enclave’s core or send an inter-processor
interrupt (IPI) to the core, interrupting the enclave execution
eventually. The key observation is that, by construction of
T-SGX, the instruction pointer value at which enclave execution
will resume is on the springboard. Thus, if the attacker
wants enclave execution to proceed, he will have to map the
springboard in the page tables before resuming the enclave
(ERESUME). The instruction at which enclave execution resumes
will be on the springboard, and its execution will establish a
new TLB entry for the springboard, which sets the attack back
to the beginning.

In summary, while the attacker can interrupt enclave execu-
tion asynchronously, he cannot use the page-fault channel to
obtain deterministic notification of accesses to the springboard.

VIII. EVALUATION

We evaluate T-SGX by answering the following questions.

• How general is the T-SGX approach? Can this ap-
proach be applied to a wide range of legacy real world
applications without manual effort?

• What are the performance characteristics of T-SGX-
based programs?

• What is the performance impact of running multiple
instances of T-SGX-based applications simultaneously?

Experimental setup. The experiments were conducted on a
generic PC with a Supermicro X11SSQ motherboard, an Intel
Core i7-6700K 4 GHz (Skylake) CPU, and 64 GB of RAM.
The machine ran Windows 10 Pro. We disabled hyperthreading
because avoiding cache-timing attacks in the public cloud is
recommended.

Target applications. We evaluate T-SGX by using the pro-
grams in the nbench benchmark suite and the three applications
that were used by Xu et al. [65] to demonstrate the controlled-
channel attack. Table I describes each program in detail,
including source code size, description, and binary code size
before and after applying T-SGX. The applications are fairly
diverse, including cryptography, text processing, and image
compression. While the nbench applications are generally small,
the other three applications are one to two orders of magnitude
larger, with FreeType exceeding 100,000 lines of code.

A. Application Binaries

This section shows various properties of T-SGX binaries.
The main effort in obtaining these binaries lies in porting the
applications into the SGX environment. Once we had working
SGX applications, no further manual effort was required to
apply the T-SGX protections.

After manually adapting the source code of each application
to run on SGX (resolving header and linker dependencies),
we compiled the code with Clang-Cl, a cl.exe-compatible
driver mode program for Clang (based on LLVM version 3.7.1).
We linked the resulting object files into executables with the
Microsoft linker (link.exe) version 14.00.23506.0.

We built three versions of each application. (a) The baseline
version runs in an SGX enclave without any protection. (b) The
TSX-basic version is secured with TSX on SGX, yet without
any optimization. (c) The T-SGX version is secured with
TSX and optimized as described in §V-D. These optimization
techniques improve performance without affecting security.

1) Execution Block Counts and Code Size: We first mea-
sure basic statistics of each application, in particular, static
information such as the number of execution blocks and the
impact on code size. Table I shows the results. The reported
code sizes are the sizes (in bytes) of the code (.text) segments
of all object files associated with the application. In the case of
nbench where several applications share the same source file
(and the same object file), we built per-application versions of
nbench by commenting out all source code that did not belong
in the application.

The code size increase (excluding the springboard page)
from baseline to T-SGX varies between 15% and 32%. These
overheads will likely result in somewhat increased pressure
on the L1 instruction cache. However, there will be no effect
on the application’s data accesses. Thus, the increase in the
overall memory requirements will be significantly lower than
30%, depending on the application and its inputs.

The table also reports the number of execution blocks in
T-SGX. Dividing the size increase by the number of execution
blocks reveals an average size increase of 9 to 17 bytes per
execution block. This is roughly the space needed to store the
two additional instructions that jump to the springboard and
the occasional instructions to save and restore rax (§VI).

2) Distribution of Execution Block Sizes: The next measure-
ment studies the size of execution blocks. Figure 10 displays the
distribution of the number of instructions per execution block
for T-SGX and TSX-basic across the 10 nbench applications.

We observe that the optimizations of §V-D have noticeably
shifted the distribution for T-SGX toward larger blocks. The
small blocks (containing at most 10 instructions) are mostly the
result of (a) non-mergeable cases, such as a block immediately
before or after a loop, (b) nested loops, and (c) calls to functions
that may not satisfy the cache constraint.

We manually inspected two large outlier blocks (up to 120
instructions). Both correspond to functions that were merged
into a single execution block by our optimizations.

10

Application LoC Description #exec. Code segment size Avrage increase
blocks Baseline T-SGX Memory Overhead bytes per block

numeric sort 211 Numeric heap sort 23 1,014 B 1,276 B 25.8% 11.4 B
string sort 521 String heap sort 46 2,745 B 3,358 B 22.3% 13.3 B
bitfield 225 Bit operations 24 1,182 B 1,472 B 24.5% 12.1 B
fp emulation 1,396 Floating-point emulation 80 5,636 B 6,467 B 14.7% 10.4 B
fourier 235 Signal processing 20 1,163 B 1,386 B 19.2% 11.2 B
assignment 490 Assignment algorithm 92 3,605 B 4,758 B 32.0% 12.5 B
idea 353 Crypto 36 3,101 B 3,553 B 14.6% 12.6 B
huffman 448 Compression 44 2,960 B 3,648 B 19.2% 15.6 B
neural net 746 Back-propagation network simulation 82 4,183 B 4,941 B 18.1% 9.2 B
lu decomposition 441 Linear equations solving algorithm 62 3,307 B 4,136 B 25.1% 13.4 B

AVERAGE 22.0%

libjpeg (9a) 34,763 JPEG library 4,557 272,881 B 350,274 B 28.4% 17.0 B
Hunspell (1.5.0) 24,794 Spell checking library 8,641 356,298 B 471,617 B 35.0% 13.3 B
FreeType (2.5.3) 135,528 Font rendering library 12,060 615,862 B 796,105 B 29.3% 14.9 B

AVERAGE 28.6%

TABLE I: Benchmark programs (top) and applications (bottom) used to evaluate T-SGX.

0

20

40

60

80

100

0 - 9
10 - 19

20 - 29

30 - 39

40 - 49

50 - 59

60 - 69

70 - 79

80 - 89

90 - 99

100 - 109

110 - 119

Pe
rc

en
ta

ge
am

on
g

al
l

E
xe

cu
tio

n
B

lo
ck

s

Instructions per Execution Block

TSX-basic
T-SGX

Fig. 10: Distribution of execution block sizes: The optimizations
increase the size of a typical execution block.

B. Run-time Performance

This section demonstrates the run-time performance of
T-SGX. Unless stated otherwise, measurement values are
averaged over five runs of nbench and the real applications.
For the nbench suite, we ran each program for five second
and measured the number of iterations per second. For jpeglib,
we measured how long it takes to decompress a 1220×813
(203,446 bytes) compressed jpeg image. The size of the decoded
image is 8,926,740 bytes. The measurement includes the image
decompression time but not general startup and initialization.
For Hunspell, we picked the book Around the World Eighty
Days as the input. The number of words extracted from the book
is 63,704. We performed a spell check (using Hunspell::spell)
on these words with the "en_US" dictionary as a single call
into the enclave and measured the total time spent. We used the
same input for FreeType. The number of characters in the book
is 375,338. We measured the time required for a single enclave
call that renders all these characters (using FT_Load_Char).

1) Run-time Overhead: Table II displays the run-time of the
baseline, TSX-basic, and T-SGX versions of the applications
and the associated overheads. We took the numbers for the
nbench applications directly from the nbench outputs.

The overhead of T-SGX ranges from 4% to 118%
with a geometric mean of 50%. While this overhead is

TX CON CAP Abort Rate

numeric sort 481 times/s 20 times/s 0 times/s 0.0020%
string sort 317.3 times/s 5.3 times/s 0 times/s 0.0020%
bitfield 532 times/s 2.3 times/s 0 times/s 0.0120%
fp emulation 314 times/s 8.5 times/s 0 times/s 0.0006%
fourier 221.5 times/s 1.5 times/s 0 times/s 0.0006%
assignment 572.5 times/s 13.5 times/s 0 times/s 0.0020%
idea 707 times/s 9.5 times/s 0 times/s 0.0160%
huffman 530.7 times/s 8 times/s 0 times/s 0.0013%
neural net 485.5 times/s 35.2 times/s 0 times/s 0.0015%
lu decomposition 480 times/s 27.3 times/s 0 times/s 0.0016%

TABLE III: Rate and type of transaction aborts for the nbench
applications for T-SGX.

significant, it does not appear prohibitive. The table also
demonstrates the effectiveness of the optimizations of §V-D.
Without these optimization techniques, the overhead would
have been significantly higher (as high as 17.9×). It seems that
additional optimization could reduce the overhead even further.

2) Transaction Properties: Table III displays the rate at
which T-SGX transactions are aborted and the reason, as
indicated by the value of the eax register at the time of the abort.
We observe up to about 500 aborted transactions per second
with an eax value of 0, indicating an interrupt or exception.
This rate follows closely the per-core interrupt arrival rate,
which we observed using Windows performance counters.

We observed no transaction abort with eax bit 3 set (CAP).
This bit is set if an “internal buffer overflowed,” which includes
the case when a transaction’s read or write set does not fit
into the corresponding caches. This confirms the conservative
nature of our cache model. We also observed small numbers
of aborted transactions with eax bits 1 and 2 set (CON). These
bits indicate "transaction may succeed on retry" and "another
logical processor conflicts with read or write set," respectively.

3) Transaction Duration: Figure 11 displays the distribution
of transaction durations. We measured the duration of each
transaction by instrumenting the springboard code that begins
and ends transactions with rdtsc instructions. As the rdtsc in-
struction is illegal under SGX and entering and leaving enclaves
add significant noise to the measurement, we performed this
experiment by running the applications outside SGX enclaves.

11

Application Baseline TSX-basic (overhead) T-SGX (overhead)

numeric sort 12,682 iter/s 1,149.1 iter/s (9.1×) 8,390.1 iter/s (1.5×)
string sort 8,872.3 iter/s 1,991.1 iter/s (4.1×) 7,218.7 iter/s (1.2×)
bitfield 516,000,000 iter/s 26,100,000 iter/s (17.9×) 443,000,000 iter/s (2.1×)
fp emulation 319.8 iter/s 25.3 iter/s (11.9×) 146.4 iter/s (2.2×)
fourier 186,000 iter/s 31,847 iter/s (5.4×) 98,847 iter/s (1.9×)
assignment 1,741.9 iter/s 82.6 iter/s (18.4×) 1,196 iter/s (1.5×)
idea 3,814.1 iter/s 275.3 iter/s (13.0×) 3,665.7 iter/s (1.0×)
huffman 3,264.7 iter/s 162.6 iter/s (16.6×) 1,641.5 iter/s (2.0×)
neural net 45.7 iter/s 3.8 iter/s (11.1×) 27.3 iter/s (1.7×)
lu decomposition 1,197.6 iter/s 82.4 iter/s (13.6×) 883.4 iter/s (1.4×)

GEOMEAN 11.0× 1.5×

libjpeg 6,784.5 kB/s 846.4 kB/s (8.0×) 4,674.1 kB/s (1.5×)
Hunspell 176,000 word/s 36,333.3 word/s (4.9×) 114,000 word/s (1.6×)
FreeType 37,747.2 char/s 3,047.7 char/s (12.4×) 28,394.5 char/s (1.3×)

GEOMEAN 7.8× 1.4×

TABLE II: Run-time overhead of TSX-basic and T-SGX over baseline.

0

20

40

60

80

100

0 - 1k
1k - 2k

2k - 3k

3k - 4k

4k - 5k

5k - 6k

6k - 7k

7k - 8k

8k - 9k

9k - 1k0

1k0 - 11k

11k - 12k

12k - 13k

13k - 14k

14k - 15k

Pe
rc

en
ta

ge
am

on
g

al
l

E
xe

cu
tio

n
B

lo
ck

s

Cycles per Execution Block

TSX-basic
T-SGX

Fig. 11: Distribution of transaction times: Most transactions take less
than 3,000 cycles.

Figure 11 shows the distribution of transaction duration
for T-SGX and TSX-basic. For TSX-basic, most transactions
take less than 1,000 cycles. As a result of the optimizations, a
typical transaction for T-SGX takes between 1,000 and 2,000
cycles. Still, the transaction duration is short enough to easily
meet the execution time constraint imposed by the interrupt
frequency. For example, our 4 GHz processor should be able to
complete 2,000-cycle-transactions even for interrupt rates of up
to 2 million interrupts per second per core. Such a rate is orders
of magnitude higher than the interrupt rates we have observed
under normal conditions (thousands of interrupts per second
per core). This observation is also consistent with Table III.

4) Transaction Abort Counts: We study the number of
times a transaction aborts before it succeeds. We gather these
counts by instrumenting the TSX management code on the
springboard.

Table IV displays the distribution of abort counts across
the 10 nbench applications. The overwhelming majority of
transactions succeeds on the first try. A tiny fraction of
transactions requires up to three retries. After executing many
millions of transactions, we observed no transaction requiring
more than three retries to complete. This observation can be
used as the basis for a mechanism to detect attacks or anomalies.

Number of aborts Percentage

0 99.9%
1 1.7 · 10-3%
2 9.8 · 10-6%
3 3.7 · 10-7%
4 0 %

TABLE IV: Distribution of the number of times a transaction aborts
before it succeeds.

5) Multiple instances: The next experiment analyzes the
performance of multiple T-SGX-protected enclaves running
side by side. Our goal is to analyze whether T-SGX scales to
multiple protected enclaves.

We measured the running time of baseline and T-SGX for
the nbench applications, varying the number of concurrent
instances from one to eight. For each measurement, we created
n identical enclaves in n separate Windows processes (n ∈
{1, . . . , 8}) running one of the 10 nbench applications for
baseline or T-SGX and recorded the timing output of nbench
for one of the enclaves. We repeated the measurement for
n from 1 to 8, for all 10 nbench applications and for both
configurations (baseline and T-SGX).

Figure 12 displays the results. The x-axis displays the
number of concurrent instances. Each line corresponds to one
nbench application. The y-value is the ratio of the number
of iterations per second for T-SGX and for baseline. In other
words, it is the inverse of the overhead. All lines are roughly
constant, indicating that one can run multiple T-SGX-protected
enclaves without affecting the overhead.

IX. DISCUSSION

In this section we explain limitations of T-SGX and possible
approaches to overcome them. Also, we explain other potential
attacks against T-SGX and show how we can cope with them.

A. Limitations

One limitation of T-SGX is that it cannot correctly identify
what causes an exception. A transactional execution aborts when
an exception has been generated, but it does not let a program

12

0

20

40

60

80

100

1 2 3 4 5 6 7 8

T-
SG

X
ov

er
B

as
el

in
e

(%
)

Number of Instances

numeric sort
string sort

bitfield
fp emulation

fourier

assignment
idea

huffman
neural net

lu decomposition

Fig. 12: Overhead with increasing number of parallel instances. It
shows that T-SGX can be scaled for system-wide uses in practice.

know the vector number of the exception (§II-C2). T-SGX can
distinguish a synchronous exception from an asynchronous
exception by repeatedly executing a transactional region, but
it cannot know whether the synchronous exception is a page
fault, a divide-by-zero error, or something else. This could be a
problem because T-SGX may mistake errors in the enclave
software for an attack by the OS. To avoid this problem,
we plan to develop an application exception handler (§II-C1)
running inside an enclave that dynamically inspects the code
and execution status to know the exception reason and to fix
it to ensure continuous execution. Another limitation is that
T-SGX cannot protect libraries without source code because it
is a compiler-based approach. This problem could be solved
when library developers apply T-SGX to their closed-source
libraries. Also, we plan to improve T-SGX to support binary
instrumentation. Another limitation is that T-SGX does not
support page-level swapping between enclave memory and
main memory, as Sanctum [11] does. This limitation would
be problematic, especially when T-SGX runs in the public
cloud while sharing the limited enclave memory with other
processes. One possible solution to this problem is to swap out
the whole memory of an enclave program to the main memory.
We plan to study the effectiveness of this approach in the
future. Lastly, T-SGX cannot support a multithreaded enclave
program that wants use TSX for its original purpose: lock
elision. However, this does not hurt the program’s functionality
because lock elision is just an optional feature. Instead, it can
use a traditional lock for synchronization between different
threads without any problem.

B. Other Side-channel Attacks

Cache timing attack. A cache timing attack by a malicious
OS is a serious threat because the OS manages the virtual
address mapping of every program [10]. To mitigate the threat,
an enclave program needs to flush its private cache whenever
the OS resumes its execution, but, generally, it cannot obtain
such information. Fortunately, with T-SGX, an enclave program
can know exactly when it is resumed by the OS such that it
only needs to flush its private cache at that point. However,
this mitigation is not enough to cope with asynchronous cache
timing attacks that use the last-level cache (LLC) [28, 39].
We plan to study how to secure enclave programs from such
attacks.

Memory bus snooping attack. A memory bus snooping attack
is a hardware-level attack. By monitoring memory bus traffic, a
malicious peripheral device can know which memory addresses
are currently accessed by a CPU although the memory contents
are encrypted by SGX. To prevent such an attack, SGX needs to
provide software-level or hardware-level ORAM techniques [12,
38, 40, 49]. Also, we can minimize the number of memory
accesses as much as possible by using cache-based [8, 17, 18,
66] or register-based [15, 45] computations.

X. RELATED WORK

In this section, we discuss a number of important studies
that are related to T-SGX.

Trusted execution environments. Mainstream computing
environments are typically very complex. They provide only
limited assurance for confidentiality and integrity in light
of various attacks such as malware, kernel exploits, and
malicious peripherals. Numerous researchers and companies
have proposed a variety of TEEs to protect critical data
and computations with higher assurance. TEEs typically do
not trust the main OS because it could be compromised.
Thus, they are implemented in places that even the OS
cannot control, such as a trusted hypervisor or hardware. For
example, Overshadow [7], NOVA [57], TrustVisor [43], Cloud
Terminal [42], InkTag [21], MiniBox [37], and Sego [33] are
TEEs based on trusted hypervisors. The basic idea of these
systems is to provide isolated memory for each trusted process
or module by using nested page tables or the extended page
table feature of hardware-based virtualization. Also, all the
interactions between a trusted process and the OS (i.e., system
calls) have to be managed by the trusted hypervisor. However,
a hypervisor is also software and potentially vulnerable to
various attacks [64]. Flicker [44] and TrustVisor [43] use
trusted hardware (TPM [60]) and attempt to minimize the
complexity of their TEE software. ARM’s TrustZone [1], Intel’s
TXT [16] and SGX [24], and Samsung’s KNOX [50] are widely-
deployed hardware-based TEEs. Numerous researchers have
proposed hardware-based TEE designs, such as TrInc [35],
SICE [3], SecureSwitch [58], OASIS [47], TrustLite [32], and
Sanctum [11].

OS attacks against TEEs. Although TEEs are designed to
protect user processes from a malicious OS, the latter still has
opportunities to attack the processes because they cannot access
system resources (e.g., storage, network) without the help of
the OS. Iago attacks [6] exploit this limitation. For example,
an Iago attack may manipulate the return value (i.e., a virtual
address) of the mmap() system call to make a target application
overwrite a portion of its stack and, thereby, hijack control
flow. Since any system call could potentially be exploited for
this type of attack, the TEE has to carefully validate the return
values of all system calls [21, 29]. The controlled-channel
attacks [54, 65] this paper focuses on also rely on the fact that
the OS manages system memory. Finally, AsyncShock [63]
demonstrates that synchronization bugs that are mostly harmless
in a traditional environment can allow an adversarial OS to
compromise SGX enclaves.

SGX applications. Among the various hardware-based TEEs,
Intel SGX recently has been receiving much attention because
it is widely deployed (all Intel Skylake CPUs support it) and

13

because it allows developers to use almost the full unprivileged
instruction set of the Intel CPU. For example, Haven [4],
Graphene-SGX [61, 62], and SCONE [2] are SGX-based
platforms to securely run an unmodified application in an
untrusted cloud. VC3 [51], M2R [12], and Ohrimenko et
al. [46] use SGX to perform data analytics, MapReduce com-
putations, and machine learning computations while ensuring
confidentiality and integrity. Also, Kim et al. [31], S-NFV [53],
Pires et al. [48], and SecureKeeper [5] show how we can use
SGX for securing network services, content-based routing, and
distributed computing. Moat [56] and CONFIDENTIAL [55]
design verification methodologies for enclave programs to check
whether they are secure. OpenSGX [29] is an emulator for the
execution of enclave programs for software development and
in-depth debugging and testing. SGX-Shield [52] implements
fine-grained address space layout randomization (ASLR) for
SGX. Ryoan [22] introduces a distributed two-way sandbox to
run untrusted enclave programs with sensitive user data while
preventing possible information leakage.

XI. CONCLUSION

Intel SGX has been considered to be one of the most
promising TEE technologies. However, the controlled-channel
attack [54, 65]—a noise-free side channel—has drawn its
security into question. This paper introduces T-SGX, which is a
secure, efficient, and practical scheme for protecting any enclave
program from controlled-channel attacks. It ensures that no
page fault sequence will be leaked to attackers and is an order of
magnitude faster than the state-of-the-art scheme [54] without
requiring manual developer effort or hardware modifications.

ACKNOWLEDGMENT

We thank Byoungyoung Lee for constructive discussions,
the anonymous reviewers for their helpful feedback, and GTISC
lab members for their proofreading efforts. This research was
supported by the NSF award DGE-1500084, CNS-1563848,
CRI-1629851 ONR under grant N000141512162, DARPA TC
program under contract No. DARPA FA8650-15-C-7556, and
DARPA XD3 program under contract No. DARPA HR0011-
16-C-0059, and ETRI MSIP/IITP[B0101-15-0644].

REFERENCES

[1] ARM, “Building a secure system using TrustZone technology,” Dec.
2008, pRD29-GENC-009492C.

[2] S. Arnautox, B. Tarch, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux containers
with Intel SGX,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Savannah, GA,
Nov. 2016.

[3] A. M. Azab, P. Ning, and X. Zhang, “SICE: A hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM Conference on Computer and Communications
Security (CCS), Chicago, Illinois, Oct. 2011.

[4] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with Haven,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Broomfield, Colorado, Oct. 2014.

[5] S. Brenner, C. Wulf, M. Lorenz, N. Weichbrodt, D. Goltzsche, C. Fetzer,
P. Pietzuch, and R. Kapitza, “SecureKeeper: Confidential ZooKeeper using
Intel SGX,” in Proceedings of the 16th Annual Middleware Conference
(Middleware), 2016.

[6] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
API is a bad untrusted RPC interface,” in Proceedings of the 18th ACM

International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, Mar. 2013.

[7] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A virtualization-
based approach to retrofitting protection in commodity operating systems,”
in Proceedings of the 13th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Seattle, WA, Mar. 2008.

[8] P. Colpa, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu, and
A. Wolman, “Protecting data on smartphones and tablets from memory
attacks,” in Proceedings of the 20th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Istanbul, Turkey, Mar. 2015.

[9] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in Proceedings of the 30th IEEE Symposium on Security
and Privacy (Oakland), Oakland, CA, May 2009.

[10] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, http://eprint.iacr.org/.

[11] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in Proceedings of the 25th
USENIX Security Symposium (Security), Austin, TX, Aug. 2016.

[12] T. T. A. Dinh, P. Saxena, E.-C. Cang, B. C. Ooi, and C. Zhang, “M2R:
Enabling stronger privacy in MapReduce computation,” in Proceedings
of the 24th USENIX Security Symposium (Security), Washington, DC,
Aug. 2015.

[13] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “SPORC:
Group collaboration using untrusted cloud resources,” in Proceedings
of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct. 2010.

[14] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), 2009.

[15] J. Götzfried and T. Müller, “Armored: CPU-bound encryption for Android-
driven ARM devices,” in Proceedings of the 8th International Conference
on Availability, Reliability and Security (ARES), 2013.

[16] J. Greene, “Intel trusted execution technology,” Intel Technology White
Paper, 2012.

[17] L. Guan, J. Lin, B. Luo, and J. Jing, “Copker: Computing with private
keys without RAM,” in Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2014.

[18] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting private keys
against memory disclosure attacks using hardware transactional memory,”
in Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[19] S. M. Hand, “Self-paging in the Nemesis operating system,” in Proceed-
ings of the 3rd USENIX Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, LA, Feb. 1999.

[20] M. Herlihy and J. Moss, “Transactional memory: Architectural support
for lock-free data structures,” in Proceedings of the 20th ACM/IEEE
International Symposium on Computer Architecture (ISCA), San Diego,
CA, USA, 1993.

[21] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “InkTag:
Secure applications on an untrusted operating system,” in Proceedings
of the 18th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Houston,
TX, Mar. 2013.

[22] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in Proceedings
of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, Nov. 2016.

[23] Intel, “Intel software guard extensions: Intel attestation service
API,” https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_
0_API_spec_1_1_Final.pdf.

[24] ——, “Intel software guard extensions programming reference (rev2),”
Oct. 2014, 329298-002US.

[25] ——, “Intel 64 and IA-32 architectures software developer’s manual,”
Dec. 2015.

[26] Intel, “SGX Tutorial, ISCA 2015,” http://sgxisca.weebly.com/, Jun. 2015.
[27] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun, “Home is safer than

the cloud!: Privacy concerns for consumer cloud storage,” in Proceedings
of the Seventh Symposium on Usable Privacy and Security (SOUPS),
Pittsburgh, Pennsylvania, 2011.

[28] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack

14

http://eprint.iacr.org/
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
http://sgxisca.weebly.com/

that works across cores and defies VM sandboxing—and its application
to AES,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

[29] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim,
B. B. Kang, and D. Han, “OpenSGX: An open platform for SGX research,”
in Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2016.

[30] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “In-
tel software guard extensions: EPID provisioning and attestation ser-
vices,” https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-
provisioning-and-attestation-services.

[31] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A first step towards
leveraging commodity trusted execution environments for network
applications,” in Proceedings of the 14th ACM Workshop on Hot Topics
in Networks (HotNets), Philadelphia, PA, Nov. 2015.

[32] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite: A
security architecture for tiny embedded devices,” in Proceedings of the
9th European Conference on Computer Systems (EuroSys), Amsterdam,
The Netherlands, Apr. 2014.

[33] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu, and E. Witchel,
“Sego: Pervasive trusted metadata for efficienctly verified untrusted system
services,” in Proceedings of the 21st ACM International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Atlanta, GA, Apr. 2016.

[34] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transactional
memory in main-memory databases,” in Proceedings of the 30th IEEE
International Conference on Data Engineering (ICDE), Chicago, IL,
Mar.–Apr. 2014.

[35] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
trusted hardware for large distributed systems,” in Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Boston, MA, Apr. 2009.

[36] J. Li, M. Krohn, D. Mazières, , and D. Shasha, “Secure untrusted data
repository (SUNDR),” in Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), San Francisco,
CA, Dec. 2004.

[37] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“MiniBox: A two-way sandbox for x86 native code,” in Proceedings of
the 2014 USENIX Annual Technical Conference (ATC), Philadelphia, PA,
Jun. 2014.

[38] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi, “GhostRider:
A hardware-software system for memory trace oblivious computation,” in
Proceedings of the 20th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Istanbul, Turkey, Mar. 2015.

[39] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2015.

[40] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanović, J. Ku-
biatowicz, and D. Song, “PHANTOM: Practical oblivious computation
in a secure processor,” in Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), Berlin, Germany, Oct.
2013.

[41] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish, “Depot: Cloud storage with minimal trust,” in Proceedings
of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct. 2010.

[42] L. Martignoni, P. Poosankam, M. Zaharia, J. Han, S. McCamant, D. Song,
V. Paxson, A. Perrig, S. Shenker, and I. Stoica, “Cloud Terminal: Secure
access to sensitive applications from untrusted systems,” in Proceedings
of the 2012 USENIX Annual Technical Conference (ATC), Boston, MA,
Jun. 2012.

[43] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in Proceedings of
the 31th IEEE Symposium on Security and Privacy (Oakland), Oakland,
CA, May 2010.

[44] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for TCB minimization,” in Proceed-
ings of the 3rd European Conference on Computer Systems (EuroSys),
Glasgow, Scotland, Mar. 2008.

[45] T. Müller, F. C. Freiling, and A. Dewald, “TRESOR runs encryption
securely outside RAM,” in Proceedings of the 20th USENIX Security
Symposium (Security), San Francisco, CA, Aug. 2011.

[46] O. Ohrimenko, C. F. Manuel Costa, S. Nowozin, A. Mehta, F. Schuster,
and K. Vaswani, “SGX-enabled oblivious machine learning,” in Proceed-

ings of the 25th USENIX Security Symposium (Security), Austin, TX,
Aug. 2016.

[47] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and
A. Vasudevan, “OASIS: On achieving a sanctuary for integrity and secrecy
on untrusted platforms,” in Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), Berlin, Germany, Oct.
2013.

[48] R. Pires, M. Pasin, P. Felber, and C. Fetzer, “Secure content-based
routing using Intel Software Guard Extensions,” in Proceedings of the
16th Annual Middleware Conference (Middleware), 2016.

[49] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

[50] Samsung, “White paper: An overview of Samsung KNOX,” 2013,
enterprise Mobility Solutions.

[51] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proceedings of the 36th IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, May 2015.

[52] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “SGX-
Shield: Enabling address space layout randomization for SGX programs,”
in Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb.–Mar. 2017.

[53] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV: Securing
NFV states by using SGX,” in Proceedings of the 1st ACM International
Workshop on Security in SDN and NFV, New Orleans, LA, Mar. 2016.

[54] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing your
faults from telling your secrets,” in Proceedings of the 11th ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), Xi’an, China, May–Jun. 2016.

[55] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia,
and K. Vaswani, “A design and verification methodology for secure
isolated regions,” in Proceedings of the 2016 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Santa
Barbara, CA, Jun. 2016.

[56] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave program,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), Denver,
Colorado, Oct. 2015.

[57] U. Steinberg and B. Kauer, “NOVA: A microhypervisor-based secure vir-
tualization architecture,” in Proceedings of the 5th European Conference
on Computer Systems (EuroSys), Paris, France, Apr. 2010.

[58] K. Sun, J. Wang, F. Zhang, and A. Stavrou, “SecureSwitch: BIOS-assisted
isolation and switch between trusted and untrusted commodity OSes,” in
Proceedings of the 19th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2012.

[59] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges in
cloud computing environments,” IEEE Security & Privacy, vol. 8, no. 6,
pp. 24–31, 2010.

[60] Trusted Computing Group, “Trusted platform module (TPM) sum-
mary,” http://www.trustedcomputinggroup.org/trusted-platform-module-
tpm-summary/.

[61] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library OSes for multi-process applications,”
in Proceedings of the 9th European Conference on Computer Systems
(EuroSys), Amsterdam, The Netherlands, Apr. 2014.

[62] C.-C. Tsai and D. Porter, “Graphene / Graphene-SGX Library OS - a
library OS for Linux multi-process applications, with Intel SGX support,”
https://github.com/oscarlab/graphene.

[63] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “AsyncShock:
Exploiting synchronisation bugs in Intel SGX enclaves,” in Proceedings
of the 21th European Symposium on Research in Computer Security
(ESORICS), Crete, Greece, Sep. 2016.

[64] Xen, “Xen security advisories,” http://xenbits.xen.org/xsa/.
[65] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-

istic side channels for untrusted operating systems,” in Proceedings of
the 36th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[66] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “CaSE: Cache-assisted
secure execution on ARM processors,” in Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2016.

15

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://github.com/oscarlab/graphene
http://xenbits.xen.org/xsa/

	Introduction
	Hardware Primitives and Motivation
	Intel SGX
	Intel TSX
	Exceptions inside SGX and TSX
	SGX: Asynchronous Enclave Exit (AEX)
	TSX: Transaction Abort

	Taking Control of Exception Handling

	Controlled-channel Attack Revisited
	Threat Model
	Controlled-channel Attack
	Known Countermeasures
	Overwriting Exit Reason

	System Model
	Design
	Overview of the TSX-based Design
	The Springboard
	Execution Blocks
	Transaction Constraints

	Optimization Techniques
	Loops
	Functions and if-statements

	Abort Sequence
	Preventing Reruns
	External calls
	Illegal instructions

	Implementation
	Security Analysis
	Evaluation
	Application Binaries
	Execution Block Counts and Code Size
	Distribution of Execution Block Sizes

	Run-time Performance
	Run-time Overhead
	Transaction Properties
	Transaction Duration
	Transaction Abort Counts
	Multiple instances

	Discussion
	Limitations
	Other Side-channel Attacks

	Related Work
	Conclusion

