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SUMMARY

For efficiency and flexibility purposes, fundational software systems such as operating

systems and web servers are implemented in unsafe programming languages, and system

designers often prioritize performance over security. As a result, these systems inherently

suffer from a variety of vulnerabilities and insecure designs that have been exploited by

adversaries to launch critical system attacks. System attacks constitute a major threat to our

cyber world; their two typical goals are to leak sensitive data in victim systems (i.e., data

leaks) and to control victim systems (i.e., control attacks).

This thesis aims at defeating both data leaks and control attacks by preventing informa-

tion leaks. We identified that, in modern systems, preventing information leaks is a general

approach to defeating both attacks. Since modern systems widely deploy randomization-

based defense mechanisms such as Address Space Layout Randomization (ASLR) [145]

and StackGuard [44], leaking a randomized value to bypass these defense mechanisms

has become a prerequisite for control attacks. Therefore, preventing information leaks can

defeat not only data leaks but also control attacks.

To prevent information leaks, we empirically analyzed the root causes of reported

information leaks in software systems and then proposed three ways: (1) eliminating

information-leak vulnerabilities, (2) retrofitting system designs against information leaks,

and (3) protecting sensitive data from information leaks. While the first two ways aim to fix

root causes of information leaks, the third way acts as the second line of defense against

information leaks. For each way, we have developed multiple tools. Specifically, we first

developed two techniques to eliminate the most common information-leak vulnerabilities

in OS kernels: UNISAN [117] eliminates information leaks caused by uninitialized-data

xiv



reads, and POINTSAN [121] eliminates uninitialized-pointer uses. We then developed

RUNTIMEASLR [116] to prevent information leaks caused by the insecure process forking

design in daemon servers. At last, we developed ASLR-GUARD [118] to stop code-pointer

leaks and thus defeat code-reuse attacks, and BUDDY [122] to generally detect memory

disclosures with replicated execution. While automatically and reliably securing complex

systems, all these tools introduce negligible performance overhead.

xv



CHAPTER I

INTRODUCTION

1.1 Problem Statement

Our ubiquitous computer devices are actuated by software systems such as operating sys-

tems (OS) and web servers. Since these systems are a foundation of computer devices,

their efficiency is particularly important, and they often require direct accesses to hardware

resources such as memory. As such, system designers often prioritize performance and

flexibility over security, and fundational software systems are implemented in unsafe pro-

gramming languages (e.g., C/C++). As a result, these systems inherently suffer from a

variety of insecure designs and vulnerabilities. For example, according to the U.S. National

Vulnerability Database, more than 1,800 vulnerabilities in the Linux kernel alone have been

reported. System attacks exploiting insecure designs and vulnerabilities have become a

critical threat. The past several years have continuously witnessed critical attacks targeting

systems belonging to individuals, enterprises, and even government agencies. A single

system attack may cause billions of loss. In general, system attacks have two typical goals:

to control victim systems (i.e., control attacks) and to leak the sensitive data in victim

systems (i.e., data leaks). It is pressing to protect our systems from data leaks and control

attacks.

1.2 Thesis Overview

This thesis work aims to defeat both data leaks and control attacks by preventing information

leaks. Since in modern software systems, randomization-based defense mechanisms such

as Address Space Layout Randomization (ASLR) [145] and StackGuard [44] are widely

deployed, leaking a randomized value to bypass these defense mechanisms has become a

1



Table 1: A summary of causes of reported information leaks in computer devices.

Category Type Example Defense/mitigation example

Vulnerabilities Memory error Uninitialized-data read UNISAN [117], POINTSAN [121]
(implementation Logic error Missing check Model checking techniques
errors) Hardware error Row hammer [93] G-CATT [24]

Design flaws
Specification issue Uninitialized padding UNISAN [117]
Organization issue Refork-on-crash [116] RUNTIMEASLR [116]
Mechanism issue Deduplication+COW [22] HexPADS [147]

Side channels
Cache AnC [73] CacheBar [195]
Timing Loop timing [157] ASLR-GUARD [118]
Differential fault Crashing [20] RUNTIMEASLR [116]

prerequisite for control attacks. By preventing information leaks, we ensure that the pre-

requisite is unsatisfiable to control attacks, and thus we can defeat them. More importantly,

unlike traditional control attack defense mechanisms such as control-flow integrity [2] that

typically require extensive runtime checks, information-leak prevention can be achieved in

more efficient ways. It is intuitive that preventing information leaks also defeats data leaks.

Therefore, preventing information leaks can be a general and efficient approach to defeating

both data leaks and control attacks.

To prevent information leaks, we first empirically analyzed the causes of reported

information leaks in systems, and summarize them in Table 1. The main causes include

information-leak vulnerabilities (i.e., implementation errors), design flaws, and side channels.

Based on our cause analysis of information leaks, we propose to prevent information leaks in

three ways: (1) eliminating information-leak vulnerabilities, (2) retrofitting system designs

against information leaks, and (3) protecting sensitive data from information leaks. The

first two ways aim at fixing root causes of information leaks—vulnerabilities and insecure

designs in system code. Since completely fixing some information leaks such as the ones

caused by side channels is hard, the third way tries to protect certain sensitive data even in

the presence of information leaks, which acts as the second line of defense.

The following three sections introduce our research approaches for each way of prevent-

ing information leaks. We have developed multiple practical systems, which automatically

2



prevent information leaks in complex systems while preserving their reliability and effi-

ciency.

1.2.1 Eliminating Information-Leak Vulnerabilities

One root cause of information leaks is that system code has information-leak vulnerabilities.

Attackers can exploit these vulnerabilities to leak sensitive data or to leak randomized

value to break defense mechanisms. Hence, an intuitive way to prevent information leaks

is to eliminate information-leak vulnerabilities, and thereby we propose two techniques,

UNISAN and POINTSAN, to eliminate the most common information-leak vulnerabilities in

OS kernels. While UNISAN completely eliminates information leaks caused by uninitialized

data reads, POINTSAN eliminates the ones caused by uninitialized pointer dereferencing in

a practical manner.

1.2.1.1 UNISAN: Eliminating Uninitialized Data Leaks

OS kernels are the de facto trusted computing base for most computer systems, which

contain lots of sensitive data such as cryptographic keys and file caches. On the other

hand, OS kernels enforce defense mechanisms such as ASLR and StackGuard to mitigate

various attacks (e.g., code-reuse attack and privilege-escalation attack). The effectiveness

of these mechanisms relies on the confidentiality of the randomized pointers and canaries.

Unfortunately, OS kernels have many information-leak vulnerabilities. In practical, sensitive

data in OS kernels can be leaked, and defense mechanisms are often broken because the

randomized pointers and canaries can be leaked. Therefore, it is important to eliminate

information-leak vulnerabilities in OS kernels.

Our study reveals that most (about 60%) kernel information leaks are caused by unini-

tialized data reads—kernel space is shared by all processes; reading an uninitialized variable

may read data of other processes. We propose UNISAN, a novel, compiler-based approach

to eliminating all information leaks caused by uninitialized reads in OS kernels. UNISAN

achieves this goal by using byte-level, flow-sensitive, context-sensitive, and field-sensitive

3



initialization analysis and reachability analysis that check whether an allocated object has

been fully initialized when it leaves kernel space; if not, UNISAN automatically instruments

the kernel code to zero-initialize the object when it is allocated. UNISAN’s analyses are

conservative to avoid false negatives and are robust by preserving the semantics of OS

kernels. Since UNISAN zero-initializes only a small portion of allocations, it imposes

negligible performance overhead to the secured kernels.

1.2.1.2 POINTSAN: Eliminating Uninitialized Pointer Uses

A common type of memory error in OS kernels is using uninitialized pointers (uninitialized

use). Uninitialized uses not only cause undefined behaviors but also impose a severe

security risk if an attacker takes control of the uninitialized pointers—an attacker can exploit

an uninitialized pointer use to achieve arbitrary read (i.e., information leak), write, and

execution. Our study shows that uninitialized pointers can be reliably controlled by attackers.

Therefore, uninitialized-use vulnerabilities can be readily exploited.

To prevent the exploitation of uninitialized pointer uses, we propose POINTSAN, a

compiler-based mitigation that initializes potentially unsafe pointer-type fields. Our mit-

igation is inspired by the observation that uninitialized-use exploits typically control an

uninitialized pointer to achieve arbitrary read/write/execution. By zero-initializing pointer-

type fields in an allocated object, we can prevent an adversary from controlling these

pointers. Since the memory page at the address zero is not accessable in modern OS kernels,

zero-initialization becomes a safe prevention operation. More specifically, we perform

an intra-procedural analysis that identifies potentially uninitialized pointer-type fields and

instrumentation that zero-initializes the identified pointer-type fields. POINTSAN imposes

almost no performance overhead to the secured kernels.

1.2.2 Retrofitting System Designs Against Information Leaks

System designers often prioritize performance and flexibility over security; hence, many

system designs are insecure, which is another root cause of information leaks. Our second
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way to prevent information leaks is redesigning insecure system mechanisms. A well-known

insecure system design causing information leaks is the ASLR-violating worker process

forking scheme in daemon servers (e.g., web servers). To prevent information leaks caused

by such an insecure design, we propose the runtime re-randomization mechanism.

1.2.2.1 RUNTIMEASLR: Re-Randomizing Memory Layout at Runtime

Existing techniques for memory randomization such as the widely deployed ASLR perform

a single, per-process randomization that is applied before or at a process’ load-time. The

efficacy of such upfront randomizations crucially relies on the assumption that an attacker

has only one chance to guess the randomized address, and that this attack succeeds only

with a very low probability. Recent research results have shown that this assumption is

not valid in many scenarios, e.g., daemon servers fork child processes that inherent the

state—and if applicable: the randomization—of their parents, and thereby create clones

with the same memory layout. This enables the so-called clone-probing attacks where an

adversary repeatedly probes different clones in order to increase its knowledge about their

shared memory layout.

We propose RUNTIMEASLR—the first approach that prevents clone-probing attacks

without altering the intended semantics of child process forking. The work makes the

following three contributions. First, we propose a semantics-preserving and runtime-based

approach for preventing clone-probing attacks by re-randomizing the address space of every

child after fork() at runtime while keeping the parent’s state. We achieve this by devising

a novel, automated pointer tracking policy generation process that has to be run just once,

followed by a pointer tracking mechanism that is only applied to the parent process. Second,

we propose a systematic and holistic pointer tracking mechanism that correctly identifies

pointers inside memory space. This mechanism constitutes the central technical building

block of our approach. Third, we provide an open-source implementation of our approach

based on Intel’s Pin on an x86-64 Linux platform, which supports COTS server binaries
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directly. Although it takes a longer time for RUNTIMEASLR to start server programs,

RUNTIMEASLR imposes almost no runtime performance overhead to the worker processes

that provide actual web services.

1.2.3 Protecting Sensitive Data from Information Leaks

It is unfortunate that we could not fix all information-leak vulnerabilities or insecure system

designs because of the complexity of systems and the continuously introduced system

features. For example, we cannot even identify all side channels that may leak information,

thus cannot prevent all information leaks. As a response to this problem, we instead strive

to protect certain sensitive data in the presence of information leaks. Towards this goal, we

propose preventing code-pointer leaks to defeat code-reuse attacks [164], and a replicated

execution-based framework to detect memory disclosures.

1.2.3.1 ASLR-GUARD: Stopping Code-Pointer Leaks

A general prerequisite for a code-reuse attack is that the attacker needs to locate code

gadgets that perform the desired operations and then direct the control flow of a vulnerable

application to those gadgets. ASLR attempts to stop code-reuse attacks by making the first

part of the prerequisite unsatisfiable. However, research in recent years has shown that

this protection is often defeated by commonly existing information leaks, which provides

attackers clues about the whereabouts of certain code gadgets.

We propose ASLR-GUARD, a novel mechanism that completely prevents the leaks of

code pointers. The main idea behind ASLR-GUARD is to provide a secure storage for code

pointers and encode the code pointers when they are treated as data. ASLR-GUARD can

either prevent code pointer leaks or render their leaks harmless. That is, ASLR-GUARD

makes it impossible to overwrite code pointers with values that point to or will hijack the

control flow to a desired address when the code pointers are dereferenced. ASLR-GUARD

completely stops code-pointer leaks and can resist against recent sophisticated code-reuse

attacks. Further, ASLR-GUARD imposes almost no runtime overhead (< 1%) to the secured

6



programs. Therefore, ASLR-GUARD is very practical and can be applied to secure many

applications.

1.2.3.2 BUDDY: Detecting Memory Disclosures with Replicated Execution

Memory disclosure is an attack primitive that has been used to bypass widely deployed

security mechanisms such as ASLR (e.g., the JIT-ROP attack [167]) and to leak sensitive

data such as private keys (e.g., the HeartBleed attack [62]). The most common way to

disclose memory is exploiting memory errors such as out-of-bound read, use-after-free, and

uninitialized use. Since preventing these memory errors is hard, and the number of reported

memory errors is still increasing, memory disclosure has become a common but hard-to-stop

security threat.

We propose a new framework, BUDDY, to comprehensively detect memory disclosures

with replicated execution. The intuition behind BUDDY is that, by seamlessly maintaining

two running instances of a program and diversifying only the sensitive data, we can detect

any leaks of such data, as doing so will result in the two instances outputting different values.

BUDDY detects memory disclosures without the need of performing the error-prone and

expensive data-flow tracking. Further, BUDDY’s approach can support COTS binaries. We

propose multiple diversification schemes for both data and memory layout, and to design an

efficient replicated execution engine. By applying BUDDY to poplar programs, including

Apache web server, Nginx web server, PHP server, OpenSSL, Lighttpd, and the SPEC

benchmarks, we extensively evaluated its reliability, security, and performance.

1.3 Thesis Contributions

In summary, this thesis makes the following contributions to securing software systems.

• General defense against system attacks. We identify that, in modern systems,

preventing information leaks can be a general and efficient approach to defeating both

data leaks and control attacks.
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• Study of information leaks. We study information leaks in computer systems and

provide insights into their causes and how to prevent them.

• Discovery of new threats. We identify a fundamental security problem in compilers,

which causes common information leaks. We also revisit the security impact of using

uninitialized pointers.

• Three ways to prevent information leaks. We propose general ways to eliminate

root causes of information leaks and to protect sensitive data, even in the presence of

information leaks.

• Novel defense mechanisms and open source. We design multiple automated and

practical defense mechanisms to eliminate, detect, and prevent information leaks.

Most prototype implementation has been open-sourced.
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CHAPTER II

ELIMINATING INFORMATION-LEAK VULNERABILITIES

The most common cause of information leaks is that software systems have a significant

number of vulnerabilities such as buffer over-read, use-after-free, and uninitialized read.

According to the U.S. National Vulnerability Database [57], the number of information-leak

is increasing. In particular, information-leak vulnerabilities have become more prevalent

than other types of vulnerabilities such as buffer overflow in the Linux kernel. Attackers

have exploited information-leak vulnerabilities to leak sensitive data or leak randomized

value to break defense mechanisms such as ASLR. Hence, an intuitive and effective way

to prevent information leaks is to eliminate information-leak vulnerabilities. Towards this

goal, we have studied information-leak vulnerabilities in the Linux kernel and found that

more than half of them are caused by uninitialized uses including uninitialized data read and

uninitialized pointer dereferencing. While buffer over-read and use-after-free vulnerabilities

are well studied, practical uninitialized use prevention is largely an uncharted territory. In this

section, we propose two techniques, UNISAN and POINTSAN, to eliminate information-leak

vulnerabilities caused by uninitialized uses in OS kernels. UNISAN completely eliminates

the ones caused by uninitialized data reads; POINTSAN first revisits the security impact of

uninitialized pointer dereferencing and then eliminates it in a practical manner.

2.1 UNISAN: Eliminating Uninitialized Data Leaks

As the de facto trusted computing base (TCB) of computer systems, the operating system

(OS) kernel has always been a prime target for attackers. By compromising the kernel,

attackers can escalate their privilege to steal sensitive data in the system and control the

whole computer. There are three main approaches to launching privilege escalation attacks:

(1) direct code injection attacks; (2) ret2usr attacks [91]; and (3) code reuse attacks [164].
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DEP (Data Execution Prevention) protection has been deployed to defeat traditional code

injection attacks. Intel and ARM have recently introduced new hardware features (e.g.,

SMEP and PXN) to prevent ret2usr attacks [89]. As such, code reuse attacks are becoming

more prevalent. A general direction to defeat code reuse attacks is randomization, e.g.,

kernel address space layout randomization (kASLR) [42] and StackGuard [44] have been

adopted by the latest kernels. kASLR aims to prevent attackers from knowing where the

code gadgets are, and StackGuard [44] aims to prevent attackers from corrupting return

addresses.

By design, the effectiveness of kASLR and StackGuard completely relies on the con-

fidentiality of the randomness—leaking any randomized pointer or the stack canary will

render these mechanisms useless. Unfortunately, information-leak vulnerabilities are com-

mon in OS kernels. For example, Krause recently found 21 information leaks in the Linux

kernel [95]. According to CVE Details [57], kernel information-leak vulnerabilities have not

only become more prevalent than buffer overflow vulnerabilities, but the number of kernel

information leaks is also increasing with continuously introduced new features. Moreover,

the leaked kernel memory may also contain other sensitive data, such as cryptographic keys

and file caches. For these reasons, preventing kernel information leak is a pressing security

problem.

There are four main causes of information leaks: uninitialized data read, buffer over-read,

use-after-free and logic errors (e.g., missing privilege check). Among these root causes,

uninitialized read is the most common one. According to a Linux kernel vulnerabilities

survey [33], 37 information-leak vulnerabilities were reported from January 2010 to March

2011, 28 of which were caused by uninitialized data read. Similarly, we analyzed the causes

of the kernel information leaks reported between January 2013 and May 2015. Our study

also revealed that about 60% kernel information leaks are caused by uninitialized data read

(Figure 1). However, while many memory-safety techniques [129, 131, 132, 160] have been

proposed to prevent buffer over-read and use-after-free, practical prevention of uninitialized
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Figure 1: The root causes of kernel information leaks reported between January 2013 and May 2016:
uninitialized data read, spacial buffer over-read + use-after-free, and others. Most leaks are caused
by uninitialized data read.

data leaks is still an open problem.

Preventing uninitialized data leaks is challenging for three reasons. First, since data

write and read are frequent in programs, detecting uninitialized data reads by tracking

these operations will always introduce unacceptable performance overhead. For example,

MemorySanitizer [172] and kmemcheck [138] check every memory read and write to detect

uninitialized data reads, thus incurring a performance overhead of more than three times.

Second, uninitialized data reads are actually quite common in programs. Specifically,

compilers often introduce padding bytes in data structures to improve performance. These

padding bytes are usually uninitialized, but as long as the uninitialized data is not used

(e.g., dereferenced as pointer or leaked), its access does not cause any problem. Since the

padding is introduced by the compiler, developers are usually not aware of the potential data

leaks—they need to be convinced such problems exist before they will fix the programs

(see §2.1.1 for more details). Third, uninitialized data leaks often occur across multiple

procedure boundaries—the uninitialized data is always passed to leaking functions (e.g.,

copy_to_user); hence intra-procedure analysis based detections (e.g., -Wuninitialized

provided by compilers) cannot catch uninitialized data leaks.

In addition to tracking every data read and write, researchers have attempted an alternate

approach—force initializing. For example, PaX’s STACKLEAK plugin [175] clears the used
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kernel stack when the control is transferred back to user space, which effectively prevents

data leaks between syscalls. However, STACKLEAK cannot prevent the leaking of uninitialized

data generated during the same syscall. Also, this can introduce a significant performance

overhead (see Table 5). Split kernel [96] instead clears stack frame whenever it is allocated

(i.e., a function is called). Split kernel provides stronger security, but its performance

overhead is even more significant. Peiró et al. [148] proposed using model checking to

detect kernel stack allocations that have never been memset or assigned. However, this

approach has obvious limitations. For example, since it neither tracks the propagation

of uninitialized data nor handles partial initialization, it has high false negative and false

positive rates. Moreover, none of these approaches can handle kernel heap leaks.

In this work, we propose a novel mechanism, UNISAN (Uninitialized Data Leak San-

itizer), to prevent kernel leaks caused by uninitialized data reads. Similar to STACKLEAK,

UNISAN is an automated compiler-based approach; that is, it does not require manual

modifications to the source code and can transparently eliminate leaks caused by data struc-

ture padding or improper initialization. At the same time, UNISAN also overcomes all the

aforementioned limitations of previous force-initialization approaches. More specifically,

UNISAN leverages an inter-procedural static analysis to check (1) whether an allocated

object ever leaves kernel space, and (2) whether the allocated object is fully initialized

along all possible execution paths to the leak point. The analysis is conservative—as long

as there is one byte of an allocated object that cannot be proved to have been initialized in

any possible execution path before leaving the kernel space, the corresponding allocation

is considered unsafe; hence UNISAN has no false negatives. It also handles both stack

and heap allocations. At the same time, to improve the precision and thus minimize false

positives, UNISAN’s analysis is fine-grained, which tracks each byte of an allocated object

in a flow-sensitive and context-sensitive manner. Once UNISAN detects an unsafe allocation,

it then instruments the kernel to zero the uninitialized portion of the objects allocated by

them. In this way, UNISAN can completely prevent kernel information leaks caused by
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uninitialized reads. Note that by being conservative, UNISAN may still have false positives;

however, zero-initializing allocated objects that will never be leaked will not break the

semantics of the kernel, but will just introduce unnecessary performance overhead. Because

UNISAN’s instrumentation is semantic-preserving, robustness is guaranteed.

We have implemented UNISAN based on the LLVM compiler [112]. UNISAN consists

of two components. The first is the unsafe allocation detector, which conservatively reports

all potentially unsafe allocations. The second is the unsafe allocation initializer, which zeros

the uninitialized memory by inserting zero-initialization, memset, or changing the allocation

flags.

We have applied UNISAN to the latest mainline Linux and Android kernels to evaluate

the effectiveness and efficiency of UNISAN in preventing kernel leaks. For effectiveness

evaluation, we first tested UNISAN over 43 recently discovered kernel information-leak vul-

nerabilities resulting from uninitialized reads. UNISAN successfully detected and prevented

all these known vulnerabilities. Moreover, the unsafe allocation detector of UNISAN has

identified many new uninitialized data leak vulnerabilities in the latest Linux kernel and

Android kernel, 19 of which have been confirmed by the Linux maintainers and Google.

We also measured UNISAN’s performance impacts on kernel operations, server pro-

grams, and user-space programs using multiple benchmarks, including LMbench [125],

ApacheBench, Android benchmarks, and the SPEC CPU Benchmarks. The evaluation

results show that UNISAN incurs a negligible performance overhead (less than 1% in most

cases) and is thus much more efficient than existing solutions (e.g., STACKLEAK).

We believe that since UNISAN is robust, effective, and efficient, it is ready to be

adopted in practice to prevent uninitialized data leaks. In summary, we make the following

contributions:

• Survey of kernel information leaks: We studied all the kernel information-leak

vulnerabilities reported between January 2013 and May 2016. We analyzed their root

causes and corresponding defenses. We also discussed with kernel developers about
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how to prevent information leaks caused by data structure padding.

• Development of new protection mechanism: We designed and implemented UNISAN,

an automated, compiler-based scheme, to eliminate kernel information leaks caused

by uninitialized data reads, which is the main cause of kernel leaks. UNISAN has

been successfully applied to the latest mainline Linux and Android kernels (yet not

limited to kernels). UNISAN is a practical, ready-to-use security protection scheme,

and has been open-sourced for broader adoption.

• Discoveries of new vulnerabilities: During our evaluation, UNISAN discovered

many previously unknown information-leak vulnerabilities in the latest Linux and

Android kernels, 19 of which have been confirmed by Linux maintainers and Google.

2.1.1 An Analysis of Kernel Information Leaks

In this section, we provide a background on kernel information leaks, including their

security implications and root causes. We then discuss uninitialized data reads and how such

vulnerabilities should be fixed from developers’ perspectives.

2.1.1.1 Kernel Information Leaks

Kernel information-leak vulnerabilities can cause severe security consequences. First, with

the deployment of kASLR [42] and stack canary [44], a general prerequisite for many attacks

(e.g., code reuse attack) is learning the randomized addresses and canary, which can be

accomplished by exploiting kernel information-leak vulnerabilities. Further, as the TCB of

the whole system, the OS kernel also has access to many other types of sensitive information,

such as encryption keys, file cache, and remaining data of terminated processes, etc. For

performance reasons, memory pages allocated to store such information may not be cleared

when they are released to the kernel. As a result, kernel information-leak vulnerabilities

also allow attackers to access such sensitive information. For example, [185] showed that an

uninitialized data leak is used to leak the entropy source for srandom. In short, it is critical
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to prevent kernel information leaks.

Kernel information leaks are also very common and have various causes. According to a

previous study [33] of Linux kernel vulnerabilities discovered between January 2010 and

March 2011, kernel information leak was ranked the second most common vulnerability,

which is even more common than buffer overflow vulnerability. Specifically, of the total

of 37 leak vulnerabilities, 28 were caused by uninitialized reads, 7 were caused by buffer

over-read, and two by other miscellaneous causes.

Since the aforementioned study [33] is already five-year old, we conducted another

study of kernel information-leak vulnerabilities reported between January 2013 and May

2016 [57], which contained 103 leaks in total. The result is shown in Figure 1. The majority

of kernel leaks are caused by uninitialized reads. Buffer over-read is also a common cause,

in which the size of reading is not properly checked. Use-after-free bugs may be exploited

to leak the data of newly allocated objects or manipulate the size and address of the read.

Other causes include missing permission check, race condition, or other logic errors. Since

uninitialized read is the most common cause of kernel leaks, our work focuses on preventing

uninitialized data leaks.

2.1.1.2 Uninitialized Data Leaks

An uninitialized data leak occurs when an allocated stack or heap object is not properly

initialized when being copied to the outside world (e.g., to user space, network, or file

systems). If the memory occupied by the object is used to store sensitive data (e.g., ad-

dresses), attackers can exploit this to leak such information. Note that using uninitialized

memory is a type of memory-safety error and can lead to undefined behavior. For this reason,

compiler features such as the -Wuninitialized option in GCC generate warnings when

variables are used without proper initialization. However, such compiler features employ

only an intra-procedure analysis and cannot handle many common cases (e.g., reading the

uninitialized data through its pointer). Most uninitialized data leaks happen across multiple
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function boundaries (e.g., calling copy_to_user in Linux), so they can be identified only

using inter-procedural analysis. Also, data can propagate through various channels (e.g.,

network or file systems). In short, existing compiler checks are not effective in finding unini-

tialized data leaks in large-scale, sophisticated programs such as the Linux kernel. Moreover,

uninitialized data reads may not be harmful if they are not dereferenced or leaked; reporting

all of them will burden or even annoy developers. The following examples demonstrate the

common causes of uninitialized data leaks and why existing compiler features cannot detect

them.

Missing Element Initialization. The simplest and most common case of an uninitial-

ized data leak is when the developers fail to properly initialize all fields of an object or

memory of a buffer. Figure 2 shows a real kernel leak vulnerability in the x25 mod-

ule. Specifically, the object dte_facilities is supposed to be properly initialized in

x25_negotiate_facilities. However, six fields are still not initialized. The object is

then propagated to the external heap object makex25 and finally leaked to userland in an-

other function x25_ioctl. As we can see, detecting such leaks would require sophisticated

inter-procedural data-flow analysis, which is not available during normal compilation.

Figure 3 shows another real kernel leak vulnerability caused by program design and

developers. The 6-bytes buffer mac_addr is allocated on stack. It is supposed to be initialized

in the dump_station function before it is sent out. However, since dump_station is an inter-

face function that has different implementations for different protocols written by different

programmers, it is hard to ensure the object is consistently initialized. Specifically, this

buffer is not initialized in the implementation of the wilc1000 module. As this uninitialized

data is actually never used by the kernel, it is simply copied outside the kernel boundary;

from the perspective of compiler, these cases are not errors. Moreover, dump_station is a

function pointer (i.e., dereferenced by an indirect call), tracking which requires a complete

call graph that is not provided by current compiler features.

Data Structure Padding. Besides developer mistakes, a more interesting source of
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1 /* File: net/x25/af_x25.c */
2 int x25_rx_call_request(struct sk_buff *skb,
3 struct x25_neigh *nb,
4 unsigned int lci) {
5 ⋆ struct x25_dte_facilities dte_facilities;
6 /* some fields of dte_facilities are not initialized */
7 ! x25_negotiate_facilities(..., &dte_facilities);
8 ...
9 /* passed to the external */

10 makex25->dte_facilities= dte_facilities;
11 ...
12 }
13 static int x25_ioctl(struct socket *sock,
14 unsigned int cmd,
15 unsigned long arg) {
16 ...
17 /* leak uninitialized fields of dte_facilities */
18 ⊙ copy_to_user(argp, &x25->dte_facilities,
19 sizeof(x25->dte_facilities));
20 ...
21 }

Figure 2: New kernel leak in the x25 subsystem—six fields of dte_facilities are not initialized and
leaked in another function x25_ioctl. ⋆ denotes memory allocation, ! marks incorrect initialization,
⊙ notes a leaking point.

1 /* File: net/wireless/nl80211.c */
2 static int nl80211_dump_station(struct sk_buff *skb,
3 struct netlink_callback *cb) {
4 ⋆ u8 mac_addr[ETH_ALEN]; /* ETH_ALEN = 6 */
5 ...
6 ! err = rdev->ops->dump_station(\
7 &rdev->wiphy,
8 wdev->netdev, sta_idx, mac_addr, &sinfo);
9 /* mac_addr is uninitialized but sent out via nla_put()

10 * inside nl80211_send_station() */
11 ⊙ if (nl80211_send_station(skb, NL80211_CMD_NEW_STATION,
12 NETLINK_CB(cb->skb).portid,
13 cb->nlh->nlmsg_seq, NLM_F_MULTI,
14 rdev, wdev->netdev, mac_addr,
15 &sinfo) < 0)
16 goto out;
17 ...
18 }

Figure 3: New kernel leak in the wireless subsystem—the whole 6-bytes array mac_addr is not
initialized but sent out. ⋆ denotes memory allocation, ! marks incorrect initialization, and ⊙ notes a
leaking point.

uninitialized data leaks is compiler-added data structure padding. In particular, when modern

processors access a memory address, they usually do this at the machine word granularity

(e.g. 4-bytes on a 32-bits systems) or larger. So if the target address is not aligned, the

processor may have to access the memory multiple times to perform shifting and calculating

to complete an operation, which can significantly degrade the performance [151]. Moreover,
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1 /* File: drivers/usb/core/devio.c */
2 struct usbdevfs_connectinfo {
3 unsigned int devnum;
4 unsigned char slow;
5 /* 3-bytes padding inserted for alignment */
6 };
7 static int proc_connectinfo(struct usb_dev_state *ps,
8 void __user *arg) {
9 ⋆ struct usbdevfs_connectinfo ci = {

10 .devnum = ps->dev->devnum,
11 .slow = ps->dev->speed == USB_SPEED_LOW
12 };
13

14 /* sizeof(ci) == 8, but only 5 bytes are initialized */
15 ⊙ if (copy_to_user(arg, &ci, sizeof(ci)))
16 return -EFAULT;
17 return 0;
18 }

Figure 4: New kernel leak caused by compiler padding. Object ci contains 3-bytes padding at the
end, which is copied to userland. Note that ⋆ denotes memory allocation and partial initiation, and ⊙
notes a leakage point.

different instructions or architectures could also have their own alignment requirements.

For instance, SSE instructions on the x86 architecture require the operands to be 16-bytes

aligned, and ARM processors always require memory operands to be 2-bytes or 4-bytes

aligned. For these reasons, compilers usually add padding within a data structure so that

fields are properly aligned.

The problem is that as these padding bytes are not visible at the programming language

level, and they are not initialized even when all fields have been properly initialized in the

code written by developers and hence may lead to information leaks. Figure 4 illustrates

a kernel leak in the USB module caused by data structure padding. In this case, although

developers have explicitly initialized all fields of the stack object ci, because of its last

3-byte padding, information can still be leaked when copy_to_user is invoked to copy the

whole object to user space. To detect such leaks, byte-level analysis is required; object-level

or even field-level (i.e., field-sensitive) analyses are still not fine-grained enough to catch

such leaks.

To summarize, leaking padding bytes is a serious problem for three reasons. First, it

is prevalent. Compilers frequently introduce padding for better performance. Padding is
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Figure 5: Overview of UNISAN’s workflow. UNISAN takes as input the LLVM IR (i.e., bitcode
files) and automatically generates secured IR as output. This is done in two phases: unsafe allocation
detection and zero initialization.

even more prevalent when porting programs from 32-bits to 64-bits platforms. Second,

inter-procedural and byte-level analysis is required to detect such leaks. Third, it is often not

visible to developers. Padding bytes can be leaked even developers have correctly initialized

all fields.

After we submitted patches for these vulnerabilities, the compiler-injected padding issue

was discussed extensively by the Linux community and became a major concern to the Linux

kernel developers because, from the developers’ perspective, they have properly initialized

the data structures and this type of leak is hardly visible even to skilled programmers. On

the other hand, from the compilers’ perspective, they have the benefit of not proactively

initializing such padding regions to achieve better performance, because this design decision

can be independently made by each compiler according to the C/C++ specification. However,

considering its severity, prevalence and more importantly, its non-trivial nature to developers,

we, as well as many kernel maintainers, urge the incorporation of UNISAN’s approach to

solve this problem at compiler level, perhaps as an extra option to compilers.

2.1.2 Overview of UNISAN

In this work, we focus on preventing kernel information leaks caused by uninitialized data

reads. UNISAN achieves this goal via a two-phase process (Figure 5). In the first phase,

UNISAN analyzes the kernel and conservatively identifies all potential unsafe allocations

whose objects may leave the kernel space without having been fully initialized. Then in
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the second phase, UNISAN instruments the kernel to automatically initialize (zero out) the

detected unsafe allocations.

2.1.2.1 Problem Scope

The protection target of UNISAN is OS kernels. Since UNISAN performs analysis over

source code, we assume that the source code of the kernel is available. We assume the

attackers do not have the kernel privilege (e.g., through loading a malicious kernel driver),

but they can be either local or remote. The goal of the attackers is to leak sensitive data

(e.g., addresses, cryptographic keys, file content) in the kernel space to the external world

(e.g., userland and network). After gathering the information, the attacker can launch more

attacks, such as privilege escalation and phishing.

As discussed in §2.1.1, kernel information leaks have multiple root causes: uninitialized

data read, buffer over-read, use-after-free, data race, logical errors, etc. In this work, we

focus on uninitialized data read because a majority of kernel leaks are caused by this

particular type of vulnerabilities and there is no practical solution yet; whereas other types

of vulnerabilities can be addressed by existing techniques and are thus out-of-scope. For

instance, buffer over-read and use-after-free bugs can be prevented by memory safety

techniques [129, 131, 132, 160]. Data race can be detected by [64]. Logical errors (e.g.,

missing permission check) are relatively rare and can be identified by semantic checking

techniques [13, 126].

2.1.2.2 The UNISAN Approach

There are multiple candidate solutions for preventing uninitialized data leaks. The first is

zeroing the memory when it is deallocated. Since we cannot know when the deallocated

memory will be allocated and used in the future, we have to conservatively zero all deal-

located stack and heap objects, which can introduce a significant performance overhead.

More importantly, deallocation is not always paired with allocation, such as the case of

memory leak, thus introducing false negatives. The second is dynamically tracking the
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status of every byte in the object, so that we can know exactly if any uninitialized bytes

are leaving the kernel space. MemorySanitizer [172] and kmemcheck [138] are based on

this approach. However, while they are effective and able to detect general uninitialized

data uses, their 3x performance overhead is too high to be used for runtime prevention. The

third is selectively zeroing the allocated memory that is detected as unsafe by static analysis.

After assessing the effectiveness and performance of these approaches, we chose the third

approach—initializing only the unsafe allocations.

Figure 5 illustrates the approach of UNISAN. Specifically, UNISAN takes as input the

LLVM IR (i.e., bitcode files) compiled from the kernel source code, upon which the analysis

and instrumentation are performed. Given a stack or heap allocation, UNISAN leverages

static data-flow (taint) analysis to check whether this allocation can reach the pre-defined

sinks, such as copy_to_usr and sock_sendmsg. Along the propagation path, UNISAN also

tracks the initialization status of each byte of the allocation. If any byte of the allocation

reaches the sink without having been initialized in any possible execution path, UNISAN

considers it unsafe. After collecting all unsafe allocations, UNISAN instruments the IR

with initialization code right after them. For stack allocation, UNISAN inserts a memset or

zero-initiailzation to initialize it. For heap allocation, UNISAN adds the __GFP_ZERO flag to

the allocation functions (e.g., kmalloc). Finally, by assembling and linking the instrumented

bitcode files, UNISAN generates the secured kernel image.

2.1.3 Design

In this section, we present the design of UNISAN. We first describe the design of unsafe

allocation detector, including how we generate the complete call graph, perform reachability

analysis, and track the initialization status of allocations. Then we describe how unsafe

allocation initializer instruments the kernel to generate secured kernel images.
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(e.g., alloca/kmalloc)

Reachability analysis

data flow Sinks
(e.g., copy_to_user)

Initialization 
analysis

Figure 6: Unsafe allocation detector incorporates a reachability analysis and an initialization analysis
to check whether any byte of the allocation is uninitialized when leaves the kernel space.

2.1.3.1 Detecting Unsafe Allocations

Our unsafe allocation detection is essentially a static taint analysis that incorporates two

orthogonal analyses: object initialization analysis and sink reachability analysis, as shown

in Figure 6. The initialization analysis checks which bytes of the object will be initialized

along the paths from allocation to sinks, i.e., which bytes will be assigned with other values.

The sink reachability analysis checks which bytes of the object will leave the kernel space

along the paths from allocation to sinks, i.e., being passed to sinks. The initialization

analysis and reachability analysis are then integrated to detect unsafe bytes—a byte is unsafe

if it is uninitialized when it leaves kernel space.

The workflow of the detection is as follows. Given the bitcode files of the target program,

it first builds a complete and global call graph. Then it parallelly performs the reachability

analysis and initialization analysis for each allocation to detect the unsafe bytes. Our analysis

is flow-sensitive in that the order of the uses of the allocation is maintained with a dedicated

user-graph (that will be elaborated in Figure 2.1.3.1); context-sensitive in that function calls

are followed with callsite-specific context; and field-sensitive in that it performs fine-grained

tracking for each byte of the allocation. However, to avoid the path explosion problem and

make our analysis scalable to the whole kernel, our analysis is path-insensitive.

Defining Sources and Sinks. Both the reachability analysis and initialization analysis

track the “taint” status of the allocated bytes from the allocation site to the sink functions. As

the first step, we need to pre-define the sources (i.e., allocations) and sinks (i.e., data-leaking

functions).
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For stack, all objects are allocated by AllocaInst (i.e., an instruction to allocate memory

on the stack). By handling this instruction, we are able to find all tracking sources on stack.

Heap objects can be allocated in many ways. In our current implementation, we include

only the standard allocator from SLAB, namely, kmalloc and kmem_cache_alloc. These

heap allocators accept a flag parameter. If the flag contains __GFP_ZERO bit, the allocated

memory will be initialized with zero. In UNISAN, we track only heap allocations without

the __GFP_ZERO flag. Please note that although UNISAN currently does not include custom

allocators, it can be easily extended to support them once developers denote the function

name and allocation flags (i.e., create the source signature).

Under the threat model of UNISAN, any function that may send kernel data to userland,

network, or file is classified as a sink function. In UNISAN, we use two policies to generally

define the sinks. We first empirically define a list of known sink functions, based on

our study of previous kernel leaks. For example, copy_to_user copies data to userland;

sock_sendmsg sends data to network, and vfs_write writes data to files. Although there

are various implementations for file writing (for different file systems) and message sending

(for different protocols), vfs_write and sock_sendmsg are the uniformed interfaces, so we

can generally catch the sink functions by annotating these functions.

Clearly, there are more sink functions that are not covered by the first step. To eliminate

false negatives introduced by an incomplete sink list, we utilized three conservative rules to

generally cover additional sinks. These rules are defined based on the fact that under our

recursive tracking algorithm (Figure 7), for any data to leave kernel space, it will always be

stored to a non-kernel-stack location (or non-AllocaInst to be specific), so once we cannot

determine that the destination of an store operation is on kernel stack, we treat it as a sink.

• Rule 1: A StoreInst (i.e., an instruction for storing to memory) is a sink if the

destination is not allocated by an AllocaInst in kernel;

• Rule 2: A CallInst (i.e., an instruction for calling a function) is a sink if the called

value is inline assembly that is not in the whitelist (Figure 2.1.3.1);
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1 /* Unsafe allocation detection algorithm */
2 UnsafeAllocDetection(Module) {
3 for (Alloc in Module) {
4 /* user relationships are maintained */
5 MergedUnsafeBytes = Array();
6 UserGraph = BuildUserGraph(Alloc);
7 NextUsers = GetFirstUser(UserGraph);
8 RecursiveTrackUsers(Alloc,NextUsers,MergedUnsafeBytes);
9 if (IsNotEmpty(MergedUnsafeBytes))

10 Report(Alloc, MergedUnsafeBytes);
11 }
12 }
13 RecursiveTrackUsers(Alloc, NextUsers, MergedUnsafeBytes) {
14 /* terminate if all bytes have been inited or sinked */
15 if (AllInitied(Alloc) || AllSunk(Alloc))
16 return;
17 UnsafeBytes = Array();
18 for (User in NextUsers) {
19 /* Next users of User are recursively tracked */
20 if (IsLoadInst(User))
21 RecursiveTrackLoad(User, UnsafeBytes);
22 else if (IsStoreInst(User))
23 RecursiveTrackStore(User, UnsafeBytes);
24 else if (IsCallInst(User))
25 RecursiveTrackCall(User, UnsafeBytes);
26 else if (IsGetElementPtr(User))
27 RecursiveTrackGEP(User, UnsafeBytes);
28 ...
29 /* Unrecognized cases */
30 else
31 /* assume remaining uninitialized bytes unsafe */
32 UnsafeBytes += GetUninitializedBytes(Alloc);
33 /* Conservatively merge (union) all unsafe bytes */
34 MergedUnsafeBytes += UnsafeBytes;
35 }
36 }

Figure 7: The pseudo-code of the recursive tracking algorithm for the unsafe allocation detection.

• Rule 3: A CallInst is a sink if the called function’s body is empty (i.e., not compiled

into LLVM IR).

Building Global Call-Graph. Since UNISAN’s analysis is inter-procedural, global call

graph is required. To eliminate false negatives, UNISAN must conservatively identify all

potential targets of indirect calls. To this end, we first collect the address-taken functions,

and use the type-analysis-based approach [135, 177] to find the targets of indirect calls.

That is, as long as the type of the arguments of an address-taken function matches with the

callsite of the indirect call, we assume it is a valid target. Note that we also assume universal

pointers (e.g., char *, void *) and an 8-bytes integer can match with any type.

Recursive Detection Algorithm. With the global call-graph, we conduct the unsafe
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%i = alloca i32

store i32 0, i32* %i

call @put_user(i32* %i, 
i8* %u)

int *i;

if (p == NULL)

    i = 0;

put_user(&i, u);

source code user-graph

Figure 8: A simple user-graph example.

allocation detection. The algorithm of the detection is shown in Figure 7. In short, given an

allocation in a module, we first build its user-graph (that will be elaborated in Figure 2.1.3.1).

After that, we recursively keep track of which bytes of the allocated object have been

initialized and which bytes have reached sink functions, by traversing the user-graph.

Different users are handled properly. If there are any corner cases that are not recognized

before, we conservatively assume the bytes being tracked are unsafe. All unsafe bytes in

different paths are concatenated together. That is, a byte is assumed unsafe as long as it is

unsafe in any possible path.

Building User-Graph. In LLVM IR, a user of a value is an instruction or expression

that takes the value as an operand. The unsafe allocation detection is designed to be flow-

sensitive, which requires considering the order of users. Given the being tracked value (e.g.,

the allocated value), LLVM framework only tells us all the users but not the relationships

(e.g., sequential and parallel relationships) among them. To maintain the relationships of the

users, we build the user-graph for the tracked value. Figure 8 shows a simple user-graph

example. Instructions that do not use the tracked value will not show up in the graph. More

specifically, we first put all the users in the corresponding basic blocks. Users in the same

basic block are always in a sequential order. Then we use the DominatorTree pass of LLVM

to understand the relationships among the involved basic blocks. With this information, we

chain all the users together into a user graph. When an alias of the tracked value is generated

(e.g., by the CastInst and GetElementPtr instructions), all the users of the alias will be

seamlessly merged into the user-graph as well.
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Fine-Grained Status Tracking. UNISAN performs unsafe allocation detection in a fine-

grained manner (i.e., byte-level analysis). There are several advantages of performing the

analysis at byte granularity. First, due to the compiler’s padding, initializing all fields of

an object does not guarantee that all bytes are initialized (Figure 4). Therefore, byte-level

analysis is necessary to detect the uninitialized padding bytes. Second, union is widely

used in kernel data structures and byte-level tracking can help resolve the issue introduced

by field alias. Finally, byte-level detection can precisely filter out safe bytes, so that the

instrumentation module can selectively initialize only the unsafe ones, thus further reducing

the runtime performance overhead.

To perform the byte-level analysis, we use a buffer to record the initialization and sinking

status of every byte in a tracked allocation. Whenever an object is allocated, a buffer of

the same size is created. Currently, we only use two bits of the corresponding byte in the

buffer to represent the initialization and sinking status of each byte in the original object.

To keep track of which bytes are being accessed, at every GEPOperator (an instruction or

expression for type-safe pointer arithmetic to access elements of arrays and structs) node in

LLVM IR, we calculate the offset (into the base of the object) and the size of the obtained

element. In our current design, we do not perform range analysis, so if any of the indices of

the GEPOperator node are not constants, we cannot statically calculate the resulting element.

In this case, we conservatively treat all bytes of the allocation as uninitialized and pause the

initialization analysis—as long as the reachability analysis determines that the allocation can

leave the kernel space, we assume it is unsafe. Since non-constant indices are not common

in GEPOperator node, our byte-level analysis works well in most cases.

Eliminating False Negatives. As a prevention tool, UNISAN aims to eliminate potential

false negatives. Clearly, aggressively initializing all stack and heap allocations can guarantee

no false negative; however, such a naive approach will introduce unnecessary performance

overhead, since most allocations will either never leave kernel space or be properly initialized.

To make UNISAN more efficient, our principle is to eliminate as many false positives as
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possible while ensuring no false negative; and whenever we encounter an undecidable

problem or an unhandled corner case, we always sacrifice the detection accuracy and assume

the tracked allocation is unsafe. In this subsection, we summarize cases that may introduce

false negatives and describe how we handle them.

Complete call graph. LLVM’s built-in call graph pass does not find callees of indirect

calls. As described in Figure 2.1.3.1, we adopt a conservative type-analysis to find indirect

call targets to build a complete and global call graph.

Conservative path merging. There are often many paths from the allocation site to the

sink points. And in different paths, the allocated object can be initialized differently. In

LLVM IR, the most common cases that can introduce multiple paths include: (1) load and

store instructions. These instructions copy the tracked value to somewhere else, creating a

new data-flow; (2) indirect call instructions; (3) return instructions; (4) branch instructions.

To ensure that no leaks will be missed, UNISAN always tracks each path independently and

merges the tracking results (when tracking of a path returns) by calculating the union of all

unsafe bytes; in other words, a byte is deemed unsafe as long as it is unsafe in one path.

Propagation to alias. Our reachability and initialization analyses are performed in a

forward manner (i.e., from source to sink). Whenever an alias of the tracked value is created

(e.g., by CastInst or GetElementPtr instructions), we further track the alias by merging

its users into the user-graph of the current tracked value. Therefore, we do not need alias

analysis for this case. However, when the tracked value is stored to another value, we need a

backward slicing analysis to find the possible aliases of the store-to value, which is difficult

for some cases (e.g., global variable). To handle this, we employ the simple basic alias

analysis [111]. Additionally, we enforce two conservative policies to eliminate potential

false negatives: (1) if we find that the aliases are pointing to a non-stack object (e.g., global

variable or heap object), whose data-flow is hard to follow, we assume the tracked value

is unsafe; (2) if we find the aliases is a returned value of a function call or a parameter of

current function, we also assume the tracked value is unsafe.
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Inline assembly. To improve performance, kernel developers commonly write inline

assembly. Since inline assembly is not compiled into LLVM IR, our detection cannot be

directly applied. To handle inline assembly, we manually whitelisted some safe inline

assembly that will not leak the tracked value or store the tracked value to other places. All

other inline assembly functions are conservatively treated as sinks.

2.1.3.2 Instrumenting Unsafe Allocations

After identifying all unsafe allocations, the initializer module of UNISAN further instruments

the kernel to initialize the identified unsafe allocations by zeroing the unsafe bytes. In

particular, the initialization code is inserted right after the allocation (e.g., the stack Alloca

and kmalloc). Since the detection module reports unsafe allocation at the byte-level, in

many cases, we do not have to initialize the whole allocated object but only the unsafe

bytes. In particular, for stack allocation, we use StoreInst to zero the unsafe bytes if they

have a continuous size of less than or equal to 8; otherwise, memset is used for zeroing the

bytes. Heap allocation is also initialized in a similar way except that the __GFP_ZERO flag

is passed to the heap allocator to initialize the memory if all bytes are unsafe. With the

initialization, all possible uninitialized leaks cannot disclose any meaningful entropy from

the kernel space, and thus can be prevented.

2.1.4 Implementation

In this section, we present the implementation details that readers may be interested in.

UNISAN is built on the LLVM compiler infrastructure with version 3.7.1. The unsafe

allocation detector is implemented as two analysis module passes. One is for building the

complete call graph iteratively and maintaining all necessary global context information

(e.g., defined functions); the other performs the initialization and reachability analyses based

on the built call graph. The unsafe allocation initializer is implemented as a transformation

function pass, invoked after the detection pass. Both passes are inserted after all optimization

passes. To compile the kernel into LLVM IR, we leverage the LLVMLinux project [113].
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Because llvm-link has a symbol renaming problem, instead of merging all bitcode files

into a single module, we adopt the iterative algorithm from KINT [186] to process individual

bitcode files. So the input of the analysis phase is just a list of bitcode files. UNISAN is easy

to use:

$ CC=unisan-cc make

$ unisan @bitcode.list

2.1.4.1 Bookkeeping of the Analysis

For each tracked allocation, we use a dedicated data structure to record its tracking results

along the propagation paths. This data structure mainly includes the initialization and

sinking information of each byte. The tracking history is also included to avoid repeatedly

tracking a user—we do not need to track a user multiple times if the status of the tracked

value is not changed.

As mentioned in Figure 2.1.3.1, UNISAN maintains the user-graph for the tracked value.

The users in the graph may access different elements of the tracked value. To know which

part of the tracked value is being initialized or sunk during the tracking, element information

is also kept in each node of the user-graph. Moreover, we maintain reference hierarchy

for pointers. The reference hierarchy is to understand if a pointer is directly or indirectly

(recursively) pointing to the tracked allocation. To better understand it, let us see this

example: store i8* %A, i8** %B stores value A to the memory pointed to by B but not B

itself. To differentiate whether the storing operation is targeting the tracked allocation or

its reference, the referencing relationship between them is required, and thus we maintain

the reference hierarchy. Our reference hierarchy is straightforward: the “indirectness” is

decreased by one by LoadInst; but increased by one by StoreInst. To tackle the alias problem,

if StoreInst stores to non-stack memory, we assume it is sinking and stop tracking. Certainly,

point-to analyses can achieve the same goal, but they are heavyweight—analyzing the kernel

may take many hours.
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The initialization status is updated when the tracked value is assigned another value

by StoreInst, while the sinking status is updated when the tracked value is stored to a

non-stack value in StoreInst or it is passed to sink functions in CallInst.

2.1.4.2 Tracking Different Users

Analyses are carried out by traversing the user-graph. UNISAN handles different kinds of

users accordingly. After handling a user, the next users of the current user will be further

tracked. In this section, we detail how the handling of each type of user is implemented.

LoadInst. LoadInst loads the data pointed to by the tracked value to the target value. We

independently track both values and merge (i.e., the union operation) the unsafe bytes when

both tracking processes return. Since LoadInst is essentially dereferencing the tracked

value that is a pointer, we also increase the reference hierarchy by one in the tracking of the

target value.

StoreInst. StoreInst stores the tracked value to the memory pointed to by the target value.

Let us see store i8* %A, i8** %B again. When the tracked value is A (i.e., it is the value

operand), we first use the conservative basic alias analysis (Figure 2.1.3.1) to find the aliases

of B. If not all aliases can be found or some aliases are from non-stack memory, we assume

A is sunk and update its sinking status; otherwise, we further track aliases independently and

merge all unsafe bytes. Since the target value is a reference of the stored value, the reference

hierarchy is decreased by one in the tracking of aliases. When the tracked value is B, we

first consult the reference hierarchy (§2.1.4.1) to see if B is the tracked allocation (but not

its reference); if yes, we record that the corresponding bytes of the tracked allocation are

initialized.

CallInst. When the tracked value is passed to callees via argument, we recursively track

the arguments in callees independently and merge all unsafe bytes. Inline assembly is

conservatively handled as shown in Figure 2.1.3.1. If the called function is a sink, we record

that the corresponding bytes are sunk.
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GEPOperator. GEPOperator statements get the pointer of an element of the tracked value,

which essentially creates an alias of the tracked value. The offset of the target element into

the base of the tracked value and its size are calculated and maintained in the user-graph. The

users of the target element are merged into the user-graph of the tracked value. The element

information is the key to implement the byte-level analyses; however, when the indices

of GEPOperator are not constants, we will not be able to obtain the element information.

In this case, we stop the initialization analysis and only continue the reachability analysis,

since we cannot statically decide which bytes will be initialized.

ReturnInst. ReturnInst is an instruction that returns a value from a function. We first

use the global call-graph to find all CallInsts that call the current function containing the

ReturnInst. Then these CallInsts are independently tracked, and unsafe bytes are merged.

CastInst, SelectInst, and PHINode. The definitions of these statements can be found

at [1]. These cases are generating alias of the tracked values. We find their users and merge

the users to the user-graph of the tracked value.

CmpInst, SwitchInst, BranchInst. The definitions of these statements can be found at [1].

We skip the handling for these cases, since they do not operate the tracked value.

Others. Any other cases are conservatively treated as sinks, so all uninitialized bytes in the

tracked value are assumed to be unsafe.

2.1.4.3 Modeling Basic Functions

Similar to traditional static program analyses, we also modeled some basic functions.

Specifically, we modeled string-related functions that typically use loops to process strings,

to improve the efficiency of tracking. Moreover, we modeled some frequently used LLVM

intrinsic functions (e.g., llvm.memset) that do not have function bodies in LLVM IR. In

total, we modeled 62 simple functions by summarizing how they propagate and initialize

the arguments.
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2.1.4.4 Dynamic Allocations

Dynamic allocations create objects with a dynamic size. They are common (about 40%,

according to our study) in heap. In general, we do not perform initialization analysis

for dynamic allocations, because we cannot determine which bytes are being accessed at

compiling time. As a result, we conservatively consider the whole allocation as uninitialized

and only perform reachability analysis. With one exception, during the initialization analysis

we will record the size value (in LLVM IR) of the dynamic allocation; if the allocation is

later initialized by a basic function (e.g., memset) using the same size value as recorded, we

consider that it is fully initialized and safe. In the instrumentation module, extra instructions

are inserted to compute the size at runtime for dynamic allocations on stack, which is then

passed to memset to initialize the memory. For dynamic allocation on heap, we utilize the

__GFP_ZERO flag for initialization.

2.1.5 Evaluation

We systematically evaluated UNISAN to answer the following questions:

• The accuracy of UNISAN, i.e., to what extent can UNISAN filter out safe allocations?

• The effectiveness of UNISAN, i.e., whether it can prevent known and detect previously

unknown uninitialized data leaks?

• The efficiency of UNISAN, i.e., what is the performance overhead of the secured

kernel?

Experimental setup. We applied UNISAN to both x86_64 and AArch64 kernels. For

x86_64, we used the latest mainline Linux (with version 4.6.0-Blurry Fish Butt) with

patches from the LLVMLinux projects [113]. x86_64 kernels were tested in a desktop

machine equipped with an Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz processor and

32GB RAM. The OS is the 64-bits Ubuntu 14.04. For AArch64, we used the latest Android

kernel (with version tegra-flounder-3.10-n-preview-2) from the Android Open Source
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Table 2: Measurement results for detection accuracy of UNISAN.

Arch Module Static Dyn. Static Dyn. Unsafe Unsafe Static Unsafe
Alloca Alloca Malloc Malloc Alloca Malloc Bytes Bytes

x86_64 2,152 17,854 24 1,768 1,161 1,493 386 3,588K 863K
AArch64 2,030 15,596 32 1,790 1,233 1,485 451 11,525K 3,351K

Project, with patches from [169]. The Android kernels were tested in the Nexus 9 device

that has a duo-core ARMv8 processor and 2GB RAM. We used the default configurations

for both kernels.

2.1.5.1 Accuracy of Unsafe Allocation Detector

We first conducted the statistical analysis on the accuracy of the unsafe allocation detector—

how many allocations are reported as unsafe. The results are shown in Table 2. In particular,

there are around 2k modules (i.e., bitcode files) enabled by the default kernel configuration.

It is worth noting that LLVM’s optimizations aggressively inline functions and significantly

opt-out most allocations—there were 156,065 functions and 413,546 static stack allocations

before the optimizations. UNISAN is accurate in detecting unsafe stack allocations: only

8.4% and 9.5% stack allocations are detected as unsafe for x86_64 and AArch64, respec-

tively. Since dynamic allocation is common for a heap object, UNISAN’s detection rate is

higher for heap allocations—13.2% for x86_64 and 14.9% for AArch64. UNISAN performs

byte-level detection, so we also report the total number of statically allocated bytes and the

detected unsafe bytes. These statistic results show that UNISAN can filter out most safe

allocations to avoid unnecessary initialization.

To understand how initialization analysis and reachability analysis individually help in

filtering out safe allocations, we further counted the number of unsafe allocations when we

disable one of them. Specifically, in x86_64, if we disable the initialization analysis, there

are 3,380 unsafe stack allocations. If we disable the reachability analysis (i.e., assuming all

function calls as sinks), there are 14,094 unsafe stack allocations. In AArch64, the numbers

are 2,961 and 11,209, respectively.
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2.1.5.2 Effectiveness of Preventing Leaks

Preventing known leaks. Conservative policies (Figure 2.1.3.1) have been enforced to

eliminate potential false negatives of UNISAN. To confirm that UNISAN does not miss

uninitialized data leaks in practice, we selected 43 recent kernel uninitialized data leaks

reported after 2013. All these leaks have been assigned with CVE identifiers. Please note

that some leaks are not included because the corresponding code is not enabled by the

default kernel configuration or a very similar leak has already been included. The patches of

these vulnerabilities are temporarily reverted for testing. The results of the experiment are

shown in Table 3. UNISAN successfully detected and prevented all these leaks without any

false negative; hence the effectiveness in preventing existing leaks is confirmed.

Detecting previously unknown vulnerabilities. UNISAN is designed as a prevention tool

that can automatically detect and fix all uninitialized data leaks at the LLVM IR level; no

manual effort is required. However, to confirm that UNISAN can truly prevent new leaks and

estimate the false positives due to our conservative policies, we manually review the unsafe

allocations reported by the unsafe allocation detector. As shown in Table 2, UNISAN de-

tected about 1,500 possible unsafe stack allocations and 300 possible unsafe heap allocations.

Due to limited time and labor, we randomly chose 300 detected unsafe stack allocations and

50 unsafe heap allocations. In summary, we have verified 19 new uninitialized data leaks in

the latest Linux kernel and Android kernel. All of these vulnerabilities are from stack, more

details can be found in Table 4. All of them have been confirmed by the Linux kernel team

and Android security team. Since UNISAN has not been adopted by them yet, we have to

manually write the corresponding patches in source code.

2.1.5.3 Efficiency of the Secured Kernels

UNISAN carries out flow-sensitive, context-sensitive, and field-sensitive analyses to ac-

curately detect the unsafe allocations, so that the performance overhead is controlled by

minimizing the number of initializations. To quantify this benefit, we conducted a series of
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Table 3: Tested known uninitialized data leaks. P: compiler padding; M: missing element initializa-
tion.

CVE Mem. Sink Leak Cause UNISAN
Bytes

CVE-2015-5697 heap user <4096 M ✓
CVE-2015-7884 stack user 4 M ✓
CVE-2015-7885 stack user < 28 M ✓
CVE-2014-1444 stack user 2 P ✓
CVE-2014-1445 stack user 2 P ✓
CVE-2014-1446 stack user 4 M ✓
CVE-2014-1690 stack sock < 16 M ✓
CVE-2014-1739 stack user 192 M ✓
CVE-2013-4515 stack user 10 M ✓
CVE-2013-3235 stack user 12 M ✓
CVE-2013-3234 stack user 12 P+M ✓
CVE-2013-3233 stack user 12 M ✓
CVE-2013-3232 stack user 6 P+M ✓
CVE-2013-3230 stack user 4 M ✓
CVE-2013-3223 stack user 1 P ✓
CVE-2013-2636 stack sock < 20 M ✓
CVE-2013-2636 stack sock 4 P+M ✓
CVE-2013-2636 stack sock 3 P ✓
CVE-2013-2636 stack sock 18 M ✓
CVE-2013-2635 stack sock 32 M ✓
CVE-2013-2634 stack sock 32 M ✓
CVE-2013-2634 stack sock 34 M ✓
CVE-2013-2634 stack sock 8 M ✓
CVE-2013-2634 stack sock 20 P+M ✓
CVE-2013-2634 stack sock 32 M ✓
CVE-2013-2634 stack sock 18 M ✓
CVE-2013-2547 stack sock < 64 M ✓
CVE-2013-2547 stack sock 8 M ✓
CVE-2013-2237 heap sock 1 M ✓
CVE-2013-2234 heap sock 2 M ✓
CVE-2013-2148 stack user 1 M ✓
CVE-2013-2141 stack user 4 M ✓
CVE-2012-6549 stack user 2 M ✓
CVE-2012-6548 stack user 2 M ✓
CVE-2012-6547 stack sock 4 M ✓
CVE-2012-6546 stack user 2 P ✓
CVE-2012-6545 stack sock 1 P ✓
CVE-2012-6544 stack sock 2 M ✓
CVE-2012-6543 stack sock 2 M ✓
CVE-2012-6541 stack user 4 P ✓
CVE-2012-6540 stack user 12 M ✓
CVE-2012-6539 stack user 4 P ✓
CVE-2012-6537 stack user 4 P ✓

extensive performance evaluations. In particular, we first used the LMBench [125] micro

benchmark to evaluate the performance on core system operations (e.g., syscalls latency).
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Table 4: List of new kernel uninitialized data leak vulnerabilities discovered by UNISAN. S: patch
submitted; ✓: patch applied. P: compiler padding; M: missing element initialization; A: Android; L:
Linux.

# Sub- Mem. Sink Leak Cause Kernel Patch CVE
System Bytes

1 net/core stack sock 4 P A&L ✓ CVE-2016-4486
2 usb stack user 3 P A&L ✓ CVE-2016-4482
3 net/wireless stack sock 6 M A&L ✓ AndroidID-28620350
4 net/llc stack user 1 P A&L ✓ CVE-2016-4485
5 sound stack user 8 P A&L ✓ CVE-2016-4569
6 sound stack user 8 P A&L ✓ CVE-2016-4578
7 sound stack user 8 P A&L ✓ CVE-2016-4578
8 net/x25 stack user 8 M A&L ✓ CVE-2016-4569
9 net/tipc stack sock <60 M A&L ✓ CVE-2016-5243
10 net/rds stack sock 1 M A&L ✓ CVE-2016-5244
11 net/mac80211 stack sock 26 M A S AndroidID-28620568
12 net/wireless stack sock <116 M&P A S AndroidID-28619338
13 net/wireless stack sock 1 M A S AndroidID-28620324
14 net/netfilter stack sock 2 M A S AndroidID-28673002
15 net/netfilter stack sock 2 M A S AndroidID-28672819
16 net/netfilter stack sock 1 M A S AndroidID-28616963
17 media stack user <192 M&P A S AndroidID-28616963
18 media stack user 10 M&P A S AndroidID-28616963
19 media stack user 28 M&P A S AndroidID-28616963

We then used Android Benchmarks and the SPEC Benchmarks as the macro benchmarks to

evaluate the performance impacts on user space programs for the protected Android kernel

and Linux kernel, respectively. To measure the performance impacts on I/O intensive server

programs, we further used ApacheBench to test the performance of Apache web server. All

these evaluations consist of three groups: (1) native mode, in which UNISAN is not applied;

(2) blind mode, in which all stack allocations and heap allocations without the __GFP_ZERO

flag are initialized without checking whether or not they are safe; and (3) UNISAN mode, in

which UNISAN is applied. In the three groups of evaluations, the kernel was replaced with

the corresponding one. Note that, we did not further break down the performance overhead

introduced by stack and heap, because the overall overhead is already negligible.

System Operations. In order to measure how UNISAN affects the performance of core

operating system services, we used LMBench [125] as the micro benchmark. Specifically,

we focus on the latency of syscalls (e.g., null, write, open/close, sigaction, etc.) and
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Table 5: Evaluation results with LMBench. Time is in microsecond.

Linux (x86_64) Android (AArch64)

Native Blind (%) UniS. (%) Native Blind (%) UniS. (%)

null syscall 0.04 0.04 (0.0%) 0.04 (0.0%) 0.42 0.42 (0.0%) 0.42 (0.0%)
stat 0.37 0.40 (8.1%) 0.38 (2.7%) 1.33 1.43 (7.5%) 1.37 (3.0%)
open/close 1.20 1.22 (1.7%) 1.15 (-4.2%) 6.09 6.27 (3.0%) 6.07 (-0.3%)
select TCP 2.44 2.48 (1.6%) 2.44 (0.0%) 9.67 10.67 (10.3%) 9.80 (1.3%)
signal install 0.11 0.11 (0.0%) 0.11 (0.0%) 0.58 0.58 (0.0%) 0.57 (-1.7%)
signal handle 0.58 0.71 (22.4%) 0.60 (3.4%) 1.79 1.98 (10.6%) 1.85 (3.4%)
fork+exit 156 157 (0.6%) 156 (0.0%) 851 892 (4.8%) 861 (1.2%)
fork+exec 452 464 (2.7%) 455 (0.7%) 2687 2737 (1.9%) 2742 (2.0%)
prot fault 0.295 0.317 (7.5%) 0.316 (7.1%) 1.37 1.47 (7.3%) 1.35 (-1.5%)
pipe(latency) 9.673 10.21 (5.6%) 9.909 (2.4%) 8.850 8.898 (0.5%) 8.882 (0.4%)
TCP(latency) 91.8 99.5 (8.4%) 97.3 (6.0%) – – – – –

pipe(bandw) 3,321 3,250 (2.1%) 3,315 (0.2%) 838 728 (13.1%) 804 (4.1%)
TCP(bandw) 2,331 2,264 (2.9%) 2,333 (-0.1%) – – – – –

impact on bandwidth (e.g., pipe). We ran each experiment 10 times, and the results are

shown in Table 5. The last two rows are measuring bandwidth, which is the bigger the better.

We do not have numbers for TCP case in Android kernel because we cannot establish TCP

sockets to our Nexus 9. In the blind mode, the performance overhead could be up to 22%

(the signal handle case). There are also some cases (e.g., select and pipe) where its overhead

is more than 10%. Such a performance overhead is significant for the OS kernel—the

foundation of computer systems. In contrast, UNISAN has a much lower performance

overhead than the blind mode; its maximum overhead is 7.1% in the protection fault case.

We also notice that UNISAN’s performance overhead is negligible (< 1%) in many cases.

On average, the performance overhead of UNISAN is less than 1.5% for both the Linux and

Android kernels.

User-Space Programs. For x86_64, we used the standard SPEC CPU 2006 benchmark

suite to test the performance impacts of UNISAN on user space programs. The benchmark

programs were compiled with the common options (-pie -fPIC -O2) and each benchmark

was run 10 times. The results are shown in Table 6. Specifically, the performance overhead

introduced by UNISAN is only 0.54%, which is negligible. The performance overhead of

the blind mode is higher than UNISAN, which is 1.92%. Note that the moderate blind-mode
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Table 6: User-space (x86_64) performance evaluation results with the SPEC benchmarks. Time is in
second, the smaller the better.

Programs Native Blind (%) UNISAN (%)

perlbench 3.61 3.61 (0.0%) 3.59(-0.6%)
bzip2 4.74 4.78 (0.8%) 4.78 (0.8%)
gcc 0.968 0.970 (0.2%) 0.966(-0.2%)
mcf 2.73 2.76 (1.1%) 2.74 (0.4%)
gobmk 14.0 14.0 (0.0%) 14.0 (0.0%)
hmmer 2.07 2.03 (-1.9%) 2.04(-1.4%)
sjeng 3.27 3.30 (0.9%) 3.33 (1.8%)
libquantum 0.0387 0.0397 (2.6%) 0.0395 (2.1%)
h264ref 9.26 9.32 (0.6%) 9.28 (0.2%)
omnetpp 0.362 0.364 (0.6%) 0.362 (0.0%)
astar 7.81 7.92 (1.4%) 7.92 (1.4%)
xalancbmk 0.0758 0.0779 (2.8%) 0.0738(-2.6%)
milc 4.57 4.76 (4.2%) 4.76 (4.2%)
namd 8.85 8.86 (0.1%) 8.83(-0.2%)
dealII 10.5 10.6 (1.0%) 10.6 (1.0%)
soplex 0.0166 0.0186 (12.0%) 0.0170 (2.4%)
povray 0.427 0.439 (2.8%) 0.426(-0.2%)
lbm 1.68 1.69 (0.6%) 1.69 (0.6%)
sphinx 1.19 1.28 (7.6%) 1.20 (0.8%)

Geo-mean (seconds) 1.92% 0.54%

Table 7: User-space (AArch64) performance evaluation results with multiple android benchmarks.
The scores are the higher the better.

Benchmark Native Blind (%) UNISAN (%)

AnTuTu 94998 92900 (2.2%) 94735 (0.3%)
Vellamo-Browser 4776 4711 (1.4%) 4729 (1.0%)
Vellamo-Metal 2766 2777 (-0.4%) 2776 (-0.4%)
Vellomo-Multicore 2610 2499 (4.3%) 2600 (0.4%)

overhead over SPEC benchmarks is when the user-space is not protected; when we also

applied the blind mode to the user-space code, the overhead becomes 10% (7% from stack

and 3% from heap).

For AArch64, we instead used the dedicated benchmarks for Android: AnTuTu (includ-

ing 3DBench) and Vellamo. They are typical Android benchmarks to test a variety of cases

(e.g., video streaming, web browsing, photo editing, etc.). Each testing was repeated five

times for deriving the average numbers. The evaluation results are shown in Table 7. Again,

UNISAN’s performance overhead is negligible (<1%) and is lower than blind mode.

Server Programs. We used ApacheBench to test the performance impacts of UNISAN on
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the latency and bandwidth of the server program—Apache web server. The ApacheBench

ran in the laptop connected to our desktop machine with an one Gigabit cable. We used

Apache with its default configurations. We first used a 1KB file to evaluate the latency when

the concurrency (i.e., simultaneous connections) was set to be 1, 50, 100, 150, 200, and 250.

Then we used files with different sizes (100B, 1KB, 10KB, 100KB, and 1MB) to measure the

bandwidth (i.e., throughput) of the web server. In the bandwidth evaluation, the concurrency

was set to be 32; the network I/O was not saturated except when the file size was 1MB. The

request for each experiment was repeated 10,000 times. The evaluation results show that the

blind mode incurs an average slowdown of 0.7% in the concurrency experiment and 0.9%

in the bandwidth experiment. In contrast, UNISAN imposes an unobservable slowdown

(<0.1%) in both experiments. These results confirm that UNISAN incurs almost no overhead

to the server programs that are I/O intensive.

2.1.5.4 Miscellaneous

Scalability. UNISAN is scalable, which can analyze complex programs like the OS kernel.

To better understand its scalability, we also measure the time for it to protect the kernels. In

our physical machine, UNISAN finished the protection of kernels within 117 seconds for

x86_64 and 170 seconds for AArch64.

Binary size. UNISAN inserts small initializers (e.g., zero-initialization) for unsafe alloca-

tions. To confirm that it does not significantly increase the binary size, we measured the size

of the installed boot images. The results showed that UNISAN increases the size of Linux

boot image from 7,417KB to 7,445KB (0.38%) and the one of Android from 6.348KB to

6.366KB (0.27%). Both are negligible.

2.1.6 Discussion

Custom heap allocator. In the current implementation, UNISAN only tracks typical

heap allocators (kmalloc and kmen_cache_alloc). To handle custom heap allocations (e.g.,

alloc_skb), UNISAN can use the specifications of allocators provided by developers. In
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fact, for user space programs, LLVM already provides an API isMallocLikeFn to test

whether a value is a call to a function that allocates uninitialized memory based on heuristics.

We plan to also use heuristics to infer “malloc-like” functions in OS kernels.

Source code requirement. Source code is required. In case that some kernel drivers are

close-sourced, we have to carefully identify all possible calls that target these drivers and

assume all such calls as sinks. Failures in identifying such calls will result in incompleteness

of call-graph and thus false negatives.

Security impacts of zero-initialization. Some systems use uninitialized memory as the

source of randomness. For example, the SSLeay implementation of OpenSSL uses unini-

tialized buffer as entropy source to generate random number (see ssleay_rand_bytes()).

Zero-initialization will clearly reduce the entropy of such a source of randomness; however,

we argue that using such a source of randomness is insecure and should be avoided—reading

uninitialized data is classified as memory error.

False positives. In many cases, UNISAN eliminates false negatives by sacrificing accuracy

(i.e., increasing the false positive rate). There is still room to reduce the false positives.

For example, point-to analysis [76] can help find indirect call targets, and dynamic taint

analysis [154] can help handle cases like inline assembly. Considering that false positives

do not affect program semantics but just introduce more performance overhead and that

UNISAN is already efficient, we leave these optimizations for future work.

More kernel modules. In our experiments, we included only modules enabled by the

default kernel configurations. Since the current Linux kernel has around 20,000 modules

total, a majority of them have not been included in our evaluation. Unfortunately, due to

some GCC-specific features, some modules are still not compilable by LLVM and require

extra engineering effort to patch. Since UNISAN is a proof-of-concept research project, we

believe supporting these additional modules is out-of-scope. We may be able to rely on the

open source community to provide the required patches (e.g., the LLVMLinux project [113])

or port UNISAN to GCC.
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Beyond kernels. UNISAN’s detection and instrumentation work on the LLVM IR level,

and thus it can be naturally extended to protect user space programs. Specifically, to support

user space program, IR of libraries should also be included, and sources (for heap) and

sinks should be re-defined. As a future work, we will use UNISAN to detect and prevent

information leaks in security- and privacy- sensitive programs (e.g., OpenSSL).

2.1.7 Related work

Kernel leak detection and prevention. The most related works are Peiró’s model check-

ing based kernel stack leak detection [148], PaX STACKLEAK plugin [175], and Split

kernel [96].

Peiró’s model checking is essentially a simple taint tracking from stack allocation to

copy_to_user. If there is no assignment or memset between the allocation and copy_to_user,

a leak is reported. Such an approach has some limitations: it does not track targets of indirect

calls, different sinks, the propagation of uninitialized data, or handle partial initialization, so

many leak cases will be missed. In UNISAN, we accurately track each byte of an allocation

and eliminate false negatives thoroughly.

STACKLEAK simply clears the used kernel stack when the control is transferred back to the

user space. Such an approach cannot prevent leaks that disclose data generated in the current

syscall. Split kernel [96] instead clears the stack frame whenever a function is called. Both

approaches impose significant performance overhead (see Table 5) because they need to

frequently zero-out blocks of memory. Compared with UniSan, these approaches provide a

broader security, as they also prevent other uninitialized data uses (e.g., uninitialized pointer

dereferencing).

None of above approaches can protect heap allocations. To the best of our knowledge,

UNISAN is the first approach that prevents both stack and heap uninitialized data leaks

efficiently.

Detecting uninitialized memory accesses. Traditional uninitialized data read detection
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and undefined behavior [185] detection’s can also detect uninitialized data leaks.

Both LLVM and gcc provide the -Wuninitialized option to detect uninitialized data

use. First, they only perform intra-procedure analysis; however, all the uninitialized data

leaks propagate data across function boundary (e.g., calling copy_to_user); hence they

cannot detect such leaks. Second, their analysis does not handle many common cases. For

example, reading the uninitialized data through its pointer cannot be caught.

Some dynamic tracking techniques [25, 138, 162] have been proposed to detect unini-

tialized data reads. These techniques rely on dynamic instrumentation platforms (e.g.,

Valgrind [134] and DynamoRIO [25]) to instrument the binary and analyze memory access

patterns dynamically. These tools can report uninitialized data use without false positives;

however, their performance overhead (>10x) is too high for them to be adopted as prevention

tools.

Differently, MemorySanitizer [172] relies on compile time instrumentation and shadow

memory to detect uninitialized data use at run-time. Its performance is much better than

dynamic instrumentation based tools; however, it still imposes a 3-4x performance overhead.

Usher [191] proposes value-flow analysis to reduce the number of tracked allocations to

reduce the performance overhead of MemorySanitizer to 2-2.5x.

Memory safety and model checking. Many memory safety techniques [129, 131, 132,

160] have been proposed to prevent spacial memory errors (e.g., out-of-bound read) and use-

after-free bugs, and model checking techniques [13, 126] can detect semantic errors caused

by developers. These tools are effective to detect or prevent kernel leaks caused by spacial

memory errors, use-after-free, or semantic errors, and thus are orthogonal to UNISAN.

DieHard [16] probabilistically detects uninitialized memory uses for heap but not stack.

Cling [4] constrains memory allocation to allow address space reuse only among objects of

the same type, which can mitigate exploits of temporal memory errors (e.g., use-after-free

and uninitialized uses). StackArmor [37] is a sophisticated stack protection that also prevents

uninitialized reads in binaries. Since StackArmor uses stack layout randomization to prevent
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inter-procedural uninitialized reads, such a protection is probabilistic. Type systems [58, 74]

can prevent dangling pointer and uninitialized pointer dereferencing, and out-of-bound

accesses; however uninitialized data leaks are not covered.

Protections using zero-initialization. Zero-initialization has been leveraged to achieve

protections in previous works. Secure deallocation [39] zero-initializes the deallocated

memory to reduce the lifetime of data, thus reducing the risk of data exposure. Lacuna [61]

allows users to run programs in “private sessions”. After a session is over, all memory

of its execution is erased. In general, zeroing-upon-deallocation has two issues: (1) deal-

locations are not always available (e.g., deallocation is missing in the case of memory

leak); (2) it is hard to selectively zero deallocations for efficiency, as discussed in §2.1.2.2.

StackArmor [37] only zero-initializes intra-procedural allocations (i.e., not be passed to

other functions) that cannot be proven to be secure against uninitialized reads.

2.2 POINTSAN: Eliminating Uninitialized Pointer Uses

In programming languages such as C and C++, programmers decide whether to initialize

a variable with a deterministic value when it is allocated. C enthusiasts often argue that

if programmers know that the code will later set a proper value anyway, initialization on

allocations is an unnecessary use of precious CPU cycles. This argument makes sense

from a functional point of view since such an unnecessary use of CPU cycles can cause

a significant runtime overhead if it occurs up to millions of times per second, as it does

in programs such as in OS kernels. However, manually keeping track of all possible code

paths to ensure proper initialization is an error-prone task. Even worse, automatic detection

of uninitialized use, such as the warning of compilers, is inaccurate for several reasons.

First, inter-procedural tracking often leads to false positives and false negatives because

of problems such as aliasing. Second, whether an uninitialized-use warning is justified is

highly subjective: While some programmers may prefer a warning in every possible case,

others might consider a warning unnecessary if it would not cause an observable error or is
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likely a false positive.

Uninitialized data represents arbitrary values that were coincidentally stored in the

memory. If the uninitialized data is used for a memory read, such as the case in which an

uninitialized data pointer is dereferenced, the whole memory region can be read, causing

information leaks. Despite their potentially dangerous consequences, uninitialized-use bugs

are very seldom classified as security vulnerabilities [67, 185], which arguably originates

from the perception that it is hard for an attacker to control the memory layout in order to

make dereferencing exploitable. In particular, widely used systems such as OpenSSL explic-

itly use uninitialized data for the generation of entropy (see function ssleay_rand_bytes()

in the SSLeay implementation) and hence ground their security on the assumption that

such data is impossible to control or predict. On the other hand, our study revealed that in

2015 and 2016 alone, although 16 uninitialized-use vulnerabilities have been patched in

the Linux Kernel, only one was reported for a Common Vulnerabilities and Exposures ID

(CVE). In fact, since 2004, only eight uninitialized-use vulnerabilities in the Linux kernel

have been reported for a CVE. From a security point of view, uninitialized use or more

precisely, temporal memory errors should be included as a prevention target in state-of-

the-art memory protection mechanisms. However, advanced security mechanisms such as

SoftBound+CETS [131, 132] and WatchdogLite [129]), which claim full memory safety, do

not currently cover uninitialized uses.

In this work, we first show that uninitialized pointers can be reliably controlled by

attackers without the need of an additional memory-corruption vulnerability or special

assumptions. Therefore, an uninitialized-pointer use vulnerabilities can be reliably exploited

to achieve arbitrary memory read (i.e., causing information leaks), write, and code execution.

In particular, we show that almost the whole kernel stack is controllable to a local attacker

by either executing syscalls based on how they leave the stack after they return or exhaust-

ing memory and guiding stack allocation. We first survey existing reported and patched

uninitialized-use vulnerabilities in the Linux kernel and then propose the reliable targeted
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stack-spraying technique to write and retain arbitrary data on the kernel stack. The core of

the fully automated targeted stack spraying includes a deterministic stack spraying technique

and a reliable exhaustive memory spraying technique. The deterministic stack spraying

technique consists of three components: a tailored symbolic execution engine that explores

paths and outputs the concrete parameters to trigger the paths; a guided fuzzer that takes as

input information generated by the symbolic execution engine to verify that stack control

is indeed achieved; and a coordinator that safely and efficiently parallelizes the symbolic

execution engine and the fuzzer. The exhausting memory spraying technique complements

deterministic stack spraying by strategically consuming a huge region of memory to guide

stack allocations and preparing malicious data in the memory pages that will be used by the

guided stack allocations. Combining both approaches allows us to reliably control almost

the whole kernel stack.

We further propose POINTSAN, a mitigation that defeats uninitialized-use exploits.

POINTSAN is inspired by the observation that uninitialized-use exploits usually control an

uninitialized pointer to achieve arbitrary read/write/execution. By zero-initializing pointer-

type fields in an allocated object, we can prevent an adversary from controlling these pointers.

Since memory page at the address zero is not accessable in Linux, zero-initialization becomes

a safe prevention operation. More specifically, we perform an intra-procedural analysis for

the Linux kernel source code. We realize both the analysis that identifies unsafe pointer-type

fields and the instrumentation that zero-initializes the identified pointer-type fields based

on the LLVM compiler Infrastructure. We evaluated the performance and relibiblity of

POINTSAN using LMBench and the SPEC benchmarks. Both the LMBench and SPEC

benchmark results confirm that POINTSAN is very efficient and reliable (no single error was

observed during the evaluation).
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2.2.1 Uninitialized Uses and the Kernel Stack

2.2.1.1 Uninitialized Uses in OS Kernels

In this section, we present uninitialized-use issues in OS kernels. We first investigate how

widespread uninitialized-use vulnerabilities actually are in the Linux kernel and how aware

people are of this problem. To this end, we have manually analyzed the reported CVE

entries that lead to privilege escalation attacks in the Linux kernel since 2004 [57], and the

commit log of the Linux kernel git repository [180], which dates back to 2005. To reduce the

huge number of commits to a manageable size, we mostly concentrated on the commit log

messages between the years 2015 and 2016. For the CVEs, we find that eight out of 199 (4%)

privilege escalation vulnerabilities reported since 2004 are caused by the use of uninitialized

objects or pointers. For Linux kernel commit messages, we first identified candidates of

uninitialized use by inspecting the commit messages using keywords such as uninitialized

pointer dereference and undefined pointer, which resulted in 52 candidate commits from

2015 and 2016, 28 of which were subsequently filtered out by our manual analysis because

they are not exploitable (e.g., NULL pointer dereference bugs). Out of the remaining 24

cases, eight are uninitialized pointer-based reads, which can lead to information leaks, and

16 are uninitialized pointer-based writes or function calls. We further inspected these 16

write/call cases and found that 11 cases (69%) are from the stack while only five cases are

from the heap. These findings not only show that uninitialized-use vulnerabilities are quite

common in the Linux kernel but also indicate that these vulnerabilities are not considered

particularly security-relevant or even not reported at all. Moreover, our findings confirm that

most uninitialized variables are from the stack rather than the heap, which is a significant

difference from use-after-free vulnerabilities.

2.2.1.2 Kernel Stack Management

Since most uninitialized variables are from stack, our primary focus lies on vulnerabilities

caused by uninitialized uses of stack variables and pointers in the Linux kernel, and thus
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understanding how Linux manages its kernel stacks and which features it offers in this

regard is important. In Linux, every thread has its own kernel stack allocated in the kernel

memory space with the maximum size of the stack depending on the specific Linux version.

In general, the stack is 4KB or 8KB for a 32-bit OS (x86) and 8KB or 16KB for a 64-bit

OS (x86-64), which is quite small compared to the default stack size soft limit of 8MB for

Linux user space stacks. The special data structure struct thread_info, whose size is

104-byte in our system, is saved at the stack top (low address). The fundamental goal behind

limiting the kernel stack size is to limit overall memory consumption when a large number

of threads is running in the kernel in parallel, and each thread has its own kernel stack.

Because of the limited stack size, storing large variables on the kernel stack and creating

long call chains in the kernel space is discouraged. To ensure that the stack depth is shallow

enough to avoid a stack overflow, Linux provides the checkstack.pl tool for static analysis

of the stack. Although the small size of the Linux kernel stack improves the success rate of a

stack-spraying attack, the shallow stack depth (or the lack of loops and recursions) limits the

spraying range. Besides normal thread stacks, Linux also has other specialized stack types.

For example, while debug stacks are used for hardware (interrupt1) and software (INT3)

debug interrupts, interrupt stacks are used for external hardware interrupts or for processing

software interrupts. Since these stacks do not accept user-controlled data, we do not take

them into account and instead focus on normal per-thread kernel stacks that are used when

syscalls are issued.

2.2.1.3 Stack Usage of Syscalls

The more frequently a stack region is used, the more likely an uninitialized variable will

reside in this region. Therefore, taking control over frequently used memory regions

increases the success rate of an uninitialized-use attack. We hence analyze stack usage of

syscalls to understand which portions of the kernel stack are most frequently used.

To profile stack usage of syscalls, we use kprobes to intercept syscall enters and returns,
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Figure 9: The profile for stack usage of syscalls in the Linux kernel. The total size of the kernel
stack is 16KB. 90% syscalls use less than 1,260 bytes aligned to the stack base. The average stack
usage is less than 1,000 bytes.

and scan the stack memory to check maximum stack usage of these syscalls. Specifically,

upon syscall enter, we zero out the stack memory and continue the normal execution; upon

syscall return, we scan the stack memory from stack top (i.e., the lowest stack address)

until we find the first non-zero byte. We conservatively treat the offset of the first non-zero

byte into stack base (i.e., the value of stack pointer upon syscall entry) as the maximum

stack usage of the syscall. We use the Trinity fuzzer to invoke all syscalls to obtain stack

usage for all syscalls. Because Trinity usually takes a long time to explore a syscall or

even just does not terminate, we set five-second timeout for fuzzing each syscall. Figure 9

summarizes the maximum stack usage for all syscalls. In particular, we find that (1) the

average stack usage of syscalls is less than 1,000 bytes (aligned to the stack base at high

address) and (2) 90% syscalls use only the highest 1,260 bytes on the stack. It is important

to note that the stack usage represents the maximum stack region a syscall uses. Assuming

stack objects are uniformly distributed in stack regions used by syscalls, we find that the

average location of stack objects is 510 bytes into the stack base and more than 90% stack

objects are allocated in the highest 960-byte stack region. Therefore, the highest 1KB stack

region is frequently used and thus is the primary target of our spraying.
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2.2.2 The Exploitability of Uninitialized Uses

The main challenge in exploiting uninitialized uses is to control data in the uninitialized

memory. By planting malicious pointers in the target memory, an uninitialized pointer

dereference can be turned into arbitrary memory read—causing information leaks, write,

or code execution. However, unlike heap spraying, in which the number and the size of

allocated heap objects are user-controlled, stack spraying has the additional problem of stack

objects usually being static and fixed in size. The placement of the Linux thread_info

structure, at the stack top, requires the stack size to be limited; otherwise, stack buffer

overflows may occur. In addition, kernel space is shared by all threads. Not limiting the size

of stack will easily exhaust memory. Therefore, Linux kernel developers are encouraged

to use the script (scripts/checkstack.pl) to statically analyze stack usage. The script in

particular checks the stack usage (in bytes) of each function so that developers can find

functions that use too much stack memory. Because of these features—the limited stack size,

the static and fixed-size stack objects, and the stack usage check, a targeted stack-spraying

attack is significantly more difficult than a heap-spraying attack.

To enable a targeted stack-spraying attack in the kernel space, we need to prepare

malicious data in a specific location of the kernel stack in the presence of aforementioned

difficulties. Specifically, the location itself needs to be chosen in such a way that the

uninitialized memory will overlap the prepared data. In general, we can store malicious data

in such a location in two ways: (1) finding an execution path that prepares data overlapping

that of the vulnerability and (2) finding a way to guide the kernel to allocate stacks on the

memory pages with prepared data. The first method is deterministic: Once such a path and

its triggering inputs are found, we can deterministically write arbitrary data at the specified

location. Since the data is saved at the target location by normal execution paths, this

method is stealthy and hard to detect. By contrast, the second method affects the stack

allocation of another process/thread by exhausting memory, which can be reliable but not

fully deterministic. This method can achieve broad control because the overlapping is at page

49



level. However, since the creation of a new process/thread executes kernel functions that use

the kernel stack, a portion (near the stack base) of the prepared data will be overwritten. As

a result, the second method loses control of the stack region at high address. As mentioned

in §2.2.1.3, our primary spraying target is the highest 1KB stack region. To control this

region, we have to use the first method. For these reasons, we combine both methods so that

attackers can achieve reliable or even deterministic control over a broad stack region. In this

section, we present an overview of both methods.

2.2.2.1 Deterministic Stack Spraying

We design the deterministic stack spraying technique, which finds an execution path that pre-

pares data overlapping that of an uninitialized variable. The main challenge of deterministic

stack spraying is to find a syscall with specific parameters that will trigger an overlapping

execution path. An overview of the technique used for the attack is shown in Figure 10.

The technique consists of three components: a symbolic execution engine, a guided fuzzer,

and a coordinator that handles communication between the symbolic execution engine

and the guided fuzzer. The goal of the symbolic execution engine is to explore as many

execution paths as possible to find one that saves user-controlled data on that stack, which

will overlap an uninitialized variable. However, symbolic execution is prone to the path

explosion problem because of that the number of feasible paths in a program can be infinite

when the program contains unbounded loop iterations. A possible solution for this problem

is to use heuristics for either path-finding or concretizing the loop condition. To achieve high

coverage in path exploration, we follow the second method: During symbolic execution,

we concretize the loop conditions and at the same time, identify loops and their symbolic

conditions, and then let the fuzzer selectively explore these loops. To verify whether a

syscall can actually save arbitrary data on the kernel stack, our guided fuzzer replaces the

non-controlling parameters (that are confirmed not to affect execution paths during symbolic

execution) with a magic code. When the syscall returns, we use kprobes to intercept the
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Figure 10: Overview of the architecture of our deterministic stack spraying technique, which
automatically analyzes all syscalls and outputs results, including which range of the stack we can
control and how to control it.

execution and scan the kernel stack to check which ranges of the stack memory have been

polluted by magic code. These ranges are those we can control.

2.2.2.2 Exhaustive Memory Spraying

The exhaustive memory spraying technique guides the stack allocation of a new process

or thread so that the memory pages used by the stack overlap those with prepared data.

The main challenge of such a technique is to improve the reliability of the overlapping.

To overcome this challenge, we design a strategy that reliably controls the memory of the

kernel stack. Specifically, our exhaustive memory spraying technique includes two steps: (1)

occupying the majority of memory in the target machine and (2) polluting all the available

remaining memory with malicious data (for uninitialized variables). Memory occupation

forces the kernel to use the remaining memory, which is small, for the newly allocated

kernel stacks. Because the remaining memory is small, the pollution operation can be done

quickly and effectively. Once we ensure that almost all available memory is polluted by

malicious data, the memory of the newly allocated stacks will contain the malicious data.

Note that in the kernel space, the kernel does not zero out the allocated memory pages, so

the malicious data will not be cleared.
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2.2.2.3 Evaluation of Exploitability

We have implemented targeted stack-spraying and evaluated its effectiveness with regard to

exploiting uninitialized-use vulnerabilities by measuring the control coverage we achieved.

We present the total stack ranges that we can control with deterministic stack spraying and

exhaustive memory spraying, the distribution of controlled regions, and the time spraying

takes. In particular, we investigate the following questions:

• Stack spraying coverage. What is the overall range of the kernel stack can we

control with our two spraying techniques?

• Coverage distribution and frequency. In deterministic stack spraying, how is the

control coverage distributed over the kernel stack? And how frequently can we control

a specific stack region?

• Spraying reliability. In exhaustive memory spraying, how reliably can we control

memory?

• Spraying efficiency. How long does it take for our spraying techniques to achieve

memory control?

Experimental Setup. We obtained the symbolic execution engine S2E from the master

branch of its git repository1, which uses QEMU 1.0.50 and clang 3.2. Our guided fuzzer

is based on Trinity version 1.7pre. Both the symbolic execution and guided fuzzer run

on virtual machines with Debian 8.5.0 (64-bit) on Linux kernel version 3.16. Syscalls

that do not have parameters (e.g., getpid) and therefore cannot take user-controlled data

are ignored. Also, non-x86/x86_64 syscalls are ignored. Out of 313 syscalls available

in the kernel source, we selected 229 for the evaluation. The stack of the Debian system

is 16K-byte. The stack has two regions that are at fixed locations and cannot be sprayed:

1https://github.com/dslab-epfl/s2e.git as of August 2016
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Figure 11: The cumulative distribution (CDF) of coverage achieved by exhaustive memory spraying.
Its average control rate is about 90%. The memory (1,700 bytes on average) near the stack base
cannot be controlled.

the lowest 104 bytes reserved for thread_info and the highest 160 bytes reserved for OS

operations such as context switches. In all evaluations, the magic code is set to be 4-byte

string "UBIE".

Stack Spraying Coverage. We evaluated the coverage for deterministic stack spraying

and exhaustive memory spraying separately and then measured their combined coverage. In

both scenarios, we used 229 pre-selected syscalls for the evaluation.

In deterministic stack spraying, we found that only 34 syscalls do not allow us to take

control of any stack region. After manual inspection, we concluded that this is because these

syscalls do not admit any parameters that will be stored on the stack. Table 8 summarizes

the amount of bytes that can be controlled by the top 10 syscalls. In the highest 1KB stack

region, which is frequently used (§2.2.1.3), deterministic stack spraying covers 315 bytes

using all available syscalls. Hence, 32% of the frequently used region of the kernel stack

can be manipulated using deterministic stack spraying.

Stack memory after the highest 1KB is subjected to exhaustive memory spraying. As

mentioned in §2.2.2, a portion of the prepared malicious data in the kernel stack of a victim

process by exhaustive memory spraying is likely to be overwritten because of some kernel
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operations (e.g., setting up a new process) in the victim process. To evaluate which areas are

overwritten, we enabled exhaustive memory spraying and ran the Trinity fuzzer to invoke

syscalls. We then used kprobes to intercept syscall entry points and check which regions

have been polluted by magic code (indicating that they were successfully sprayed). Figure 11

shows the results: Besides a small overwritten region near stack base, the remaining region

can be fully controlled. The size of the uncontrollable region varies. On average, the highest

1,722 bytes at the stack base are overwritten, and in some cases, this region can be as small

as 1,200 bytes. Overall, while losing control of this region, exhaustive memory spraying

retains control of all other stack memory, achieving an average coverage rate of 89%.

Deterministic stack spraying and exhaustive memory spraying work as two complemen-

tary techniques: While exhaustive memory spraying retains the majority of the memory, it

cannot control the frequently used stack region. Deterministic stack spraying complements

it by controlling 32% memory of the frequently used stack region. Overall, by combining

both spraying techniques, targeted stack-spraying reliably controls more than 91% of the

kernel stack.

Coverage Distribution and Frequency. We further investigated how the control coverage

is distributed over the kernel stack when using deterministic stack spraying. Figure 12

presents the distribution. We found that the coverage ranges from 200 to 800 bytes. More

importantly, the control with deterministic stack spraying is highly concentrated: Some

regions can be controlled by more than 100 syscalls. We believe these regions are most

likely used by stack objects, and uninitialized variables likely reside in these regions, so

controlling these regions is critical to exploit uninitialized uses from the kernel stack. Table 8

presents top 10 syscalls with high coverage. Syscalls vmsplice, uname, and fcntl have the

highest individual coverage. We further investigated which regions of the stack are uniquely

controlled by a syscall. Table 9 contains all syscalls that uniquely control a region. Overall,

only 80 bytes are uniquely controllable by a single syscall. Other covered bytes can be

controlled with multiple syscalls, thus their sprayers are more reliable.
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Table 8: Top 10 syscalls with the highest control coverage in the kernel stack.

System call Coverage (Byte)

vmsplice 224
uname 99
fcntl 96
setpriority 88
sched_get_priority_min 88
sched_get_priority_max 88
personality 84
iopl 84
umask 80
io_destroy 76

Table 9: Syscalls that uniquely control a stack region. Unique coverage is represented by the number
of uniquely controlled bytes.

System call Unique Coverage

wait4 16
waitid 12
timerfd_create 8
clock_getres 8
fcntl 8
mq_open 8
sched_rr_get_interval 8
mq_notify 8
timer_gettime 4

Total 80

Reliability of Exhaustive Memory Spraying. We investigated the reliability of exhaustive

memory spraying by measuring how likely the kernel uses the sprayed memory for the

kernel stack, i.e. whether the allocated stack memory overlaps the one with prepared data.

Specifically, we enable the exhaustive memory spraying and run the Trinity fuzzer to

invoke syscalls. Then we count the number of times (i.e., probes) a syscall has been invoked

until we find that the kernel stack for the syscall is sprayed. After running all syscalls with

Trinity, we found that in most cases, the kernel uses the sprayed memory as stack in the

first or second probe. The average number of probes we achieve overlapping is 1.8. The

worse case is less than 10 probes. Such results show that the exhaustive memory spraying

technique is very effective and thus can reliably control the uninitialized memory.

Efficiency of Spraying. In deterministic stack spraying, both the symbolic execution and
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Figure 12: The coverage, distribution, and frequency of stack control achieved by the deterministic
stack spraying technique.

the guided fuzzing are time-consuming processes. In many cases, they do not terminate even

after running for a few hours. To handle this problem, we have set a timeout for this analysis:

If the analysis for a syscall does not generate new coverage within a pre-set timeout, we

forcibly terminate the analysis for this syscall and continue to analyze next one. After

experimenting with various timeouts, we ultimately set the timeout to 30 minutes. We found

that the vast majority of syscalls can be thoroughly analyzed within this time-frame, with

only 12 syscalls not finishing in time. To improve the spraying efficiency, we empirically

prioritize three types of syscalls: (1) syscalls that set configurations or write data. Such

syscalls (e.g., pwritev) are very likely to save data on kernel stack; (2) syscalls that contain

loops. Such syscalls usually affect a large region of theÂůkernel stack; and (3) syscalls that

contain (multiple) pointer-typeÂůparameters. With such a syscall ranking, we were able to

control more than 200 bytes in the frequently used region within a few minutes. Compared

to deterministic stack spraying, exhaustive memory spraying is much more efficient. The

time memory occupying takes depends on the size of the available memory. In our case, the

memory is 512MB, and the time for occupying the memory is less than 2 seconds. Since

memory pollution writes data into a small memory region, its time is unobservable.

Case Study. The targeted stack-spraying technique provides a conceptual approach for

exploiting a given uninitialized-use vulnerabilities by preparing malicious data at a target
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stack location. For the sake of illustration, we exemplify the applicability of our approach

by adapting Cook’s exploit [41].

To the best of our knowledge, Cook’s exploit is the only one that exploited an uninitialized-

use vulnerability (CVE-2010-2963) in the Linux kernel stack. Figure 13 shows how the code

is subject to the uninitialized use. The pointer data in object karg.vc is not initialized but

dereferenced in function copy_from_user(). Cook exploited this vulnerability by tuning

the cmd argument to let the union struct adopt the type of struct video_tuner, causing

karg.vt to be written with user-controlled data. For such a spraying attack to succeed, at

least four requirements must be satisfied: (1) The object having the uninitialized pointer

must be contained by a union struct; (2) another type in the union struct has to have a

non-pointer field that overlaps with the uninitialized pointer because users are not allowed

to specify pointers pointing to kernel space; 3) this non-pointer field can be overwritten with

user-controlled data; and 4) the user-controlled data will not be cleared. An execution path

satisfying all these requirements is uncommon in practice, and finding such a path manually

is unrealistic in most cases.

In this case study, we show that our targeted stack-spraying technique can automatically

find many execution paths that are able to prepare a malicious pointer on the kernel stack,

thus controlling the uninitialized pointer kp->data. To reproduce Cook’s exploit, we

installed version 2.6.27.58 of the Linux kernel in 64-bit Ubuntu 14.04; the kernel source

code in file compat_ioctl32.c was reverted to contain the vulnerability described in CVE-

2010-2963. Determined by the operating system, the size of the kernel stack is 8KB instead

of 16KB in this case study. To benefit from our targeted stack-spraying technique, we

need to find out the location of the uninitialized pointer in the stack. To get the pointer

location, we used kprobes to hook the function do_video_ioctl. The handler provided

by kprobes enables us to find the location of the stack pointer when do_video_ioctl is

called. Using this information, we computed the offset of the uninitialized pointer kp->data

from the stack base, which is 396. After knowing this offset, we employed our deterministic
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1 static long do_video_ioctl(struct file *file, unsigned int cmd,
2 unsigned long arg) {
3 union {
4 struct video_tuner vt;
5 struct video_code vc;
6 } karg;
7 ...
8 /* karg.vc contains an uninitialized pointer */
9 err = get_microcode32(&karg.vc, up);

10 ...
11 }
12 int get_microcode32(struct video_code *kp,
13 struct video_code32 __user *up) {
14 ...
15 /* uninitialized pointer is dereferenced */
16 copy_from_user(kp->data, up->data, up->datasize))
17 ...
18 }

Figure 13: The uninitialized-use vulnerability used in Cook’s exploit.

stack spraying technique to find syscalls that can prepare a 8-byte malicious pointer at this

offset. Altogether, we were able to find 27 such syscalls with corresponding parameters.

Independent of the chosen syscall, we could prepare a malicious pointer at the target offset,

resulting in an arbitrary write.

This case study shows how to use the proposed deterministic stack spraying technique

to find syscalls that can control a specific location on stack. It also confirms that control of

the stack can be achieved generally and automatically, and, in the presence of a suitable

uninitialized-use vulnerability, a successful exploit can be built reliably and readily.

2.2.3 Defeating Uninitialized-Use Exploits

We showed that uninitialized-use vulnerabilities can be readily and reliably exploited using

our targeted stack-spraying technique. While use-after-free and buffer overflow problems

have been extensively studied, which has resulted in various protection techniques (e.g.,

memory safety), the uninitialized-use problem has rarely received attention. Our findings

show that uninitialized use constitutes a severe attack vector that calls for practical defense

mechanisms; however, to date no practical defense mechanisms exist. As such, we designed

and implemented an efficient and practical mitigation that counters uninitialized uses. Our

mitigation is inspired by the observation that uninitialized-use exploits usually control an
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uninitialized pointer to achieve arbitrary read/write/execution. By zero-initializing pointer-

type fields in an allocated object, we can prevent an adversary from controlling these pointers.

Since memory page at the address zero is not accessable in Linux2, zero-initialization

becomes a safe prevention operation. More specifically, we perform an intra-procedural

analysis for the Linux kernel source code. We realize both the analysis that identifies unsafe

pointer-type fields and the instrumentation that zero-initializes the identified pointer-type

fields based on the LLVM compiler Infrastructure [112].

2.2.3.1 Identifying Unsafe Pointer-Type Fields

Our analysis is carried out on the LLVM IR, so type information is preserved. In most cases,

we can differentiate pointer-type fields from other fields based on type information. We start

our analysis from allocation sites (i.e., AllocaInst instructions in LLVM IR). The first step

is to identify all pointer-type fields by recursively (a field could be a struct or an array type)

traversing each field in the allocated object. Since integer values might be used as a pointer,

we also treat the 8-byte-integer type as a pointer type.

To initialize identified pointer-type fields, we could conservatively zero out them upon

allocations. This strategy, however, will overly initialize many already initialized point-

ers and therefore introduce unnecessary performance overhead. To reduce initialization

overhead while still ensuring security, we designed an intra-procedural program analysis

that checks the following two conditions: (1) the pointer field is not properly initialized in

the function; and (2) the pointer is sinking (e.g., being used or passed to other functions).

Only those pointer-type fields satisfying both conditions require zero-initialization. More

specifically, once all pointer-type fields are identified, we perform taint analysis to keep

track of the initialization status and sinking status of the pointer-type fields in the following

conservative ways:

2Since the Linux kernel with version 2.6.23, the /proc/sys/vm/mmap_min_addr tunable was introduced to
prevent unprivileged users from creating new memory mappings below the minimum address
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• When a pointer-type field is explicitly assigned by other values (i.e., it is the store-

to target in a memory storing instruction (StoreInst)), we record that this field is

initialized.

• When a pointer-type field that is not fully initialized is passed to other functions

as a parameter or stored to memory, we report it as unsafe, which thus requires

initialization.

• When a pointer-type field that is not fully initialized is dereferenced (i.e., used as the

pointer argument in memory loading instruction (LoadInst), StoreInst, or function

call instruction (CallInst), we treat it as unsafe as well.

The basic alias analysis [111] provided by LLVM is adopted to tackle the alias problem,

so accessing pointer-type fields via their aliases is also tracked. Since our analysis is

intra-procedural, such a basic alias analysis suffices for the purpose of efficiently detecting

pointer-type fields that lack proper initialization. With this conservative taint analysis, we

managed to reduce the number of to-be-initialized bytes from 105,960 to 66,846.

2.2.3.2 Implementation

Both the analysis pass and the instrumentation pass are implemented with LLVM. Both

passes are inserted after all optimization passes. To use the mitigation, users only need

to specify the option (i.e., -fsanitize=init-pointer) when compiling the kernel source

code. To compile Linux kernel source code with LLVM, we applied the patches provided by

the LLVMLinux project [113]. The zero-initialization code is inserted right after allocation

sites. In LLVM IR, inline assembly is invoked by a CallInst, which is treated as a sink in

our analysis, so the common inline assembly in Linux kernel is not an issue.

2.2.3.3 Evaluating Pointer Initialization

To confirm that our mitigation is practical, we applied it to the latest Linux vanilla kernel

(x86_64, version 4.7) and evaluated its performance. The testing is performed in the virtual
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Table 10: LMBench results. Time is in microsecond.

System call Baseline W/ defense Overhead(%)

null syscall 0.04 0.04 (0.0%)
stat 0.42 0.40 (-4.8%)
open/close 1.20 1.14 (-5.0%)
select TCP 2.44 2.62 (7.4%)
signal install 0.11 0.11 (0.0%)
signal handle 0.60 0.64 (6.7%)
fork+exit 163 157 (-3.7%)
fork+exec 447 460 (2.9%)
prot fault 0.327 0.356 (8.9%)
pipe 8.906 9.058 (1.7%)
TCP 25.6 27.5 (7.4%)

Average 1.95%

machine with the secured kernel. The host machine is equipped with an Intel(R) Core(TM)

i7-2760QM CPU @ 2.40GHz processor and 10GB of RAM; the running OS is 64-bit

Ubuntu 14.04 with Linux kernel version 3.13.0-55. The virtual machine (VirtualBox) was

configured to have a 4-core processor and 4GB RAM; its OS is also 64-bit Ubuntu 14.04.

We used the default configuration to compile the kernel code.

Performance with system services. We used LMbench [125] as the micro benchmark

to test the runtime slowdown in system services. The selected system services are mainly

syscalls, which conform to typical kernel performance evaluations (e.g., [91]). The eval-

uation results are shown in Table 10. The average performance overhead is only 2%, and

in most cases, the performance overhead is less than 5%. These numbers confirm that our

zero-initialization-based mitigation for kernel stack is efficient.

Performance with user programs. We further used the SPEC CPU 2006 benchmarks as

a macro-benchmark to test the performance impacts of our mitigation over the user-space

programs. We ran the test 10 times and adopted the average number. Table 11 shows the

evaluation results. Our zero-initialization-based mitigation imposes almost no performance

overhead (0.47%) to the SPEC benchmarks on average.

Both the LMbench and SPEC benchmark results confirm that our mitigation is very

efficient and reliable (no single error was observed during the evaluation).
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Table 11: User space (x86_64) performance evaluation results with the SPEC benchmarks. Time is
in second, the smaller the better.

Programs Baseline W/ defense Overhead(%)

perlbench 3.62 3.62 (0.0%)
bzip2 4.74 4.75 (0.2%)
gcc 0.945 0.945 (0.0%)
mcf 2.71 2.68 (-1.1%)
gobmk 13.9 13.9 (0.0%)
hmmer 2.02 2.03 (0.5%)
sjeng 3.28 3.30 (0.6%)
libquantum 0.0365 0.0365 (0.0%)
h264ref 9.35 9.40 (0.5%)
omnetpp 0.342 0.349 (2.0%)
astar 7.77 7.74 (-0.4%)
xalancbmk 0.0611 0.0611 (0.0%)
milc 4.47 4.51 (0.9%)
namd 8.84 8.85 (0.1%)
dealII 10.5 10.6 (1.0%)
soplex 0.0201 0.0201 (0.0%)
povray 0.407 0.417 (2.5%)
lbm 1.66 1.68 (1.2%)
sphinx 1.16 1.17 (0.9%)

Average 0.47%

2.2.4 Discussion

Exploitability of uninitialized-use vulnerabilities. Not all uninitialized-use vulnerabili-

ties are exploitable. First, in order to benefit from targeted stack-spraying, the execution path

that triggers an uninitialized-use vulnerability must not overwrite the prepared malicious

data. Otherwise, the targeted stack-spraying technique will lose control of the uninitialized

memory thus cannot exploit this uninitialized-use vulnerability. To verify if the prepared

data persists until triggering the uninitialized-use vulnerability, attackers can obtain the

address of the instruction using the uninitialized memory and use kprobes to intercept the

instruction to verify if the prepared data persists. Second, our current deterministic stack

spraying does not consider the case in which the preparation of the malicious data occurs

in the same syscall that also triggers the uninitialized-use vulnerability. We ensure only

that the prepared malicious data persists until the entry point of the syscall triggering the

uninitialized-use vulnerability.
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Improving mitigation and other defenses. As mentioned in §2.2.3, we can efficiently

mitigate uninitialized-use exploits by zero-initializing all pointer-type fields for which the

compiler cannot prove that they are properly initialized before reaching a sink (i.e., they are

used). This lightweight approach works for most cases. However, false negatives cannot be

fully excluded: If a pointer is modified by (or depends on) an uninitialized non-pointer value,

zero-initializing this pointer cannot effectively prevent the exploits because the resulting

pointer is still controllable by attackers if they can control the non-pointer value. Therefore,

one possible improvement for our proposed defense is to zero-initialize non-pointer values

as well. Two approaches that already offer a broader defense in this respect are PaX’s

STACKLEAK [175] and split kernel [97] (see §2.2.5 for details). Both approaches provide

strong security to prevent uninitialized-use exploits, but come at the cost of a significant

runtime overhead [117]. As such, a sophisticated inter-procedural and field-sensitive analysis

is necessary to filter out safe allocations. We leave this challenging problem for future work.

Another defense direction is to defeat targeted stack-spraying. A mitigation against the

deterministic stack spraying technique is to randomly adjust the stack base upon syscall entry

so that the malicious data prepared in the previous syscall may not overlap the uninitialized

variable in the vulnerable syscall. Since the kernel stack has only 8KB or 16KB, the

entropy of such a randomization is limited. To detect the exhaustive memory spraying

technique, systems can monitor a large amount of process creations or large memory

allocations. However, this spraying technique can be stealthy by reducing the amount of

process creations and the size of memory allocations, and probing more times.

2.2.5 Related work

2.2.5.1 Memory Spraying

Memory spraying is a popular means to memory-corruption attacks. By far the most popular

memory spraying techniques is heap spraying, an attack that was first described by SkyLined

in 2004 [150]. Heap spraying attacks fill large portions of the victim’s heap memory with
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malicious code (e.g., NOP sleds), thus increasing the chance of hitting malicious code for

hijacking the control flow [60, 63]. Although the heap spraying technique itself has been

countered by the introduction of Data Execution Prevention (DEP), the evolution of heap

spraying—JIT spraying—has become a popular concept for enabling a variety of web-

based attacks [170]. JIT spraying exploits the predictability of the JIT compiler to create

predictable code fragments that can be used to hijack control-flow [170, 188]. Since these

fragments reside in an executable code cache, mitigation techniques like DEP or W ⊕X

can be bypassed [170, 188]. Existing defenses against heap/JIT spraying attacks either try to

detect the attack by searching for large amounts of NOP sleds and shell code [60, 63, 150]

or randomizes the memory layout and register assignments [47, 60, 188]. Recently, memory

spraying has also been used to exploit the "Rowhammer" vulnerability in DRAM devices

where repeated access to a certain row of memory causes bit flips in adjacent memory

rows [22, 156].

In contrast to all these existing spraying techniques, our targeted stack-spraying target

the stack instead of the heap. More importantly, our stack spraying technique is deterministic

and stealthy (thus is hard to detect), and our exhaustive memory spraying technique is highly

reliable.

2.2.5.2 Kernel Exploits and Automated Exploits

Since the kernel is often a part of the trusted computing base of a system, avoiding ex-

ploitable kernel vulnerabilities is critical for the security of a system [34]. Nonetheless,

despite the efforts of kernel developers to find and eliminate these vulnerabilities, new

such vulnerabilities are still frequently detected. As of the thesis writing, a total of 1,888

vulnerabilities have been reported in the Linux kernel alone, and 348 have been reported in

2017 [141]. With Linux kernel vulnerabilities being on the rise, corresponding exploitation

techniques have caught the interests of attackers. One recent approach exploits use-after-free

vulnerabilities in the Linux kernel by leveraging its memory recycling mechanism [190],
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while another one circumvents existing defenses by manipulating the kernel page table [103].

Although many vulnerabilities and their corresponding exploits are still discovered

manually, automatic detection and exploit generation is becoming increasingly popular, as is

evidenced by the DARPA Cyber Grand Challenge (DARPA CGC) [171]. In this challenge,

teams are required to build automated vulnerability scanning engines, which they then use

to compete in a Capture The Flag tournament. One of the tools specifically developed for

this challenge is Fuzzbomb [128], which combines static analysis with symbolic execution

and fuzzing to detect vulnerabilities in programs. The combination of symbolic execution

and fuzzing is also used for the Driller tool [173], which has also been tested on 126 of

the DARPA CGC binaries. Driller, like our approach, uses symbolic execution to guide its

fuzzing engine in case it fails to generate input to satisfy complex checks in the code. This

combination is also used together with static and dynamic program analysis to automatically

generate exploits for a wide variety of applications [176]. Similar to these approaches, we

also use a combination of symbolic execution and fuzzing to discover execution paths that

can achieve targeted spraying in the Linux kernel.

2.2.5.3 Uninitialized Use Exploits

Despite the fact that uninitialized-use bugs are seldom considered to be security-critical, a

number of exploits for these vulnerabilities have become known in recent years. Flake [67]

used a manual approach towards exploiting uninitialized local variables on the user-space

stack, while Cook [41] used an unchecked copy_from_user() call with an uninitialized

variable to exploit the Linux kernel and gain root privileges. Jurczyk in turn exploited CVE-

2011-2018, a stack-based uninitialized-variable reference vulnerability in the Windows

kernel, which allows an attacker to execute arbitrary code with system privileges [85]. Last

but not least, Chen exploited an heap-based uninitialized-use vulnerability in Microsoft’s

Internet Explorer (CVE-2015-1745) using fuzzing [32]. Unlike these ad-hoc attacks, our

targeted stack-spraying is general and automated.
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2.2.5.4 Uninitialized Use Detection and Prevention

Researchers have proposed some detection mechanisms for uninitialized uses; however, only

few defenses against uninitialized uses have been proposed. For detection, tools such as

kmemcheck [138], Dr.Memory [25], and Valgrind [162] leverage dynamic instrumentation

and analysis to track memory accesses while compiler-based approaches like MemorySani-

tizer [172] and Usher [191] insert tracking code to find uninitialized uses at runtime. For

defense mechanisms, Kurmus and Zippel [97] proposed a technique for preventing exploits

of memory-corruption vulnerabilities. Their approach relies on single-split kernels where

system calls of untrusted processes can only access a hardened kernel version while trusted

processes can access the unmodified kernel. A solution that is specifically targeted towards

uninitialized-use vulnerabilities is offered by the PaX team, known for the invention of

ASLR. Their GCC compiler plugins, STACKLEAK and STRUCTLEAK, clear the kernel

stack on kernel-to-user transitions and initialize all local variables that might be copied to

user space, which effectively prevents uninitialized uses of kernel memory [175]. A key

difference of our efficient defense against uninitialized uses is that instead of initializing

all local variables, we specifically initialize pointer-type fields that have not been properly

initialized before. While STACKLEAK and Split kernel introduce a significant performance

overhead (e.g., STACKLEAK introduces an average of 40% runtime overhead in system

operations [117]), our lightweight defense imposes almost no performance overhead.

2.2.5.5 Memory Safety Techniques

Memory-corruption errors such as dangling pointers are a long-known problem in unsafe

programming languages like C. In the last decade, researchers have proposed several

approaches to mitigate the exploits of these errors. Watchdog [130] and its successor

WatchdogLite [129] both leverage hardware supports to store and check allocation metadata

to prevent use-after-free vulnerabilities. Softbound [131] and CETS [132] are software-

based approaches that aim to prevent memory-corruption errors at compile-time. Softbound
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enforces spatial memory safety by storing base and bound information as metadata for every

pointer, while CETS enforces temporal memory safety by storing unique identifiers for each

object, which are then used to check if the object is still allocated upon pointer dereferencing.

Notably, although these memory safety techniques claim full memory safety, they currently

do not cover uninitialized use as a prevention target. In contrast to these metadata-based

approaches, DieHard [17] and its successor, DieHarder [139] both focus on randomizing the

location of heap objects to make dangling-pointer dereferencing hard to exploit. Since both

techniques focus on heap objects, they cannot detect and prevent uninitialized-use errors

on the stack. StackArmor [37] also adopts randomization to achieve the memory safety for

stack. All these randomization-based memory-safety techniques are probabilistic.
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CHAPTER III

RETROFITTING SYSTEM DESIGNS AGAINST INFORMATION

LEAKS

Software systems also have insecure designs that may cause information leaks. This is

because system designers often prioritize performance and flexibility over security. Exam-

ples of such insecure designs include the ASLR-violating profess forking mechanism [20],

timing side channel caused by deduplication and Copy-on-Write [22], and AnC (CPU

cache side channel) [73]. Unlike eliminating information-leak vulnerabilities that can be

achieved with code analysis and instrumentation, fixing insecure designs is challenging

because it requires deep understanding and redesign of system mechanisms. Our second

way to prevent information leaks is redesigning insecure system mechanisms. Since there

are no uniform patterns for insecure designs, we have to fix them case by case. In this

section, we particularly focus on the ASLR-violating profess forking mechanism in daemon

servers (e.g., web servers), which allows attackers to break ASLR efficiently. We propose

the runtime re-randomization mechanism to ensure that the forked processes have their own

randomized memory layout.

3.1 RUNTIMEASLR: Re-Randomizing Memory Layout at Runtime

In the arms race of remote code execution, the introduction of non-executable memory has

relocated the battlefield: attackers are now forced to identify and suitably reuse existing

code snippets, while protective technologies aim at hiding the exact memory location of

these code snippets by means of various forms of memory randomization. As a result, a

variety of different memory randomization techniques have been proposed that strive to

impede, or ideally to prevent, the precise localization or prediction where specific code
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resides [12, 21, 71, 92, 105, 189]. Address Space Layout Randomization (ASLR) [144, 146]

currently stands out as the most widely adopted, efficient such kind of technique.

All existing techniques for memory randomization including ASLR are conceptually

designed to perform a single, once-and-for-all randomization before or at the process’ load-

time. The efficacy of such upfront randomization techniques hence crucially relies on the

assumption that an attacker has only one chance to guess the randomized address of a

process to launch attack, and that this attack succeeds only with a very low probability.

The underlying justification for this assumption is typically that an unsuccessful probing of

the attacker will cause the process to crash, so that it has to be restarted and hence will be

randomized again. Technically, the assumption is that each attacker’s guess corresponds to

an independent Bernoulli trial.

In reality, however, this assumption is not valid in many scenarios: daemon servers (e.g.,

Apache or Nginx web servers, and OpenSSH) fork() child processes at runtime which

then inherit the randomization of their parents, and thereby creating clones with the same

memory layout. Consequently, if a child crashes after unsuccessful probing, a clone with

the same address space layout is created again. Therefore, an unsuccessful probing does not

require an attacker to start from scratch, instead he can reuse the knowledge gained in his

previous probings. In the following, we refer to such attacks as clone-probing attacks.

A fundamental limitation with existing ASLR implementations is that they are only

performed at load-time. That is, any process that is created without going through loading

will not be randomized. For example, all forked child processes always share exactly

the same address space layout. As a result, clone-probing attacks enable an adversary to

bypass current memory randomization techniques by brute-force exploration of possibilities.

Moreover, practical scenarios often exhibit side-channel information that can be used to

drastically reduce the search space. In these cases, the consequences are far worse, as

impressively demonstrated by recent sophisticated attacks against memory randomization.

For instance, Blind ROP [20] exploits a buffer overflow vulnerability to overwrite return
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pointers only by one byte each time, and thereby reducing the search space to mere 256

possibilities since the remaining bytes of the return pointer are left unmodified. After a

successful return, i.e., if the program does not crash or exhibit unexpected behavior, the first

byte of a valid pointer has been correctly discovered. The technique is then used repeatedly

to discover remaining bytes. On average, the probing of a byte is successful after 128 tries.

This approach hence reduces the brute-force complexity from 264 to 256 · 8 = 2, 048 tries

(for 64-bit systems). A successful clone-probing attack can hence be leveraged to bypass

ASLR, which is a general prerequisite for further, more severe attacks, including code reuse

attacks, privilege-escalation by resetting uid, and sensitive data leaks.

The root cause of clone-probing attacks is that the forked child processes are not re-

randomized. Starting a process from its entry point by calling execve() in the child after

fork() [20], however, alters the intended semantics of child forking: fork is intentionally

designed to inherit the parent’s state (variables, stack, allocated objects etc.), whereas

execve() starts another, fresh instance of a program so that the execution starts at the

program’s entry point without inheriting any information from its parent. It is possible

to make the forked child process independent from the parent process so that execve()

can be used to easily re-randomize the child process; however, the child process will not

be able to benefit from the semantic-preserving and resource-sharing (e.g., sharing file

descriptors and network connections) fork(), and the target server program has to be

carefully restructured and rewritten to make the child process not depend on any resource or

data of its parent process. For example, the complicated dependencies (e.g., on program

structure, file descriptors, shared memory, and global variables) made us give up rewriting

Nginx (about 140KLOC) to use execve(). As a result, we aim to propose a practical (e.g.,

negligible performance overhead) and easy-to-use (e.g., supporting COTS binary directly

without modifying source code) re-randomization mechanism to prevent clone-probing

attacks in a semantic-preserving manner.

In this work, we propose RUNTIMEASLR—the first semantics-preserving approach that
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prevents clone-probing attacks, by consistently re-randomizing the address space of children

after fork() at runtime while keeping the parent’s state. More specifically, the work makes

the following contributions: (1) a semantics-preserving and runtime-based approach for

preventing clone-probing attacks; (2) a systematic and holistic pointer tracking mechanism

as our approach’s central technical building block; and (3) an open-source implementation

of our approach and a corresponding evaluation on Nginx web server.

The RUNTIMEASLR approach. Contemporary implementations of the fork system call

simply clone the parent’s address space in order to create a child that inherits the same state.

Cloning is cheap in terms of complexity and benefits from inherited open file descriptors

and network connections. Instead, RUNTIMEASLR re-randomizes the address space of

children after fork() at runtime while inheriting their parent’s state, as shown in Figure 14.

This consistent re-randomization imposes formidable challenges since the state of a program

typically incorporates references to a variety of objects, including code, data, stack and

allocated objects on the heap. A successful randomization in particular has to ensure smooth

continued execution at the new address; hence, it has to relocate code, data and all references

consistently at runtime. RUNTIMEASLR meets this challenges by first conducting a pointer

tracking policy generation process that has to be run once, followed by a novel pointer
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tracking mechanism that is only applied to the parent process. By treating a pointer as a

tainted value, the pointer tracking problem is naturally transformed into a taint tracking

problem: the initial pointers prepared by OS are used as taint sources, pointer tracking

is done using taint propagation, and the necessary propagation policy is automatically

created. To generate a pointer tracking policy, instead of manually identifying which CPU

instructions typically carry on tainted pointers and which ones remove taints [40, 53, 163],

we opted for an automatic approach: the policy generation process executes the target

program and sufficient sample programs using Intel’s Pin instrumentation tool and inspects

the semantics of each executed instruction with regard to pointer creation, manipulation or

deletion. The result is a policy that describes exactly which instructions deal with pointers

in memory and registers.

Pointer tracking mechanism. We use the generated policy to track pointers during run-

time. Whenever the parent forks a child, RUNTIMEASLR performs address space re-

randomization in the cloned child process and patches pointers according to the tracked

pointers of the parent process. As a result, the child processes have mutually different ad-

dress space layouts without facing any instrumentation overhead. Hence, RUNTIMEASLR

imposes no overhead to the services provided by the worker processes of daemon servers.

Effectiveness requires us to correctly identify all pointers inside all dynamically allocated

structures, such as stack, heap, .bss or even uncharted mmap’ed memory. To this end,

RUNTIMEASLR first identifies all pointer sources, which we classify into three categories.

First, initial pointers prepared by the OS (e.g., the stack pointer rsp) because their location

is deterministic and fixed; second, program counters (e.g., rip); and third, return values

of certain syscalls (e.g., mmap, mremap, and brk). In an ASLR-enabled program, no static

pointer is allowed, thus any other pointer must be directly or indirectly derived from these

pointer sources. In order to address taint propagation that occurs in the kernel, we identify

all syscalls that may propagate pointers and that adapt memory mappings. Our findings show

that only a limited number of pointer-propagating syscalls need to be taken into account, and
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that the memory-related syscalls (e.g., mmap, munmap, and mprotect) can be hooked in order

to track changes in memory maps. With taint policies and appropriate syscall modeling in

place, pointer tracking is realized by consistently updating hash tables storing taints.

Implementation and evaluation. We have implemented RUNTIMEASLR based on Intel’s Pin

on an x86-64 Linux platform. RUNTIMEASLR is implemented as a combination of three

tools: a taint policy generator, a pointer tracker, and a randomizer. The taint policy generator

and the pointer tracker are implemented as two Pintools; the randomizer is implemented as

a shared library that is dynamically loaded by the pointer tracker in the child process. Note

that, the current implementation of RUNTIMEASLR is dedicated to server programs that

pre-fork worker processes at beginning. For other programs that do not adopt the pre-fork

scheme, different implementation approaches (e.g., compiler-based code instrumentation)

may be preferred instead of dynamic code instrumentation. More details will be discussed

in §3.1.7. To evaluate the effectiveness of RUNTIMEASLR, we applied it to the Nginx web

server because it is one of the most popular web servers and has been an attractive attack

target in the past [20, 23, 62, 65, 114]. Our evaluation shows that RUNTIMEASLR identifies

all pointers, effectively prevents clone-probing attacks. Due to the dynamic instrumentation

based, heavy-weight pointer tracking, it takes a longer time for RUNTIMEASLR to start

the server programs (e.g., 35 seconds for starting Nginx web server), however, the one-

time overhead is amortized over the long run-time, and more importantly, RUNTIMEASLR

imposes no performance overhead to the provided services after the worker processes are

pre-forked.

3.1.1 Overview of RUNTIMEASLR

RUNTIMEASLR aims to prevent clone-probing attacks by re-randomizing the address space

of a process at runtime. More specifically, RUNTIMEASLR protects daemon servers that

fork multiple child (worker) processes for responding to users’ requests.
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3.1.1.1 Threat Model

The attacker’s goal is to launch attacks against a daemon server with ASLR enabled, e.g.,

code re-use attack like return-oriented programming, privilege-escalation by overwriting

the uid, or stealing sensitive data stored at a certain address. We assume the daemon

server consists of a daemon process and multiple worker processes forked by the daemon

process. For the sake of robustness, if a worker process is crashed, a new worker process is

created by the daemon process with fork. This model is widely adopted by daemon servers,

e.g., Apache web server, Nginx web server, and OpenSSH. Bypassing ASLR is a general

prerequisite of these attacks, as they usually need to access the code or data (at a particular

address) in the process memory. To bypass ASLR, the attacker can mount a clone-probing

attack to iteratively recover the address space layout, which is shared among all children of

the daemon process.

We assume that the operating system running the daemon server realizes the standard

protection mechanisms, e.g., W ⊕X and ASLR, and the daemon server is compiled with

-PIE or -fPIC, i.e. the server is compiled to benefit from ASLR. However, the daemon

binary may not be diversified, and hence the attacker may have exactly the same copy of it.

As a result, attackers can perform both static and dynamic analyses on the daemon program,

e.g., scanning it for vulnerabilities. We assume there exists at least one exploitable buffer

overflow vulnerability, i.e., a buffer can be overwritten arbitrarily long including return

pointers and frame pointers.

RUNTIMEASLR focuses on preventing clone-probing attacks that indirectly infer the

address space layout by repeatedly probing worker processes of daemon servers. Other

programs that do not adopt the pre-fork scheme usually do not suffer from the clone-probing

attacks, and thus are out of scope. Direct leaks, e.g., a leaked pointer in a malformatted

printf or a memory disclosure vulnerability [159], are out of scope for this work, but have

been covered in existing work [11, 48, 50, 119]. Physical attacks, e.g., cold boot attacks, are

out of scope. We assume the OS is trusted, so attacks exploiting kernel vulnerabilities are
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also out of scope.

3.1.1.2 The RUNTIMEASLR Approach

To defeat clone-probing attacks, one can either reload the child process or re-randomize the

address space of the child process by patching all pointers. As reloading the process will not

inherit any state or semantics from the parent process, it would constitute a great loss as a

programming paradigm. Moreover, reloading requires the existing server programs to be

thoroughly restructured and rewritten to make the child process not depend on any resource

or data of parent process. Therefore, RUNTIMEASLR instead keeps the semantics of its

parent process and re-randomizes the address space at runtime.

Since we want RUNTIMEASLR to be a practical tool, it is designed to use user mode

on-the-fly translation of programs and hence does not require any source code or OS

modifications. Since daemon servers usually respond to a multitude of requests at the same

time, performance is also a primary goal of RUNTIMEASLR. Those two goals are brought

together by dynamic program instrumentation using Intel’s Pin Tool: it allows to monitor

and modify arbitrary programs on-the-fly and can be detached after randomization in order

not to impose any performance overhead.

The high-level overview of RUNTIMEASLR is depicted in Figure 15. We first provide

an overview of its three main components. Then, technical details will be given in the

subsequent sections.

Taint Policy Generation. The first phase of RUNTIMEASLR– taint policy generation –
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automatically generates pointer tracking policies by inspecting lots of input programs. The

generated policy grows with every input program by “learning” more behaviors of Intel

x86-64 instructions. At some point, all possible usages of instructions have been seen and

the policy does not grow any further. The generated policy file can then be used in the second

phase, pointer tracking, to accurately track pointers of arbitrary programs. Although the

identification of pointers is not a new topic, existing approaches lack a systematic approach

that can vouch that the used tainting policy is sound. Additionally, prior approaches often

aimed at catching out-of-bounds access, which is a slightly different problem as it also needs

to know the size of the object pointed to by the pointer [40, 53, 88, 98, 131, 133, 163]. These

approaches either rely on type-based analysis, or on heuristic-based taint analysis to identify

pointers. Type-based analysis can only identify pointers with pointer-type. However, integers

that are also used as pointers, such as base addresses, cannot be identified. Heuristics, on

the other hand, do not provide any sound guarantee, since they might incorrectly track

identified pointers or fail to identify some pointers in the first place. For example, previous

approaches [40, 163] that work on instruction-level tracking only specified a handful of

operations (e.g., assignment, addition, subtraction, and bitwise-AND) to carry on taints

if the input was tainted. However, as we show in Table 13, there are not only many

more instructions that either carry on a taint or remove a taint, but many of them come

as a surprise and can only be discovered by a systematic approach rather than empirical

heuristics. For example, the CPUID and RDTSC instructions modify general purpose registers,

thereby potentially overwriting stored pointers.

To tackle this problem, we propose an automated taint policy generation mechanism

that automatically discovers all kinds of instructions that have direct or indirect effect on

stored pointers. The basic concept for creating a pointer tracking policy is to inspect all

instructions with respect to whether they create, update, or remove a taint. To this end, we

check if an instruction writes to a register or to a memory location and whether that written

value constitutes a pointer. Then a pointer is determined based on whether its value points
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inside any currently mapped memory. This approach does not miss any pointers, i.e., there

are no false negatives as long as they point into valid memory. However, this approach might

coincidentally identify a random integer value as a valid pointer (false positive). For a 64-bit

address space such false positive probability is very low since mapped memory segments are

sparse in relation to the huge address space. Nevertheless, we further reduce that probability

by running the program multiple times with ASLR enabled, and then compare the results.

Correctly identified pointers occur in all runs, whereas false positives do not. We use this

technique to automatically create a policy that identifies all instructions that will generate or

remove a pointer.

Pointer Tracking. In the second step, the generated policy is used to perform pointer

tracking. Pointer tracking itself consists of three parts: (1) it collects all initial pointers

prepared by OS; (2) it performs taint tracking for pointers based on the taint policies

generated by the first component; (3) since RUNTIMEASLR is explicitly designed to

not modify the OS, some syscalls are modeled for taint propagation. The output of this

component is the list of all pointers in the process.

Address Space Re-randomization. Using the tracked pointer list, the third component of

RUNTIMEASLR– address space re-randomization – then performs module-level memory

remapping for all currently mapped memory segments in the child process. As Pin is no

longer necessary in the child process, the detachment of Pin is immediately performed after

fork, and then the re-randomization is triggered as a callback of Pin detachment. After the

re-randomization, the dangling pointers are corrected using the list of identified pointers.

As a last step, the control is transferred back to the native child process code. Since Pin

is already detached, there is no performance overhead in the child processes associated to

dynamic instrumentation (see §3.1.6 for performance results).
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3.1.2 Automated Taint Policy Generation for Pointers

As alluded to earlier, the existing approaches for taint tracking on binary code are not com-

plete. To tackle this challenging problem, we propose a novel pointer tracking mechanism

that accurately identifies pointers (tainting) and tracks pointers throughout their life-cycle

(taint propagation). In general, taint analysis can be categorized into static taint analysis

and dynamic taint analysis. In theory, static taint analysis can identify all pointers without

false negatives. However, false positives may be unavoidable [59] because of higher level

compound type definitions such as structs and unions, which are not necessarily pointers.

As a building block for re-randomization, however, we must neither allow any false positives

nor false negatives. Otherwise, an overlooked pointer (false negative) will reference an out-

dated memory location and will most likely cause a program crash due to an illegal memory

access. Similarly, tagging innocent integer values as pointers (false positive) changes data

when patching the believed-to-be pointer resulting in erratic program behavior.

Given the limitations of static taint analysis and the strict requirements of our runtime

re-randomization, we choose to leverage dynamic taint analysis to identify pointers. Dy-

namic taint analysis, however, needs a policy that describes which instructions of an entire

instruction set architecture (ISA) modify a pointer, either directly or through side effects, and

how the pointer is modified. This is possible by studying the 1,513-pages Intel instruction

set architecture manual [84] and hoping that one did not overlook a side effect of an obscure

instruction. Alternatively, we opted for an automatic learning process that creates annota-

tions for each observed instruction of the ISA by monitoring what each instruction does

during runtime. This is possible by leveraging dynamic instrumentation based on Intel’s

Pin, which makes the execution of each instruction tangible. By carefully inspecting how

and which memory and registers an instruction with different operands modifies, a policy is

generated that describes how each instruction either creates a taint, removes a taint, does not

modify a taint, or even propagates a taint to another register or into memory. This policy

grows with every taught program and it eventually can be used in the second phase, the
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Pointer Tracking phase, to actually track which parts of memory or registers store pointers.

The latter part is described in the next section.

Workflow. The sample programs used for generating the taint policies also contain the

target program. We use Pintool to hook each instruction that writes to at least one register or

one memory address (Pin provides an API to iterate all operands, including the implicit ones,

e.g., operand EAX in RDTSC). Then, Pintool provides us with the metadata information for

that particular instruction. This includes the opcode, count of operands, types of operands

(register, memory, or immediate), widths of operands, read/write flags of operands, and data

of operands (e.g., register number or immediate value). For conditional instructions (e.g.,

cmovnz), we further include the flag bits in register rflags. As an additional step, we hook

syscalls to identify the ones that create pointers, e.g. mmap(). Also, memory-related syscalls

such as mmap() are monitored for the requested memory range they allocate because our

algorithm needs to know which memory is currently valid and which is not, for pointer

verification.

The actual policy generation executes each instruction and compares the state of all

registers and accessed memory before execution to after the execution of each instruction.

This way, side effects of an instruction can be detected even though the register was not

specified as an operand. For example, RDTSC reads the CPU’s internal Time Stamp Counter

(TSC) into EAX:EDX, thereby overwriting what was stored in RAX and RDX. This can be

detected by checking each register for being a pointer using multi-run pointer verification

(3.1.2.1). If an executed instruction modifies “pointer”-ness of a register or memory location,

it is reported as a new policy for that instruction. This policy includes a description whether

a pointer was created, removed or copied somewhere else.

Example. The instruction mov RDI, RSP (in Intel syntax) is always the first instruction that

gets executed in every program. We first extract the opcode (that is 384 in Pin), the types,

widths, and read/write flags of its operands. The operands are two 64-bit registers with the

first one being destination and the second one being source. Then we analyze whether any
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of those operands (RDI or RSP) is a pointer using multi-run pointer verification (3.1.2.1). In

this case, RSP is a pointer, while RDI is still zero after initialization of the program. After

executing the instruction, the operands are checked again for “pointer”-ness. In this case,

RDI becomes a pointer after execution. Therefore, we generate a pointer tracking policy

as follows. Given an instruction with opcode = 384 and exactly two 64 bit registers as

operands, the first operand will be tainted after execution if the second operand was before

execution.

3.1.2.1 Realizing multi-run pointer verification

To ensure that only actual pointers are tracked, it is crucial that the pointer detection

does not mistakenly classify an integer as a pointer, simply because its numerical value

coincidentally represents a valid, mapped memory address. To address this problem, we

propose multi-run pointer verification to check if a value indeed constitutes a real pointer.

The idea of multi-run pointer verification is inspired by the fact that in a 64-bit address

space, the mapped memory is sparsely allocated, and it is unlikely for a random data to

point into mapped memory. So by checking if a value points into mapped memory, we can

determine a pointer with a high probability. To further decrease the false positive rate, we

execute the program multiple times at different load addresses (with ASLR-enabled). The

workflow of multi-run pointer verification is shown in Figure 16. In the first run, we output

discovered policies with metadata, including the relative location (relative address into the

base address of corresponding loaded module) of the targets of generated pointers. For each
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of the next runs, only the intersection of policies is kept, which identifies those pointers

whose targets have the same relative locations.

The probability that a non-pointer value passes this check and is hence classified as a valid

pointer is extremely low. On 64-bit x86 machines, Linux reserves the lower 47 bits for user

mode programs1. Pointing inside the user mode address space is thus possible if the upper

17 bits of a random 64-bit number are set to zero. Additionally, the lower 47 bits must point

into valid mapped memory that has been chosen randomly by ASLR. For the combination

of all loaded modules with a total size of b bytes, the probability for a 64-bit integer pointing

inside any loaded module is b · 2−64. For each run of the multi-run pointer verification, the

probability decreases drastically. In the next run, the probability is not only b · 2−64 to be

inside any loaded module, but the same instruction must produce an integer whose value has

the same offset into the same module to be still considered a (false positive) pointer. Hence,

only one valid address for the given randomization remains, which has a probability of only

2−64 for randomly chosen integers. For n runs, the final false positive rate is deceased to

b · 2−64·n. The running Nginx web server for example has a total of approximately 22 MB

of mapped valid memory. This would result in a false positive rate of ≈ 2−103 in a 2-runs

verification.

Multi-thread Support. In order to identify the same pointer across different runs, it is

necessary to deterministically enumerate all pointer creations in a reliable way – one way

would be the order of pointer creation, another would be the memory position of the pointer

itself. In a single-threaded program, the position of pointers and the order of their creation

are deterministic. However, multi-threaded programs might create pointers in a different

order, due to that threads share a common heap, which also influences the pointer positions

inside the heap. To overcome this problem, we also consider where pointers are stored. For

pointers that are stored on the heap, the base address of the heap object the pointer resides in

1arch/x86/include/asm/processor.h:881 of Kernel 4.1 defines
#define TASK_SIZE_MAX ((1UL « 47) - PAGE_SIZE)
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and its relative position into the base of heap object are recorded and used to uniquely refer

to that particular pointer. Since loadable sections (e.g. .data or .bss) have their objects at

fixed locations and each thread has its own stack, they are not affected by multi-threading.

3.1.3 Taint Tracking for Pointers

Using the taint policy that has been created once in the taint policy generation step, the

program can be run again with pointer tracking enabled based on the created policy. The

first step is to identify a pointer when it is created. It is crucial to identify exactly when a

pointer is created to be able to track it from its inception. Otherwise, it might have been

copied to other places already without noticing.

3.1.3.1 Pointer Sources

In ASLR-enabled programs, no static pointer (known at compile time) can exist because all

code and data are loaded at an unpredictable address. All pointers are either derived from the

current address of execution (RIP register), the stack (RSP register), the heap (call to mmap(),

mremap() or brk()) or they are injected by the OS. For example, lea RAX,[RIP+0x2007bc]

derives a pointer based on current instruction pointer (RIP), and saves it in the register RAX.

In fact, RIP and RSP are also injected by the Linux kernel before the program starts. In

chronological order, whenever a new process is loaded after calling execve(), the Linux

kernel inserts pointers into the process. As per the Linux 4.1 source, execve() first clears

all registers2 and then sets the first instruction to execute by modifying the RIP register and

setting the stack register RSP to the end of the stack. Then, initial environment variables

and program arguments are pushed to the stack before the first instruction of the newly

created process begins execution. The initial data in stack prepared by OS also contains

some pointers (e.g., entry point). As OS routinely stores these initial pointers in stack in

the same order at load-time, their relative locations are fixed, we also apply the idea of

multi-run pointer verification to accurately identify them. Once all of these pointer sources

2Macro ELF_PLAT_INIT(regs, load_addr) of file arch/x86/um/asm/elf.h
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are found and tainted, the discovered taint policy of the earlier step can then accurately

tracks other pointers derived from these pointer sources.

3.1.3.2 Syscall Modeling

The only other way to introduce new pointers is as a result of a syscall. Since we do not want

to track pointers in kernel mode, we rather use well-established method syscall modeling to

mimic the behavior of the kernel with respect to pointer tainting in user mode. Our analysis

of all side effects of syscalls has revealed that the only syscalls that modify mapped memory

and hence create new pointers are mmap, mremap and brk. Those syscalls are monitored

during execution by hooking them inside the Pintool. The return values of those syscalls are

then tainted as pointers accordingly. As a side effect, the gained knowledge about memory

mappings is used as a plausibility check that data tainted as pointers indeed points into valid,

mapped memory.

3.1.3.3 Bookkeeping

The internal bookkeeping of which register or memory location is tainted is stored in a

simple but fast hash map. Indexing the memory hash map with an address will return

taint information about that address if applicable. Untainted memory will of course not be

stored in the hash map and returns null. According to the used taint policy, each executed

instruction may propagate a taint into another register or memory location (e.g., mov or

add) or remove the taint (e.g., xor RAX, RAX). The taint policy contains tuples describing

matches based on their opcode, operand type (i.e., register, memory, or immediate), operand

size, flag bits (for conditional instructions), and whether operands are already tainted. Using

this tuple, the policy is queried on the expected action for the modified registers or memory.

If a matching policy is found, it is applied, i.e., the expected registers or memory locations

are tainted or untainted. Otherwise, no pointer propagation effect is expected and no taints

are changed.
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3.1.4 Address Space Re-randomization

Even with the knowledge of exact pointer locations, re-randomization of a running process

is not straight-forward. In fact, we faced the following challenges:

C1: The child process also inherits the dynamic instrumentation of the Pin by fork(). For

performance reasons, Pin in child process is unnecessary, thus should be detached.

C2: Unmapping and clearing of Pintool is a chicken-and-egg problem since the instru-

mented fork() code would need to unmap itself while executing.

C3: Remapping a set of memory blocks is not an atomic process and hence during the

intermediate state of remapping, no valid stack and no valid library functions are

accessible as they are already remapped.

To overcome those challenges, we designed our re-randomization mechanism as a

separate shared library as shown in Figure 17, which is triggered by the callback of Pin’s

detaching. This way, it can (1) be attached to child process, (2) perform the re-randomization

and patch all pointers,(3) clear the Pin code/data, and finally (4) load updated registers and

perform a context switch to the newly fork’ed child.

Shared 
address space

Pin/Pintool

Program

Randomizer
(shared lib)

1. load randomizer 
in child

2. re-rand
program

3. clear Pin

4. context switch

Figure 17: The work-flow of re-randomization.
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3.1.4.1 Re-randomization Granularity

The default ASLR provided by Linux OS performs randomization in process-level, which

means offsets between modules are fixed. RUNTIMEASLR chooses to perform module-

level randomization by specifying random base to mmap, which achieves a better effective

entropy [78]. However, finer-grained randomizations [12, 56, 71, 80, 92, 187] can be further

applied thanks to the tracked pointer information.

3.1.5 Implementation

RUNTIMEASLR is implemented as a combination of three tools: the taint policy gener-

ator, pointer tracker, and randomizer. The taint policy generator and pointer tracker are

implemented as two Pintools for pin-2.14-71313, while the randomizer is implemented as

a shared library that is dynamically loaded by the pointer tracker into the child process.

3.1.5.1 Policy Generator

Instruction Abstraction. In the automated policy generation phase, our Pintool learns how

x86 instructions “behave” given a certain combination of operands. For this purpose, we are

only interested in how they behave with respect to pointer creation, modification, erasure,

and propagation. Therefore, the created policy is an abstraction of instruction behavior that

is just enough to accomplish accurate taint tracking. Our experiments have shown that, in

most cases, it suffices to abstract an instruction to only its opcode, number of operands,

type of operands (immediate, register, memory), width of each operand (in bits), flag bits

(only for conditional instructions), and which operands were tainted before execution of the

instruction. For this exact combination, an entry in the policy describes how it behaves with

respect to tainted registers and memory after executing the instruction. For example, let

the observed instruction be mov RDI, RSP with two operands of 64 bit register type. The

second operand RSP is tainted, because it is a stack pointer. One specific policy entry for

this exact combination (opcode=mov, operands=register64,register64, taint=false, true)
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specifies that after execution the first operand will be tainted. This makes sense, as mov

actually copies the value of the second operand into the first operand.

Table 12: Ambiguous policies found in tested programs. An implicit instruction may have non-
deterministic taintness outputs. 1: pointer; 0: non-pointer.

# Instruction Input Output Category

1 add reg1, reg2 reg1=1 and reg2=0 reg1?=1 arithmetic
2 sub reg1, mem1 reg1=1 and mem1=0 reg1?=1 arithmetic
3 add mem1, reg1 mem1=0 and reg1=0 mem1?=1 arithmetic
4 add reg1, mem1 reg1=0 and reg2=0 reg1?=1 arithmetic
5 and reg1, imm1 reg1=1 and reg2=0 reg1?=1 bitwise

Ambiguous Policy. There are special cases for which the aforementioned tuples of operand

types, amount of operands, operand sizes and taints are not unambiguous enough to make a

statement about taints after the execution of an instruction. Table 12 lists the ambiguous

cases found in the tested programs. Case 5 is easy to understand, since a bitwise and

operation could be used to compute either the base address (i.e., a pointer) or an offset

(i.e., a non-pointer) depending on the value of the other operand. For example, assume RAX

in and RAX, 0x???????? contains a pointer and is therefore tainted. If the bitmask of the

second operand exhibits many set MSBs, e.g., and RAX, 0xfffffffffffff000, the result

will be the base address of the provided pointer in RAX. Vice versa, setting a few LSBs

(e.g., 0x0000000000000fff) calculates the offset into something. Our experiments with

real-world programs show that the only use of a bitwise and instruction with a pointer is to

either calculate the base or an offset. This confirms similar findings by [40] and [163].

Case 1 - case 4 indicate that ambiguous policies also exist for arithmetic instructions –

a pointer could be added or subtracted by an offset to generate either a new pointer (e.g.,

relocation) or a non-pointer. To understand these special cases, we performed an in-depth

analysis (on Ubuntu 14.04.2). Note that RUNTIMEASLR provides a debugging mode that

can print context information of executed instructions to ease the analysis.

Case 1. At the beginning of execution in loader, instruction add r12, rcx adds the

pointer saved in rcx with a constant 0x3800003d8, which generates a “non-pointer” (it does
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not point to mapped memory). However, we found that this non-pointer is added back to gen-

erate a new pointer with constant -6FFFFEF5×8 in instruction mov qword ptr [r12+rax×8],

rdx.

Case 2 - 4. We found that there is an instruction sub rdx, qword ptr [r12] that

destroys a pointer by subtracting it with an offset. Before execution, rdx points to the base

of vDSO, which is then subtracted by constant 0xffffffffff700000 to generate a value

pointing to unmapped memory. Interestingly, we found case 3 and case 4 are paired to case

2, which re-assemble the pointers from the destroyed one in case 4. For example, case

3 is the instruction add qword ptr [r12+0x348], rdx that adds the destroyed pointer by

constant 0xffffffffff700fbd to generate a new pointer still pointing to vDSO. We believe

the arithmetic operations in case 2, 3, and 4 are used to perform a very simple pointer

protection employed by vDSO, which is however not found in other normal programs.

Based on the analysis, we generally cope with these ambiguous instructions by the

simple range-checking approach: we check whether the result after executing the instruction

points into valid memory, if it does, it is a pointer; otherwise, it is a non-pointer. The check

only needs to be lazily performed for those ambiguous cases that are clearly marked in

the policy file. For ambiguous cases with bitwise operations, range-checking can easily

differentiate between a base address and an offset. For ambiguous ones with arithmetic

operations, no matter what unrecognizable representation a pointer is transformed into, it

will be recognized again by range-checking if it is changed back to the pointer. Therefore,

the simple range-checking approach can generally handle all these ambiguous cases in a

lazy manner.

Hidden Pointers in SSE Registers. Streaming SIMD Extensions (SSE) is an x86 in-

struction set extension that provides 128 bit registers xmm0-xmm15 and and 256 bit registers

ymm0-ymm15. In theory and good practice, 64 bit pointers of the 64 bit Intel x86 architecture

should be stored in its general purpose registers (RAX, RBX, ..., r1, r2, ...r15) or in

segment registers (FS, GS). However, our policy generation showed that these 128 bit SSE
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registers may also be used to store pointers, e.g., Nginx web server. Fortunately, those

pointers were always stored either in the first 64 of the 128 bits (upper half) or in the last

64 bit (lower half). Based on this observation, RUNTIMEASLR treats a SSE register as

a multiple of non-overlapping 64 bit general purpose integer registers. Whenever these

SSE register are used, each 64-bit of their content is checked by RUNTIMEASLR for 64 bit

pointers.

Mangled Pointers. Interestingly, the GNU standard C library (glibc) that is linked to every

C or C++ program performs pointer obfuscation for some syscalls. It is implemented as

a simple XOR operation against a random but fixed value stored relative to the segment

register FS (see Figure 18).

# d e f i n e PTR_MANGLE( r e g ) \
xor %f s : POINTER_GUARD, r e g ; \
r o l $2∗LP_SIZE +1 , r e g

# d e f i n e PTR_DEMANGLE( r e g ) \
r o r $2∗LP_SIZE +1 , r e g ; \
xor %f s : POINTER_GUARD, r e g

Figure 18: Pointer mangling and demangling in libc. The XORing key is hidden by using fs
segment register. LP_SIZE is 8 on 64 bit platform.

To cope with mangled pointers, we demangle the pointers and check if the demangled

values point inside valid mapped memory. This is possible because the XOR value is

accessible by the process itself (stored at fs:POINTER_GUIARD), but not accessible for

attackers residing outside the process. Should the demangled value reveal a pointer, the

stored taint is augmented by meta information indicating a mangling according to glibc’s

method. This meta information leaves room for future, other methods of pointer obfuscation

to be implemented. Currently, all tested programs compiled with gcc only exhibit the pointer

obfuscation using the PTR_MANGLE macro shown in Figure 18.
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3.1.5.2 Pointer Tracker

The pointer tracker itself is also implemented as a Pintool. As alluded to earlier, the only

initial pointers after process creation are RSP, RIP, and some initial pointers in stack. In

particular, we found 71 initial pointers in stack with the help of multi-run pointer verification.

As the kernel routinely loads programs in the same way, we confirmed that these initial

pointers have fixed relative locations in stack. From these initial pointers, further pointers

are derived using the generated policy, which is applied to the affected instructions specified

in the policy set. The policy set is loaded into an STL list container. We then use Pin’s

functionality to hook instructions based on their opcode, operand types and widths of

operands. The hooking is realized in Pin by inserting a call before and after each instruction

in question. Control flow is then diverted from the main executable code or library code

into Pin and thereby into our pointer tracking mechanism. The pointer tracking mechanism

fetches information about the used operands (register and/or memory), especially whether

they are tainted and their current value. After applying the policy, which results in further or

fewer taints for registers or memory, execution continues normally at the original position in

memory. Unmatched instructions will not be hooked and execute normally.

Syscall Handling. Since RUNTIMEASLR is designed as a user space tool, all syscalls are

a black box operation to RUNTIMEASLR. However, we are only interested in whether a

syscall modifies a pointer or creates a new one. We found that most syscalls actually do

not generate new pointers or propagate pointers. We manually evaluated the visible effects

of the 313 Linux syscalls in user mode. Only 15 of them generate or propagate user mode

pointers. Some representative ones are detailed as below.

• mmap creates new memory space and returns the base. We taint its return value when

it returns.

• munmap unmaps the given memory space. In this case, we untaint the corresponding

pointers that point to the unmapped memory.
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• mremapmoves an existing memory space to a new one and returns the new base address.

In this case, we update the corresponding pointers pointing to the old memory space

with the moved offset. Also we taint the returned value.

• mprotect changes the access permissions of memory. We update the tracked pointers

according to how permissions are changed. For example, if the memory is changed

from readable to non-readable, we untaint the corresponding pointers.

• brk either obtains current program break (by providing the first parameter with 0) or

changes the location of program break. In the former, we simply taint its return value;

while in the latter, if it shrinks the memory, we untaint the corresponding pointers and

also taint its return value.

• arch_prctl, etc. There are also some syscalls that may load existing pointers of

user space. For example, arch_prctl can be used to get base values in segment

register fs or gs. For these cases, we taint the obtained pointers in return value or

parameters.

Pointer Scope and Memory Deallocation. Whenever a called function returns, the local

variables of the callee are no longer valid, i.e., they have left their scope. Such local

variables may also contain pointers. Hence, it is vital to remove any associated taint of

pointers that have gone out of scope. The memory region that contains variables that have

gone out of scope is considered uninitialized memory, since reading from that memory is

non-deterministic as it depends on which function was called last. A good compiler will

catch that type of uninitialized access at compile-time and warn the developer about it.

To prevent unpredicted behaviors, we detect out-of-scope pointers when a function

returns so that they can be untainted. To this end, we hook the ret instruction and on each

return calculate the currently valid stack frame by inspecting RSP. By the x86-64 calling

convention, the stack pointer RSP must point to the top of the valid stack after returning from

a function, therefore, all data stored above RSP can be untainted.
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The same applies to objects on the heap: after a call to free() (delete() also calls

free()), pointers stored in that now deallocated area become invalid. We therefore remove

all taints of pointers that are stored in a free’ed area. A caveat is that the call to free does

not include any information about the size of the to-be-deleted object. However, the memory

in question was once allocated using malloc with a specific size. We therefore use a map

that associates a length obtained from hooking malloc to each heap pointer. Whenever,

free() is called, we look up the size for the specified base pointer and untaint all pointers

stored in the deallocated area.

3.1.5.3 Randomizer

The randomization is done in module-level, which is better than the “process-level” random-

ization provided by Linux’ ASLR implementation. Finer-grained randomization is possible,

as we have all pointer information. However, even position-independent code assumes fixed

offsets between code and data. Finer-grained randomization may require patching these

offsets, and thus introduces more overhead. The actual remapping from an old address

(cloned from the parent) to a new random address is achieved by calling the syscall mremap

with a random base address. We obtain the cryptographically secure randomness from

/dev/random. In the current implementation, we set the default entropy to the one provided

by default Linux OS, which is 28 bits. However, we also provide a configuration switch for

the entropy so it can be set up to 48 bits (the full canonical address space on Intel x86-64

platforms). Note that when heap is remapped, we also need to adjust program break by

calling the syscall sbrk(). The protection flags and size of the new mapping are simply

taken from the old one to preserve all semantics. After remapping, we patch the pointers

accordingly (in both memory and registers).

The final step is context switching from Pin to program. The context includes not

only general registers but also SSE registers (e.g., xmm0-xmm15) and segment registers (e.g.,

fs and gs). As all pointers are patched when the address space is re-randomized, the context
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is naturally updated accordingly. Before Pin’s mappings are unmapped, the context data

is copied to the stack of the program. To load the context into the corresponding registers

(after unmapping Pin), we have to use handwritten assembly, as no library functions are

available and we cannot even use Pin’s stack and heap. Special care must be taken for

loading values from stack into SSE registers (i.e., xmm0-xmm15) as those memory addresses

must be 16-byte-aligned in order to not trigger a general protection fault (#GP). Finally,

we use an indirect jmp to transfer the control back to program and continue the original

execution of child process. At this point, Pin is completely unmapped and as the child

process is no longer instrumented, it runs with its native performance.

Recursive Forking. So far, we have described that fork’ed children are no longer

instrumented in order not to suffer from performance penalties. However, one cannot know

if child processes will or will not fork their own children. If they do, there would not be any

pointer tracking information because it was intentionally disabled for performance reasons.

To overcome this, we provided a feature that records which layer of processes of a program

typically fork their own new processes. For example, the Nginx web server first forks a

daemon process, and then that daemon process forks worker processes for each CPU core.

Therefore, we can configure which layer of children will disable their instrumentation which

will not.

3.1.6 Evaluation

In this section we evaluate the correctness, effectiveness, and efficiency of RUNTIMEASLR.

To this end, we have developed the following four evaluations:

• A theoretical and practical analysis of the accuracy of identifying pointers.

• A memory snapshot analysis to compare the correctness of re-randomization with the

help of load-time randomization.

• An empirical test of real clone-probing attack prevention.
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• A performance evaluation of re-randomized child processes and microbenchmarks of

fork overhead and pointer tracking in the parent process.

Experiment setup. We applied RUNTIMEASLR to the Nginx web server, as it is one of the

most popular web servers and has been an attractive attack target [20, 23, 62, 65, 114]. We

chose Nginx in version 1.4.0, as this version contains a stack buffer overflow vulnerability

that was also exploited by Hacking Blind [20]. This way, we can later show the effectiveness

of our solution in the presence of a real vulnerability. We use Nginx web server to evaluate

the correctness, effectiveness, and performance of RUNTIMEASLR. Further, we applied

RUNTIMEASLR to SPEC CPU2006 benchmarks to evaluate the performance of the pointer

tracking component. All experiments were conducted on a Dell OptiPlex 390 equipped with

an Intel R⃝ CoreTM i3 2120 running at 3.30 GHz and 8 GiB of RAM. This particular processor

has two physical cores each of which supports Simultaneous Multithreading, which presents

itself as four cores to the operating system. For operating system, we used an unmodified

fresh install of the latest Ubuntu long-term support release 14.04.2.

3.1.6.1 Correctness

We first evaluated the correctness of RUNTIMEASLR by analyzing its accuracy in pointer

identification.

Theoretical Analysis. In this section, we present an upper bound for false positive pointer

detection. As already described in §3.1.2.1, the probability for a random integer to be

mistaken as a pointer is p = b · 2−64·n for b bytes being mapped into a process’ address space

and n-runs are performed in multi-run pointer verification. Of course, this only applies to a

single pointer identification. As every executed instruction is inspected for potential pointers,

in the worst case, every inspected instruction might introduce a new random integer that

could be mistaken for a pointer. So in the worst case, the entire mapped memory only

consists of instructions that handle 64 bit integers. Even though it is technically not possible

due to encoding, a maximum of b instructions can exist in b bytes of memory. Therefore,
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the probability of identifying at least one integer coincidentally as a pointer is

1− (1− p)b = b · p−
(
b

2

)
· p2 +

(
b

3

)
· p3 − · · · − pb

according to the binomial probability. Assuming b < 247 and n >= 2, then
(
b
i

)
· pi must

be significantly larger than
(

b
i+1

)
· pi+1, where 1 < i < b − 1 and pb > 0. Therefore, this

probability can be safely simplified to:

b · p = b2 · 2−64·n

To fill in some numbers, we can assume that 100 MB of the address space are used, and

2 runs are performed in multi-run pointer verification. This yields a false positive rate of

2−76, which is negligible.

Memory analysis. Although the protected programs do work successfully, we want to

thoroughly check the correctness of RUNTIMEASLR in practice. To this end, we evaluate

the false positive and false negative rate of pointers and check if the address space is

re-randomized correctly.

False pointer checking. The goal of false pointer checking is to scan the entire

address space for 8-byte pointers and make sure that our tracking did find all (no false

negatives) and not too many (no false positives) pointers. Checking is done right before

re-randomization, when it is crucial that all pointers have been tracked correctly. To be fair,

multi-run pointer verification was used during the analysis to check false positive pointers.

For false negative pointers, we check each 8-byte value in the readable memory to see if it

points to mapped memory. We ran the Nginx web server and hooked fork() for the memory

analysis. This revealed a total of 7952 pointers were tracked with no false positives, i.e. all

tracked pointers indeed point into valid mapped memory. The analysis further revealed four

“false negatives”, i.e. some readable 8-byte values that point into valid memory had not been

tracked. However, we found that those “pointers” were located in freed heap objects and

hence were no longer valid. Since Nginx did not clear the data when freeing heap objects,

the out-of-scope pointers remained in memory.
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Memory space consistence checking. It is of paramount importance that our forcefully

imposed re-randomization at run-time is indeed correct. To verify this, we compare the

address space right after re-randomization to legitimate address space before forking, but

at the same address. This verification process is two-fold. First, the program is run with

ASLR enabled so that it is executed at a random address. At the moment a fork() syscall is

issued, we take a memory snapshot of the entire address space, record base addresses of

mappings, and abort the program without re-randomization. Second, we run the program

again, which results in a different address, but this time let the re-randomization happen

after fork() is called. However, the re-randomization of our Pintool is instructed to use the

recorded addresses of each mapped block of memory instead of true randomness. This way,

the address space of our re-randomization should look exactly like the address space of a

properly randomized ASLR process. After that, we compare the remapped memory with

the previously dumped memory. Our results show that all mappings are exactly the same,

which indicates that all pointers are correctly patched. Please note that in the first ASLR run,

the program is run with Pin enabled because our comparison (re-randomization) will have

Pin enabled as well. Otherwise comparisons would differ in the mapped memory of Pin.

Some interesting policies. Unlike previous pointer tracking approaches (e.g., [40, 163])

that only empirically cover a handful of taint policies (e.g., assignments, addition/subtraction,

and bitwise AND), we have automatically discovered a total of 342 taint policies that operate

pointers. Table 13 lists some that we think are interesting for the reader.

3.1.6.2 Security

Address space analysis. RUNTIMEASLR performs module-level re-randomization on the

child process. RUNTIMEASLR provides mremap with cryptographically secure randomness

obtained from /dev/random. In this evaluation, we set the entropy of randomness to be

28 bits – which is the default entropy of Linux’ default ASLR. The generated random

base address is of the form 0x7f???????000, where ? bits are randomized. The security
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Table 13: Selected interesting taint policies that are hard to identify based on heuristics. 1: pointer;
0:non-pointer; mem: accessed memory; ?: ambiguous policy.

# Instruction Input Output

1 rdtsc N/A rax=0 and rdx=0
2 cpuid rax,rbx,rcx,rdx=1 rax,rbx,rcx,rdx=0
3 and rcx, rax rcx=1 and rax=0 rcx?=1
4 neg rcx rcx=1 rcx=0
5 add rcx, [rax+0x28] rcx=0 and mem=0 rcx?=1
6 mov eax, edi rax=1 and rdi=1 rax=0
7 rol rax, 0x11 rax=1 rax=0
8 lea rdx, [rip+0x21e3cc] rdx=0 rdx=1
9 shr rax, 0x2 rax=1 rax=0
10 leave rsp=1 and rbp=1 rsp=1 and rbp=1
11 movdqu xmm8, [rsi] xmm8=10 and mem=00 xmm8=00
12 pslldq xmm2, 0x5 xmm2=01 and mem=00 xmm2=00

provided by RUNTIMEASLR is the re-randomization of child processes’ address space,

which consists of two parts: (1) remapping all modules of protected program to randomized

addresses; (2) all other modules (e.g., of Pin and Pintool) are unmapped. To evaluate the

security, we run Nginx web server with RUNTIMEASLR. We configured the number of

worker processes to be 4, which is the default number suggested by Nginx and is exactly

the amount of physical CPU cores of the test machine. We then verify the re-randomized

memory mappings of each worker process by checking /proc/worker-pid/maps. We empir-

ically confirmed that the question-marked bits in 0x7f???????000 are indeed continuously

randomized. The relative addresses between different modules are also randomized, which

further improves the effective entropy [78] of default Linux ASLR. We also confirmed

that all other mappings (of Pin and Pintool) are not shown in /proc/worker-pid/maps,

and hence have been completely unmapped. Based on these results, we conclude that the

expected security is indeed achieved by RUNTIMEASLR.

3.1.6.3 Real Exploit Testing

To further verify the effectiveness of RUNTIMEASLR, we also test if RUNTIMEASLR

can defeat real clone-probing attack. Fortunately, the Hacking Blind attack (BROP) [20] is
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Figure 19: Nginx without RUNTIMEASLR.
The clone-probing attack, with the stack read-
ing technique of Hacking Blind, succeeds.

Figure 20: Nginx with RUNTIMEASLR. The
clone-probing attack is failed because memory
layout is re-randomized after crashing.

publicly available3. We downloaded the provided exploit and ran it without any change

against Nginx 1.4.0. As per BROP website, the exploit consists of several steps, including

ASLR bypassing with stack reading, locating the required gadgets, and building the ROP

shellcode. The foremost step is to efficiently bypass ASLR. The approach proposed in BROP

is so-called stack reading. As already mentioned in §3.1, it overwrites the return address on

stack byte-by-byte with a single guessed byte. As the newly forked worker process has the

same address space as the crashed one, the probing can be repeatedly performed for each

byte.

To verify the effectiveness of RUNTIMEASLR, we ran Nginx with and without RUNTIMEASLR.

The results are shown in Figure 19 and Figure 20. In the case of Nginx without RUNTIMEASLR,

stack reading can successfully bypass ASLR within two minutes. However, if RUNTIMEASLR

is enabled, we had to manually terminate the exploit after 10 hours, as it could not even guess

3 bytes. The reason why stack reading does not work under RUNTIMEASLR is apparent:

the correctly guessed bytes keep changing in later trials due to re-randomization.

3http://www.scs.stanford.edu/brop/
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3.1.6.4 Performance

In order to test the performance of our approach, we conducted two independent experiments

to be able to measure the performances of the instrumented parent process (with heavy-

weight pointer tracking) and uninstrumented child (i.e., worker) processes.

Performance with web benchmarks. To measure the child process performance, we used

the Nginx 1.4.0 web server and measured different performance aspects. The performance

slowdown that might potentially be introduced by our RUNTIMEASLR is measured in

comparison to an unmodified system as baseline. Nginx used four worker child processes

– one pinned to each core. The client to measure network performance was running on a

second machine, which was connected to the Nginx web server over a 1000BASE-T (Gigabit

Ethernet) switch using a 10m long CAT 5e cable. We measured two dimensions, connection

concurrency performance and throughput performance to check if either of them is affected

by RUNTIMEASLR.

Connection concurrency measures the round-trip time in relation to the number n of

simultaneously connected clients, i.e., the time it takes from the beginning of a request

until the complete response has been received from the server. The more clients that are

requesting resources from the server at the same time, the longer it takes the server to send

back the entire response. To measure the connection concurrency, we used the Apache

Benchmark (ab 2.3) tool. ab lets each of the n simultaneous connections request 10,000

documents from the server as fast as possible.

Throughput in turn measures the rate of successfully received bytes per time unit. For this

purpose, we let Nginx deliver a 1 GiB4 file 100 times and averaged the download speed.

As a test bed, we used HTML documents obtained from real web sites. We mirrored

the top 10 Alexa [6] websites into our Nginx root document root directory using wget.

Performance results showed that the response times only loosely correlate to the size of the

4We use the notation of a Gibibyte (1 GiB = 1024 × 1024 × 1024 bytes) instead of a Gigabyte (1 GB
= 1, 0003 bytes)
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delivered content (see Figure 21). Since our performance slowdown evaluation is interested

in the RUNTIMEASLR performance in relation to the baseline, the document size and

content did not affect the results as the quotient of RUNTIMEASLR
baseline was unaffected. For the

remainder of the concurrency tests, we therefore picked a random top 10 web site to test

with: Number 6, Amazon.com (442.1 kB of HTML, CSS and JavaScript).
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Figure 21: Response time for single real-world documents retrieved from our Nginx web server
using 30 concurrent connections. Content mirrored from Alexa Top 10.

Concurrency Results: We tested the concurrency performance of the RUNTIMEASLR-

enabled Nginx with 10, 20, 30, 40 and 50 concurrent clients and there was no measurable

performance overhead. Figure 22 shows the median of 10,000 response times with the

number of concurrent connections n ∈ 10, 20, 30, 40, 50. The worst measured performance

difference was for 10 simultaneous connections and is a slowdown of 0.51%, which is well

within the jitter margin of the experiment.
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Figure 22: Nginx response time with different concurrencies.

99



The overall distribution of response times is depicted in Figure 24, which shows that the

majority of response times is ≈ 200 ms for 50 simultaneous connections and ≈ 40 ms for

10 simultaneous connections. The performance difference between RUNTIMEASLR and

the baseline is not measurable.
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Figure 23: Nginx response time distribution with/without our pointer tracking Pin instrumentation.
Always 50 concurrent connections
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Figure 24: Nginx response time distribution with/without our pointer tracking Pin instrumentation.
Always 10 concurrent connections

Throughput Results: We also measured the average and peak throughput for a large

single file download over HTTP using only one connection at the same time. The throughput

result for 100 downloads of a 1 GiB file is shown in Table 14. The measured difference is

only 0.5% slowdown on average and a mere 0.1% slowdown for the peak throughput.

Micro benchmark of fork. In traditional UNIX systems and Linux, the fork() syscall is

tuned to be very fast. We measured the performance overhead of our instrumented fork
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Table 14: Throughput performance of HTTP file download with RUNTIMEASLR enabled and
without (baseline)

Throughput
Average Peak

Baseline 870.5 MBit/s 898.1 MBit/s
RUNTIMEASLR 866.4 MBit/s 897.2 MBit/s

to give the reader an insight of introduced delays. Table 15 shows the micro-benchmarks

for the instrumented fork() with RUNTIMEASLR. Without RUNTIMEASLR, forking is

extremely efficient, taking only 0.1 ms. RUNTIMEASLR performs Pin detaching, address

space remapping, Pin unmapping, and context switching for fork(). While unmapping

and context switching is efficient, the detaching of Pin seems to be a bottleneck. Although

percentage of performance overhead is significant, the absolute overhead is less than 150 ms.

More importantly, most daemon processes, e.g., Nginx web server and Apache web server,

only fork worker processes once and delegate work instead of creating a new process for

each work item, so the performance overhead of fork() with RUNTIMEASLR only affects

the starting time of these servers.

Table 15: Micro benchmark for fork() with RUNTIMEASLR. The original fork() takes 0.1 ms.
Worker processes are typically pre-forked once at startup.

Detach Remap Unmap & Total
Context switch fork

Fork w/ RUNTIMEASLR 109.7 ms 27.0 ms 0.8 ms 137.5 ms

3.1.6.5 Performance of Pointer Tracking

RUNTIMEASLR is mainly used to prevent clone-probing attacks targeting daemon servers.

As shown in 3.1.6.5, RUNTIMEASLR imposes no overhead to the web service itself. Here,

we also want to evaluate the performance of the pointer tracking component. We first

measure the time for Nginx web server to start. On our machine, it finishes starting within 35

seconds. We then apply RUNTIMEASLR to SPEC CPU2006 benchmarks which contains

some relatively complicated programs, e.g., gcc. Since these benchmark programs do not

adopt daemon-worker scheme, pointer tracking will be performed for all executed code. In
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Table 16: Pointer tracking on SPEC CPU2006 benchmarks. Pointer tracking is completely detached
in child processes, ensuring their efficiency.

Benchmark Original RUNTIMEASLR Overhead
(seconds) (seconds) (times)

gcc 1.13 12,783 11,312
mcf 2.64 24,708 9,359
hmmer 2.28 19,004 8,335
libquantum 0.06 1,491 24,850
xalancbmk 0.08 1,932 24,150
soplex 0.02 217 10,850
lbm 2.28 2,468 1,028
sphinx3 1.61 12,661 7,863

this evaluation, all the benchmark programs are compiled with options -pie -fPIC -O2.

Table 16 shows the results. The significantly reduced performance is not surprising, as

RUNTIMEASLR performs runtime taint analysis to accurately identify all pointers. How-

ever, pointer tracking is only performed in the parent process at startup. The child process,

the actual worker process, is not affected by pointer tracking (see 3.1.6.4). For the long-

running daemon servers, the starting overhead introduced by “one-time” pointer tracking

before fork is acceptable, but the performance of its provided service is more critical, and in

our case not affected. One may also wonder about the performance of taint policy generation,

although it is less concerned than pointer tracking, since it is performed offline. The running

time for taint policy generation against Nginx is about 30 seconds.

3.1.7 Discussion

In this section, we discuss some potential problems with RUNTIMEASLR, which might

appear in special cases.

3.1.7.1 Soundness of Taint Policy Generation

The taint policy generation mechanism of RUNTIMEASLR is not sound in general, since the

instruction abstraction may generate ambiguous policies. In Section 3.1.5.1, we performed

an in-depth analysis to understand how ambiguous policies are introduced in the tested
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programs. From that analysis, we learned that normal code emitted by compilers usually

process pointers in an universal manner; however, special programs (e.g., dynamic loader

and glibc) may process pointers specially, resulting in ambiguous policies (about 1% out of

all policies). Although the simple range-checking approach (see Section 3.1.5.1) is sufficient

to handle the ambiguous cases listed in Table 12, manual analysis may still be required

to confirm the correctness of taint policies when more ambiguous cases are reported by

RUNTIMEASLR. If the ambiguous policies cannot be handled by range-checking, one may

need to manually define the special taint policies. Alternatively, an automated approach to

handle ambiguous policies is to relax the instruction abstraction. For example, including the

effective width (or the highest order of bit) of the operands can remove ambiguous case 5

in Table 12. A trade-off needs to be made between the degree of abstraction and pointer

tracking performance – relaxing the abstraction will introduce further performance overhead

in pointer tracking.

3.1.7.2 Completeness of Taint Policy

The pointer tracking of RUNTIMEASLR consists of the offline taint policy generation and

runtime taint tracking. In our experiments, because the sample programs used for generating

taint policy include the target program, and the inputs for two runs for policy generation and

taint tracking are exactly the same, the policy set is usually complete for pointer tracking

in practice – we did not meet any missed policy in Nginx. However, we cannot guarantee

the 100% completeness of policy set, as the two runs of program for policy generation and

taint tracking are independent. For example, if the system administrator changes the Nginx

configurations at runtime (i.e., after policy generation), new code paths not covered during

policy generation may be introduced, thus may result in false negative policy. Assuming

such cases exist, we can either manually add the reported new policies – as the total number

of x86_64 instructions is limited5 – or adopt an automatic approach: if we find an instruction

5http://ref.x86asm.net/coder64.html
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generates, updates, or removes a pointer, but is not covered in existing policy set, we can

append it to the policy set at runtime.

3.1.7.3 Applicability for General Programs

A program that does not adopt the daemon-worker scheme is not vulnerable to clone-probing,

so it is not necessary to use RUNTIMEASLR. As specified in threat model in §3.1.1.1,

RUNTIMEASLR is dedicated to server programs that pre-fork worker processes processing

users’ actual requests and perform light-weight tasks (e.g., worker process management)

in daemon process, e.g., web servers. RUNTIMEASLR performs runtime taint analysis to

accurately identify all pointers in parent (daemon) processes, so the performance of parent

process is dramatically reduced. Current implementation of RUNTIMEASLR is not suitable

for server programs that perform heavy-weight tasks in parent process for performance

reasons. Regarding performance in pointer tracking, RUNTIMEASLR can be improved in

two ways: (1) static code instrumentation using a compiler or binary rewriting can help

improve the pointer tracking performance. It is worth noting that statically instrumented

code is hard to be completely detached in worker processes, which is actually the main

reason we chose to employ dynamic instrumentation; (2) as our primary goal is to make

the pointer tracking accurate, our current implementation still has room for improvements

to tweak its performance. Improving the performance of pointer tracking is a long-studied

topic [23, 87, 90], we can employ these techniques to improve the performance of pointer

tracking.

3.1.7.4 Pointer Obfuscation

Pointer tracking in RUNTIMEASLR can generally handle pointer obfuscations, as encryp-

tion and decryption are symmetric, i.e., the encrypted pointers will be recognized when they

get decrypted. However, we encounter a problem when pointer patching happens on en-

crypted or otherwise obfuscated pointers. If we do not know how the pointers are encrypted,

it is impossible to patch the encrypted pointers in memory; therefore, we assume all pointer
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obfuscations applied in the protected program must be known to RUNTIMEASLR. To better

handle this, we provide a detection to help users identify pointer obfuscations. Note that, in

the case of Nginx, we only found one such case – glibc’s mangled pointers.

3.1.8 Related Work

3.1.8.1 Pointer Tracking

The heart of runtime re-randomization is accurately tracking all pointers. Pointer tracking

has been well-studied for object bounds checking for memory safety, and pointer protection.

Existing works either employ type-based analysis or heuristics-based analysis to identify

pointers. Type-based analysis [88, 98, 131, 133] statically infers the type information of

an object (e.g., a pointer). It is efficient and easy to use; however, it suffers from a high

number of false negatives. Pointers with non-pointer type (e.g., base addresses) and the ones

prepared by the OS are not covered. Memcheck [163], Clause et al. [40], and Raksha [53]

empirically specify the pointer propagation rules to track pointers. Although they specified

very detailed rules, it is still difficult to cover all cases, due to the complexity of C/C++

programs. We propose an automatic mechanism to accurately identify all pointers (§3.1.6.1).

Some interesting cases that are not discussed in heuristics-based analysis papers are shown

in Table 13.

3.1.8.2 Re-randomization

Morula [102] is one of most related works, as it also targets the ASLR limitation with fork.

Android adopts the Zygote model that starts app by forking, so that every app shares the same

address space layout. Morula addresses this problem by simply maintaining a pool of pre-

forked but re-randomized Zygote processes (template), so that when an app is about to start,

one Zygote process is picked, and it starts execution from its entry point. Unfortunately,

in our case of daemon processes, its child processes are forked on the fly, which starts

execution from the point after fork() rather than the entry point. The semantic-preserving

requirement of re-randomization makes RUNTIMEASLR fundamentally more difficult than

105



Morula. We cannot simply fork-exec the child process; rather, have to perform runtime

re-randomization. Similarly, ASR [71] performs re-randomization at load-time, so not all

semantics are preserved. Isomeron [54] and Dynamic Software Diversity [46] dynamically

choose targets for indirect branches at runtime to reduce the probability of predicting the

correct runtime address of ROP gadgets. In their proposals, clone-probing attacks are still

effective, as child processes still share the same memory layout. TASR [19] re-randomizes

code sections after a pair of socket read/write. It requires compiler support and cannot

protect data pointers.

3.1.8.3 Code and Data Diversification

Code diversification [101, 142] makes multiple copies of the code, which preserves the

semantics. An assumption of Code diversification is that the attacker cannot get the same

copy of the code. This assumption does not hold when there are memory overread vulner-

abilities in the program [168]. Data layout randomization [18, 37, 107] mitigates buffer

overrun by making the offset between the target data (e.g., return address) and overflow

point unpredictable. However, clone-probing attacks can still work under code or data

diversification, since the child processes still share their parent’s layout.

3.1.8.4 Fine-grained ASLR and Control-flow Integrity

Fine-grained ASLR [12, 56, 71, 80, 92, 187] and Control-flow Integrity [3, 55, 123, 127,

136, 193, 194] aim to make the exploit more difficult after ASLR is bypassed. Complemen-

tarily, RUNTIMEASLR aims to defend against the first step– bypassing ASLR. Therefore,

RUNTIMEASLR is orthogonal to these techniques.
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CHAPTER IV

PROTECTING SENSITIVE DATA FROM INFORMATION LEAKS

Eliminating information-leak vulnerabilities and fixing insecure designs address root causes

of information leaks. However, in practice, we are not able to completely fix these vulner-

abilities or insecure designs because of the complexity of systems and the continuously

introduced system features. For example, we cannot even identify all side channels that may

leak information, thus cannot prevent all information leaks. As a response to this problem,

we instead strive to protect certain sensitive data, even in the presence of information leaks.

Such protection is orthogonal to fixing root causes of information leaks; it acts as the

second line of defense against information leaks. Towards this goal, we have developed

ASLR-Guard, which prevents code-pointer leaks to defeat code-reuse attacks [164], and

BUDDY, which detects memory disclosures with replicated execution.

4.1 ASLR-GUARD: Stopping Code-Pointer Leaks

Since W⊕X became a de-facto security mechanism in modern operating systems, code

injection is no longer a viable general attack technique. In particular, attackers can no

longer place arbitrary shell code in the target process’ data space and hijack control to

start executing that shell code. Instead, attackers now rely on code reuse attack that hijacks

the control flow to existing code in the target process (in an unintended manner). Ever

since their first introduction, code reuse attacks have evolved from simply jumping to some

sensitive library functions (a.k.a. return-to-libc) to chaining up small snippets of existing

code (a.k.a. gadgets) with mainly returns and indirect calls/jumps to allow the attacker

to perform arbitrary computations [165]. However, there are two prerequisites for these

attacks: (1) a prior knowledge of the location of existing code gadgets, and (2) the ability to

overwrite some control data (e.g. return addresses, function pointers) with the correct values
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so as to hijack the control flow to the targeted gadgets.

Address Space Layout Randomization (ASLR) aims to make the first prerequisite

unsatisfiable by making the addresses of code gadgets unpredictable. In theory, ASLR can

complement W⊕X and stop code reuse attacks effectively. By randomizing the location

of different code modules, and even various instructions within code modules [80, 101,

142, 187], attackers without a priori knowledge of how the randomization is done will not

know the location of the code that they want executed. As a result, attempts to launch

code reuse attacks will likely direct the hijacked control to a wrong location and cause the

attack to fail (usually with a program crash). It has been widely used in modern operating

systems, and proven to be extremely efficient. However, research in recent years has

shown that many implementations of ASLR fail to live up to its promises of stopping

code reuse attacks [20, 65, 161, 166, 174]. In some cases, the ASLR implementations

fail to provide enough entropy thus are subject to brute-force attacks [20, 65, 166]. A

more serious and fundamental problem for randomization based protection mechanisms

is information-leak vulnerabilities [161, 174], which breaks the implicit assumption that

attackers cannot learn the randomness. With information leak, the attacker usually can obtain

a “post-randomization” pointer to the location of a known module (e.g. specific function in

a particular library) [20, 65, 166]. For ASLR that works at a module-level granularity (i.e.,

it does not modify the relative location of different instructions within a module), this kind

of leak will allow an attacker to identify all target addresses within that module. Even for

instruction-level randomization, with a sufficiently powerful information-leak vulnerability,

attackers can exploit a single code address leak and repeatedly read code pages to eventually

locate all the code gadgets necessary to launch even the most sophisticated code reuse

attacks [168]. More devastating, information leak is quite prevalent and the number of

instances discovered is increasing in general, as shown in Figure 25.

One way to solve this problem is to completely prevent code address leak. However,

1http://www.cvedetails.com/vulnerabilities-by-types.php
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Figure 25: The number of information-leak vulnerabilities reported by CVE Details1. It is still
increasing in general.

detecting or preventing code address leak is a very challenging problem. Due to the

complexity of programs written in low level programming languages, it is even not clear

about if one can find all pointers or data that can be leveraged to infer the code address.

Moreover, code pointer and data can be inter-casted during the data propagation. And some

code pointers (e.g., return addresses) are frequently dereferenced. Therefore, it is very

challenging to correctly and efficiently protect code pointers.

In this work, we propose ASLR-GUARD, a system that completely prevents code

address leak to stop code reuse attack. The main idea is to either prevent code pointer leak

or render any leaked code pointer useless in the construction of code reuse attack, so that we

can reclaim the benefits of ASLR and prevent code reuse attacks. In particular, we propose

three techniques: (1) completely decouple code and data by remapping all code to a random

address, so a data pointer cannot be used to infer the location of code; (2) store all sensitive

code locators (Hereafter, we use the term code locator to refer to any pointer or data that

can be used to infer code address) in a secure storage, and (3) whenever a code locator is

going to be propagated to the regular memory regions, we encrypt it to prevent attackers

from exploiting the value of this code locator or using this code locator to hijack the control

flow to arbitrary addresses.

We have implemented a prototype system ASLR-GUARD, which consists of two main

components, a modified compilation toolchain that includes compiler, assembler and linker;

and a modified dynamic loader. The first component is responsible for instrumenting an
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input program (in source code) and all its libraries so that all code locators can be identified

and protected by our policies. The runtime component allows us to perform necessary

initialization of our environment. Our evaluation results show that (1) ASLR-GUARD can

thwart all the code locator leaks we have tested, even if attackers can dump all data regions;

(2) with the capability of resisting against code locator leak attacks, ASLR-GUARD can

reinforce ASLR to stop advanced code reuse attacks [20]; and (3) it incurs almost no runtime

overhead (< 1%) on the SPEC benchmark.

In summary, the contributions of this work are:

• We perform a systematic analysis to identify all sources of sensitive code locators,

and implemented a memory checking tool to verify that we did identify and protect

all code locators.

• We propose a hybrid approach that employs isolation to protect most code locators

(for better performance and security), and encrypt the remaining code locators that

are hard to isolate.

• We have implemented a prototype system, ASLR-GUARD, and our evaluation shows

that ASLR-GUARD incurs a negligible runtime overhead on the SPEC benchmark

and left no single code locator unprotected.

A point worth noting is that protecting pointer by encryption is a general approach, but

the challenge is how to achieve both security and efficiency. For example, PointGuard [43]

sacrifices security for performance by XORing all pointers using a single key. Such scheme

is not secure against chosen-plaintext attacks. Further, PointGuard is also vulnerable to

forgery attacks due to missing integrity checks. AG-RandMap overcomes these problems

by proposing a novel and efficient encryption scheme ( Figure 27). Furthermore, as we

will show in §4.1.2, our work overcomes a major technical challenge of identifying all the

code locators that need to be encrypted. Finally, our policy for handling code locators on
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stack allows us to improve both the security and, very significantly, the performance of

ASLR-GUARD.

4.1.1 Threat Model

To make sure our solution is practical, we define our threat model based on strong attack

assumptions, which are commonly used in projects related to code reuse attacks [20, 65,

166, 168]. As the trusted computing base (TCB), we assume a commodity operating system

(e.g., Linux) with standard defense mechanisms, such as non-executable stack and heap,

and ASLR. We assume attackers are remote, so they do not have physical access to the

target system, nor do they have prior control over other programs before a successful exploit.

We assume the platform uses 64-bit virtual address space, as 32-bit address space cannot

provide enough entropy and 64-bit processors are widely available.

For the target program, we assume it is distributed through an open channel (e.g.,

Internet), so attackers can have the same copy as we do. This allows them to do any

analysis on the program, such as finding vulnerabilities and recomputing all possible code

gadgets. We assume the target program has one or more vulnerabilities, including control-

flow hijacking or information-leak vulnerability, or both kinds at the same time. More

specifically, we assume the program contains at least one vulnerability that can be exploited

to grant attackers the capability to read from and write to an arbitrary memory address.

We further assume this vulnerability can be exploited repeatedly without crashing the

target program, so attackers can use the arbitrary memory read/write capability at will.

Since arbitrary memory read/write on the 64-bit virtual address space is probabilistically

impossible to achieve attacker’s goals, we assume all arbitrary memory read/write will be

based off on the memory addresses leaked from the previous vulnerability (or second-order

guess based on the leaked code locator). Finally, we assume the ultimate goal of the attackers

is to divert the control flow and execute arbitrary logic of their choice.

Although there are a few known explicit leak channels (e.g., /proc/self/maps), many
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Table 17: A summary of all code locators that can be used to infer code address. All of them are
protected by ASLR-GUARD

Category Type Applied protection

Load-time L1. Base address Encryption + Isolation
locators L2. GOTPLT entry Isolation

L3. Static/global pointer Encryption + Isolation
L4. Virtual function pointer Encryption + Isolation

Runtime R1. Return address Isolation
locators R2. GetPC Encryption

R3. GetRet Encryption

OS-injected O1. Entry point Encryption
locators O2. Signal/Exception handler Encryption

Correlated C1. Jump table entry Isolation
locators C2. Data pointer Decoupling

data/code sections

security enhanced Linux distributions such as PaX disable /proc-based pointer or layout

leaks. We assume there is no explicit leak through the platform itself.

Out-of-scope threats. Since we assume the OS as our TCB, we do not consider any attack

that tries to exploit an OS vulnerability to gain control over the target program. Given our

threat model, we focus on preventing the attacks that exploit vulnerabilities to bypass ASLR,

and then overwrite control data to hijack control-flow. Non-control-data attacks [36] (e.g.,

hijacking credential data or metadata of code locators, like object pointers) are out of our

scope. We also do not consider information exfiltration attacks.

4.1.2 Code Locator Demystified

Since many kinds of data besides code pointer can be leveraged to infer the address of code,

such as the base address of text section and offset in a jump table, we use the term code

locator to refer to any pointer or data that can be leveraged to infer code address. Although

many previous works like the JIT-ROP attack [168] have shown that a single code locator

leak may compromise the whole ASLR protection, to the best of our knowledge, there

was no existing work that systematically discussed the composition of code locators. In

order to provide a comprehensive protection against information leak, we first conduct a
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systematic analysis to discover all code locators in a program, and discuss the completeness

of coverage.

4.1.2.1 Discovery Methodology

When a program is starting, the kernel is responsible for creating the address space of

the process and loading the ELF binary and dynamic linker, while the relocation of code

pointers is left for dynamic linker. Dynamic linker then loads all required libraries and

performs necessary relocations before the loaded code is executed. Once all relocations

are done, the dynamic linker transfers the control to the program’s entry point. During

execution, the program may (indirectly) call function pointers, or interact with OS, e.g.,

signal handling. We categorize code locators mainly based on the life cycle of the program

execution. Then we try to identify all code locators at different program execution stages.

More specifically, we first thoroughly checked the source code of dynamic linker (ld.so),

libc libraries, and gcc to understand how code locators could be generated at load-time and

runtime of the program execution. As for code locators that are injected by the OS into the

process’ address space, we implemented a memory analysis tool to exhaustively check if

any 8-byte in readable memory points to any executable memory in the target program or

bases of modules, and we performed this check before and after executing every system call.

The memory analysis tool also serves to validate our process for discovering code locators

injected by the dynamic linker and the program itself (e.g., checking the memory at the

entry/exit points). Once our memory analysis tool discovers new kinds of code locators, we

manually verify and categorize them. We then append the new “category” to the identified

code locator set, and run memory analysis tool again to find more kinds of code locators.

The iterative process ends until no new code locators are reported. We summarize our results

of such exhaustive memory analysis in Table 17.
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4.1.2.2 Code Locators at Different Stages

Load-time Code Locators. During load-time, there could be various kinds of code locators

computed and stored in the memory, e.g., static function pointer and .gotplt entry, as shown

in §4.1.2. Although it is hard to iterate all code locators produced at load-time, we found

the fact that, suppose ASLR is fully enabled, all code locators must be relocated before

being dereferenced. With this fact in mind, we designed a general approach to discover and

protect all load-time code locators. We control the relocation functions in dynamic linker,

so that all load-time code locators must go through our relocation, and therefore we can

enforce our protections for them, e.g., isolation and encryption.

Runtime Code Locators. Code locators can be generated at runtime by deriving from the

program counter (e.g., RIP). In x86_64 platform, the RIP value can be loaded either by a

call instruction or a lea instruction. call instruction pushes return address on the top of

stack, and when the callee returns, the return address is dereferenced. Usually, people believe

call and ret are paired. In our analysis, we indeed found some corner cases in which

return address is not used by ret. As the code locator type R3 shown in §4.1.2, setjmp

loads return address using a mov instruction, and the return address is then dereferenced as

a function pointer by longjmp. Besides the return address, runtime code locators can also

be generated by GetPC (e.g., lea _offset(%rip), reg). For example, if there is a function

pointer that is assigned with an address of a local function, typically GetPC will be used to

get the function address. Since we have the complete control of the compilation toolchain,

we could properly discover all runtime code locators (e.g., the ones introduced by call or

GetPC) and enforce the corresponding protections, which are elaborated in §4.1.3.

OS-injected and Correlated Locators. As ASLR-GUARD is designed to work with

unmodified commodity kernel, how the program interacts with kernel needs be analyzed in

order to discover code locators that might be injected or transmitted by the kernel. We used

our memory analysis tool to check the memory right before and after a syscall. Based on
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our analysis, we found that the program entry pointer can be stored on the stack by kernel.

Also kernel may save the execution environment, including RIP value, for signal/exception

handling. Since data sections and code sections are mapped together, the offsets between

them are fixed. Data pointers can be leveraged to infer code addresses. We call such pointers

the correlated code locators, which we correctly handle to prevent intentional code address

leaks.

4.1.2.3 Completeness of the Analysis

In an ASLR-enabled program, all static code locators (e.g., the ones in .gotplt and virtual

table) must be relocated at load-time. As we can control the relocation routine, we can

guarantee to cover all such code locators. Another source of code locator at load-time is

that a code locator is calculated based on a base address. So we also collect all cases in

dynamic linker that access the base address stored in link_map. In this way, we can cover all

load-time code locators. Note that we will remap all code sections to random addresses, any

missing code locator at load-time (although we did not meet such case in our evaluation) will

crash the program, which means our analysis for load-time code locators is “fail-safe”. For

runtime code locators, as we have the control of whole toolchain, we can easily guarantee to

find all runtime code locators (i.e., we catch all instructions that access return address or

rip).

As for code locators that are injected by the OS, we take a dynamic analysis approach.

While this dynamic analysis approach is not necessarily complete in theory, we will argue

that in practice the way the OS setups a process’ address space (and thus all the bookkeeping

code locators it may inject into various user space data structure) should be the same for

every process; a similar argument should apply for any code locator injected for signal

handling.
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Figure 26: Register usage semantics in ASLR-GUARD. The usage of rsp and gs will be securely
regulated by ASLR-GUARD’s compiler, so never be copied to the program’s memory, nor accessed
by the program’s code.

4.1.3 Design

In this section, we present the design of ASLR-GUARD. Based on previous discussion and

existing attacks [20, 153, 168], we know that as long as attackers can exploit information-

leak vulnerabilities to obtain a valid code locator, ASLR will continue to be nullified,

no matter how much we improve the granularity of the randomization. So the goal of

ASLR-GUARD is to: completely prevent leaks of code locators.

Figure 26 demonstrates the high-level idea of ASLR-GUARD. First, it decouples code

sections and data sections. By doing so, the process’ address space is virtually divided

into two worlds: the data world and the code world. This step eliminates all the implicit

relationship between data and code (C1). Second, ASLR-GUARD acts as the gateway

between these two worlds: whenever a code address is about to be leaked to the data world,

ASLR-GUARD encrypts the address as a token; and whenever a token is used to perform

control transfer, ASLR-GUARD decrypts it. By doing so, ASLR-GUARD eliminates all

explicit code locator leaks. To implement this scheme, we developed four key techniques:

safe vault, section-level randomization, AG-RandMap and AG-Stack.

4.1.3.1 Safe Vault

Safe vault is an “isolated” memory region where all the plaintext code locators (except R1)

listed in Table 17 are stored. We divide the safe vault into two parts. The first part is for
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storing the information of all remapped sections, which includes the base address for each

section before and after the remapping, as well as the size of each section. The second part

is the random mapping table used for code locator encryption/decryption.

In ASLR-GUARD, we guarantee the isolation of the safe vault with the following design.

First, the base address of the safe vault is randomized via ASLR. Second, the based address

is stored in a dedicated register that is never used by the program 2, and its content is never

saved to the data memory. As a result, one can only locate the safe vault by brute-forcingly

guessing its base address, which is prohibited by ASLR on 64-bit systems.

4.1.3.2 Section-level randomization

The purpose of the section-level randomization is two-folded: first, we use it to stop attackers

from deducing the location of our code using leaked data pointer; second, we would like

to further protect data structures that contain code locators (namely jump tables, .gotplt

tables and virtual function tables) without paying the price of encrypting all the code locators

in them.

For our first goal, we decouple code from data by remapping all code sections (code

sections can be identified by looking up ELF header) to random addresses. Since the offset

between code and data is changed during this process, we further adjust the constant offsets

in all data-access instructions. This is done at load time based on the relocation information

generated by our linker. For our second goal, we modified the compiler to make sure that:

(1) jump tables are always emitted in rodata sections, (2) addresses pointing to, or derived

from the content of, code locator tables like jump tables and .gotplt tables always stay in

registers and are never saved to the memory. With these two guarantees, we can protect code

locators in these data structures by simply remapping them to random addresses, without

ever needing to encrypt the code locators stored in these tables. One exception to our second

rule is the virtual function tables. Since we cannot guarantee that virtual function pointers

2On x84-64 platform, the segmentation register gs is the most suitable candidate for this purpose.
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Figure 27: Code locator encryption/decryption scheme.

will never be stored to the unsafe data world, we encrypt virtual function pointers after the

virtual tables are remapped to a random address. After the remapping, we use the safe vault

to store the remapping information for each of the protected section so we can later patch up

accesses to them. One final point to note is that to make sure the remapped location of the

various tables are truly random, we wrapped the mmap() function to provide it random base

addresses. As the primary goal of ASLR-GUARD is to harden ASLR, instead of to improve

the entropy of ASLR, we set the same entropy as in the default 64-bit Linux ASLR (28-bit).

We acquire the randomness from cryptographic secure source, i.e., the RdRand instruction

on modern Intel processors. There are alternatives from /dev/random that could be used.

4.1.3.3 AG-RandMap–Locator Encryption

In this subsection, we define our encryption scheme for encrypting code locators. This

encryption scheme is designed to achieve two goals. First, it must be strong enough to stop

code reuse attacks even when some (or all) of the encrypted code locators are leaked. We

also assume that attackers can know what functions the leaked code locators point to. In

order to achieve this goal, our scheme need to prevent attackers from efficiently deriving

valid encrypted code locators that will be dereferenced to direct the control flow to code

gadgets. In particular, our encryption scheme should make the task of deriving a valid

encrypted code locator as difficult as brute-forcingly guessing the gadgets under ASLR. The
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second requirement for our encryption scheme is performance, especially for the decryption

operation. This is because code locator generation is a relatively rare operation, but code

locator dereferencing (e.g., indirect call) is much more frequent.

To achieve these goals, we propose AG-RandMap, an efficient random mapping table

mechanism, as our encryption scheme. The main idea of AG-RandMap is illustrated in

Figure 27. To encrypt a code locator, we will randomly pick an unused 16-byte entry in the

mapping table. The first 8 bytes will be used to store the plain code locator being encrypted;

the next 4-bytes is zero that is used to get the random offset with XORing during decryption,

and the last 4-bytes contains a random nonce (with 32-bit entropy) for integrity check. As

in 4.1.3.2, we acquire the randomness from cryptographic secure source (i.e., the RdRand

instruction provided by modern Intel processors). After building the new table entry, the

4-byte random offset from the base of the mapping table to the new entry is concatenated

with the nonce, and returned as the encrypted code locator. Note that AG-RandMap does

not use any key for encryption, but generates an entry in the mapping table and saves the

encrypted code locator in the corresponding register or memory using “one-time” random

value.

Decryption under our scheme is performed very efficiently and involves only one extra

xor operation on top of the original indirect control transfer. The code locator decryption

process is also illustrated in Figure 27. Assuming the encrypted code locator is in %rax, we

first use %eax-plus-8 as an offset to read 4-bytes zero and the nonce from the table, and xor it

with the encrypted code locator. If the nonce is correct, the result will be a valid offset within

the mapping table, which then decrypts %gs:(%rax) to the plain code locator. Otherwise,

the offset will be outside of the table, transferring the control to a random address that is

highly likely to be either unmapped or not executable, thus crashing the program. In other

words, for an attacker to forge a valid encrypted code locator that will direct the control flow

to a plaintext address stored in our AG-RandMap, he will need to know the correct nonce to

use for the target table entry. To do so, he can either guess with a successful chance of 2−32;
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or try to locate our AG-RandMap, which is equivalent to brute-forcing ASLR. Either way,

our encryption scheme satisfies the first requirement.

C++ support. To support polymorphism, C++ uses a virtual function table (vtable) to

store the pointers of virtual functions for each class with virtual functions. And in each

object of class with virtual function, vtable pointer(s) (vptr) are used to point to the right

vtable. ASLR-GUARD generally protects the function pointers inside vtable by encryption.

However, as vtable pointers are stored in objects in unsafe memory, leaking vptr may help

attackers know all encrypted virtual function pointers and allow COOP attack [153]. To

prevent such attack, ASLR-GUARD further encrypts vtable pointers so that attack cannot

even know the locations of encrypted virtual function pointers, which is an essential step for

COOP attack[153].

4.1.3.4 AG-Stack

As discussed in §4.1.2, some dynamic code locators are stored on the stack, such as return

addresses (R1) and OS injected code locators (O2). To prevent leaking return address

through stack, one approach is to apply the same encryption/decryption scheme in §4.1.3.3.

However, this approach is not suitable for protecting return address on the stack. First of

all, the return addresses are generated very frequently, and our encryption scheme does

not support frequent encryption very well. Second, it will require extensive modification

to support encryption over OS injected code locators. For these reasons, we propose an

efficient alternative solution, namely AG-Stack to protect R1 and O2.

Our approach is similar to the traditional shadow-stack techniques [68, 149] that are

used to prevent return addresses from being modified by attacks. However, they protect

return addresses by costly instrumenting call/ret pairs. For example a single ret is

instrumented with at least 4 instructions that load return address in the shadow stack, adjust

the stack, check equivalence, and ret. Therefore, traditional shadow-stack approaches face

three problems: (1) call/ret are frequently executed by CPU, instrumenting them incurs
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significant performance overhead; (2) cases where call/ret don’t come in matching pairs,

e.g., GetPC, are difficult to handle; (3) “return addresses” injected by the OS will not be

automatically protected. To address these issues with traditional shadow-stack techniques,

we propose a novel mechanism, namely AG-Stack.

Besides being much more efficient, AG-Stack has several advantages: (1) it provides

the capability to store more sensitive data; and (2) it does not change the semantics of

original code, so special cases like unpaired call/ret instructions and signal handling

can be naturally supported. The high level idea of AG-Stack is to maintain two stacks by

re-arranging the usages of two registers. Specifically, we use the ordinary stack (i.e., the one

accessed through RSP, as shown in Figure 26) as our AG-Stack to store sensitive on-stack

data like return addresses and function pointers used for exception handling. All other data,

like stack variables, register spilling and function call arguments are stored on a regular stack

that accessed through R15, as shown in Figure 26. The security of AG-Stack is guaranteed

in a way similar to safe vault. As in safe vault, its base address is randomized. Also, since

AG-Stack does not store any program data, there is no data pointer pointing to it, so attackers

cannot derive its address through memory traversal. Finally, whenever the stack pointer is

stored in memory (e.g., during setjmp), we will encrypt it using the scheme in §4.1.3.3. As

such, with AG-Stack, we achieve a better performance but a guaranteed security for all code

locators saved on the stack.

AG-Stack is very similar to the safe-stack from CPI [98]. Both impose no runtime

overhead. The difference is that safe-stack performs type-based analysis and intra-procedure

analysis to find unsafe stack objects. As shown in Section §4.1.2, type-based analysis may

not cover some non-pointer code locators. AG-Stack eliminates these analyses by thoroughly

re-arranging the register usages.

Multi-thread support. In Linux, multi-thread feature is enabled with Native POSIX

Thread Library (NPTL), which creates a new thread with the clone system call. Specifically,

to create new thread, NPTL first allocates a new stack and stores thread descriptor at the end
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Figure 28: An overview ASLR-GUARD’s architecture. It has two components: toolchain (e.g.,
compiler) and runtime (e.g., loader and libc). Code locators will never be copied into the program’s
data memory, avoiding potential leakages.

of the new stack. And then it saves the thread function pointer and its arguments in the new

stack. After that, clone system call switches the context, and the thread function is called.

Similarly, to support multi-thread in ASLR-GUARD, for each new thread, we allocate a

regular stack (with the same size) whenever the new (safe) stack is allocated, and release the

regular stack when the thread exits. The regular stack information (e.g., stack address and

size) is saved in thread descriptor that is stored in AG-Stack.

4.1.4 ASLR-GUARD Toolchain

In this section, we describe our prototype implementation of our protection scheme. We

first give an overview of our prototype, then we discuss the detail of each component of

ASLR-GUARD.

4.1.4.1 Architecture

Figure 28 shows the overview of ASLR-GUARD’s architecture. To remove all code locator

leaks, ASLR-GUARD requires instrumenting all loaded modules, including modules of the

target program as well as all shared libraries. In this work, we assume the access to the

source code of the target program is available and the instrumentations are done through

re-compilation.

ASLR-GUARD consists of two major components: the static toolchain and the runtime.

The static toolchain is in charge of (1) implementing the AG-Stack, which will be used

to securely store return address and OS injected code locators; and (2) instrumenting the
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Component Tool Lines of code

Compiler gcc-4.8.2 120 lines of C
Assembler as-2.24 900 lines of C
Linker ld-2.24 180 lines of C
Dynamic Linker eglibc-2.19 1,200 lines of C

Memory analyzer 800 lines of Python
Total 3,200 lines of code

Figure 29: Toolchain modification made for ASLR-GUARD.

program to correctly encrypt runtime code locators and decrypt all code locators. The

ASLR-GUARD runtime contains three majors parts. The first part is the dynamic loader,

which is in charge of (1) initializing the AG-Stack and the safe vault, (2) decoupling code

sections from data sections, and (3) encrypting all load-time code locators. The second part

is the standard C/C++ libraries that will be linked into most programs. Among these libraries,

some need special care because they need to handle some OS-injected code locators in

special ways (e.g., setjmp).

We implemented our prototype based on the GNU toolchain: gcc, binutils and glibc.

Figure 29 summarizes the our efforts of modifying the GNU toolchain.

4.1.4.2 Compiler

We modified the GNU compiler gcc to assist implementing the code locators encryption and

AG-Stack. For code locator encryption, we let gcc insert a flag for data-read instructions

of global data pointers to differentiate global function pointers in the generated assembly

code. For AG-Stack part, we performed several modifications in gcc. First, we need to

reserve a register for the unsafe stack. In gcc, this can be done through the -ffixed option.

But a more important question is, which register should be chosen. In ASLR-GUARD, we

choose this register using two criteria: (1) it should be one of the least used general registers

in handwritten assembly code, and (2) it should be one of the callee-saved registers (i.e.,

non-volatile). The first requirement is for that compiler can only guarantee that the code

generated by them does not use the reserved register, however, any handwritten assembly

(including inline assembly) may still use this register. They need to be modified to use
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other registers (e.g., we found and modified about 20 cases in glibc). So choosing the

less frequently used register helps us minimize the modifications. The second requirement

is for compatibility with legacy uninstrumented binary. Because we reserved the RSP for

AG-Stack, by using a callee-save register, it ensures that both code can work correctly. Based

on these criteria, we chose R15 as the register for the regular stack on our target platform.

Second, we want to make sure that besides call/ret, there is no implicit RSP mod-

ifications. On x86-64, such modifications can be introduced by instructions, push/pop,

enter/leave and call/ret [83, Ch. 6.2]. Push/pop are for saving/restoring the target regis-

ters, and enter/leave is a shortcut for saving/restoring the frame register. Our elimination

of push/pop is done in two steps. We first leveraged existing compiler optimizations to

reduce the usage of push/pop. In particular, modern compilers like gcc in most scenarios

prefer using mov instruction for performance gain, as CPU can do pipeline scheduling for

mov instructions. So we modified gcc to always prefer using mov instruction for passing

arguments (as if -maccumulate-outgoing-args and -mno-push-args are always set) and

saving/restoring registers at function prologue/epilogue. For the remaining push/pop op-

erations, our assembler will replace them with corresponding mov operations on R15. The

elimination of enter/leave is done similarly

Finally, we need to re-align the stack. The System V AMD64 ABI uses XMM registers

for passing floating point arguments. And reading/writing these registers from/to memory

requires the memory address to be 16-byte aligned. As we split the stack into AG-Stack

and regular stack, the regular stack needs to be re-aligned. We enforced the alignment

by leveraging gcc’s supports for multiple platforms. Specifically, on platforms like ARM,

function invocations do not automatically save the return address on stack, so gcc already

understands how to align stack when there is no return address on stack. Using this support,

we modified gcc to treat our target platform as if it does not explicitly save the return address

on stack (by setting INCOMING_FRAME_SP_OFFSET = 0).
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4.1.4.3 Assembler

We modified the GNU assembler gas to perform code instrumentations for code locator

encryption/decryption and AG-Stack. The first task is to encrypt every runtime code

locator (type R2, R3 in Table 17). For position-independent ELF executables, runtime

code locators are created through retrieving the PC value (e.g., mov (%rsp), %rax may load

return address) or a PC-relative address (e.g., lea offset(%rip), %rax). ASLR-GUARD

uses these signatures to identify all potential code locators. Specifically, we perform a

simple intra-procedure analysis (check if RSP points to return address) to find all instructions

that load return addresses. And we find the instructions of loading “PC-relative” code

locators based on the metadata (e.g., indicating if a symbol is a function) contained in the

assembly files and the global data pointer flag inserted by our compiler 4.1.4.2. Note that, for

handwritten assembly, there is no easy way to distinguish the ones for global data access and

global code access at assemble time. To address this issue, our assembler first conservatively

instruments both of them, and defer it to our linker to remove the false positive ones, as

linker has code boundary information to verify code locators. For each identified instruction,

our modified assembler will insert an encryption routine to immediately encrypt the code

locator, as shown in Figure 27

Next, we instrument the target program to correctly decrypt code locators. Specifically,

we first instrument every indirect call with code address in register in the ways shown in

Table 27. If the target is stored in memory, we first save RAX and load the target into RAX.

Then we perform the decryption as the one in Table 27. One difference is that, to recover

RAX, we temporarily store the decrypted code address in AG-Stack, do recovery, and call

into the code pointer in AG-Stack. Indirect jump for invoking function is instrumented in

the same way.

The third task is to replace all push/pop and enter/leave operations with explicit

stack pointer operations. After this, ASLR-GUARD will replace all RSP occurrences with

R15, except when RSP is used to access return address in handwritten assembly. Using the
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same intra-procedure analysis mentioned above, we can find all such cases and skip the

replacements.

4.1.4.4 Static Linker

We modified the GNU static linker ld to perform two tasks. The first task is to provide

relocation information to the dynamic linker. This is necessary because once we decoupled

code sections from data sections, existing data access instructions will no longer work

because the offsets have changed. To fix this problem, ASLR-GUARD creates a new

relocation table similar to the .rela.dyn to provide this information, i.e., which 4-bytes

need to be patched. The second task is to remove encryptions for global data access in

handwritten assembly, conservatively added by assembler. This task is performed here

because the linker has the information of all static modules, so it can identify whether an

instruction is for accessing data or code.

4.1.4.5 Dynamic Linker

We modified the dynamic linker ld.so of glibc to initialize the runtime, decouple code sec-

tions from data sections, and encrypt load-time code locators. When running an executable,

Linux will first load its interpreter (i.e., the dynamic linker), jump to the entry of its entry

and let the interpreter handle the target binary. This means the dynamic linker is the very

first module to be executed. For this reason, we insert our runtime initialization code at the

entry of the dynamic linker (_dl_start()). The regular stack is initialized by allocating a

new memory region with a random base, and copying all the arguments and environment

variables from the initial stack. Safe vault is setup by allocating another random memory

region and assigning the gs segment register to its base address. Once all the initializations

are done, the control is transferred to the remapped code of dynamic linker, and the original

one is unmapped.

The decoupling is done by remapping the corresponding sections to random addresses as
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the way mentioned in Section 4.1.3.2. After remapping, ASLR-GUARD will encrypt all load-

time code locators (see Table 17). This is done during the relocation patching. Specifically,

after randomizing the base address, the original dynamic linker already provides some

relocation functions to patch all those load-time code locators with correct code addresses.

In ASLR-GUARD, with the help of this feature, we modify these relocation functions to

patch the load-time code locators with encrypted values, instead of patching them with the

real code addresses.

4.1.4.6 Standard C/C++ Library

Protecting the standard C/C++ libraries is very important because they are linked into

every C/C++ program. Yet they contain hand-written assembly that may need special

care, to handle some corner cases may have compatibility problems with the automated

hardening techniques. Unfortunately, many previous work did not show enough discussions

on handling these libraries. In this subsection, we try to shed some light on this topic.

We first compile eglibc-2.19 and gcc-4.8.2 with our own toolchain. Then we handle

three main cases in handwritten assembly code: (1) access to return address and stack

parameter; (2) stack layout mismatching; (3) indirect jump for invoking functions; In the

first case, we use our intra-procedure program analysis to find instructions for loading

return address (e.g., mov (%rsp), %rax). For each identified instruction, we insert the

encryption routine right after it. However, because the regular stack does not contain the

return address any longer, the offsets used to access stack parameters (x86_64 calling

convention passes parameters via stack after the first 6 ones) are incorrect. We address

this by manually adjusting the regular stack top at function prologue and epilogue. In

total, we found 12 such cases in the handwritten assembly of glibc. The second case

happens when the caller is in handwritten assembly and callee is in C code, or vice versa.

For example, _dl_runtime_resolve is written in assembly, at the end of which, its local

variables, return address, and parameters are released at once by a stack-pivot instruction
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(i.e., addq $72, %rsp), as it assumes there is only a single stack. However, this is not correct

as AG-Stack and regular stack are supposed to be released separately. To handle this, we

manually change the assembly. In total, we handled 4 such cases in libc. As mentioned in

§4.1.3.2, indirect jumps for jump table will not be instrumented, but the ones for invoking

functions will be. To differentiate them in handwritten assembly, we manually verify if a

jump instruction is used for function invocation or not, if yes, we instrument them to go

through the code locator decryption. We found 1 case in glibc.

DWARF standard is adopted for C++ exception handler (EH). For each throw statement,

an exception is allocated and the stack unwinding (i.e.,unwinder) is started. For each catch

statement, g++ has already generated a EH table and a cleanup table during compilation.

And at runtime, the unwinder will walk through the stack twice to handle the exception: (1)

trying to find the correct exception handler based on EH table; (2) if a matching is found,

walking though the stack a second time for cleanup based on the cleanup table. To support

C++ exception handling in ASLR-GUARD, we need to update these two tables and rewrite

the unwinder to support AG-Stack. Since doing so merely requires some engineering efforts

and many C++ programs do not use it (e.g., Chromium does not use it and only two SPEC

benchmark programs use it), we did not support C++ exception handling in our current

prototype yet, but leave it for future work.

4.1.5 Evaluation

In this section, we present the evaluation of ASLR-GUARD. Our evaluation tries to answer

the following questions:

• How secure is the ASLR-GUARD’s approach in theory, compared to general ASLR

approach?

• How secure is the ASLR-GUARD’s approach against practical memory-based attacks,

empirically?
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• How much overhead does ASLR-GUARD impose, in particular runtime, loading time,

and space?

Experimental setup. We carried out evaluations of ASLR-GUARD to check its security

enhancements and potential performance impacts. Our evaluations are mainly performed on

the standard SPEC CPU2006 Benchmark suite. Beside that, we also applied ASLR-GUARD

to complex and real world programs, e.g., gcc, glibc and Nginx web server. We compiled

all above programs and their libraries with the toolchain of ASLR-GUARD and enforced

them to use the dynamic linker of ASLR-GUARD. All programs were run on an Intel(R)

Xeon(R) CPU E5-2630 v3 @ 2.40GHz machine with 128 GB RAM.

4.1.5.1 Security Analysis

In this subsection, we will present our analysis to determine the probability for an attacker to

hijack the control to a particular target address (let’s say, x). For our discussion in this section,

we will assume the ASLR provided by the underlying OS (in our implementation, 64-bit

Linux) provides 28-bit entropy for the address of any section that has been randomized.

Referring to Table 17, we can see that if all code locators to x are generated from sources

L2, R1 or C1 (i.e. items only reachable through .gotplt tables, return instructions or jump

tables), the attacker can only hijack the control to x by overwriting the content of the safe

vault. This is because ASLR-GUARD will never generate any encrypted code locator for x,

thus attackers cannot achieve the goal by overwriting an encrypted code locator. As such,

the probability for successful hijacking is the same as that of breaking ASLR, i.e. 2−28,

assuming the attacker knows the semantics, e.g., the offset of x in memory page.

On the other hand, if x can be reached through an encrypted code locator (i.e. x is the

address of items in the categories L1, L3, L4, R2, R3, O1, O2 of Table 17), and assuming

an encrypted code locator for x exists in AG-RandMap3, attackers have a new option by

3Otherwise, the situation will be the same as above, the attacker will have to overwrite values in the safe
vault.
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Table 18: Code locator numbers. CL: code locator.

Programs
Size of # all enc. # load-time # PLT # fixed # enc. CL # plain CL in

rand. map CL CL entries PLT in unsafe in unsafe
table (byte) entries memory memory

perlbench 14,144 884 967 131 34 603 0
bzip2 4,480 280 303 28 11 20 0
gcc 22,784 1,424 1,339 89 39 187 0
mcf 4,528 283 361 39 18 9 0
gobmk 32,720 2,045 2,104 66 26 1,771 0
hmmer 4,544 284 361 83 37 10 0
sjeng 4,592 287 365 42 21 27 0
libquantum 4,512 282 324 46 12 9 0
h264ref 4,736 296 341 64 37 16 0
astar 14,560 910 2,289 1,348 33 29 0
xalancbmk 141,696 8,856 10,275 1,449 184 258 0
milc 4,544 284 336 58 15 9 0
namd 14,880 930 2,262 1,353 36 44 0
dealII 54,784 3,424 4,884 1,473 310 81 0
soplex 21,472 1,342 2,717 1,377 254 89 0
lbm 4,528 283 316 38 13 9 0
sphinx3 4,544 284 354 76 39 10 0

Average 21,062 1,316 1,759 456 66 187 0

trying to overwrite some encrypted code locators residing in the unsafe memory with a value

that can “decrypt” the control to x. For this kind of target, given a leaked encrypted code

locator other than x, as we have argued in §4.1.3.3, and the attacker cannot read the content

of AG-RandMap in safe vault, his chance of creating the correct encrypted value of x is

2−32, guaranteed by the random nonce. Either way, the best chance of a successful attack is

no more than 2−28. We discuss a case of that the encrypted value of x is leaked in §4.1.6.

4.1.5.2 Practical Security

To see how effective ASLR-GUARD is in practice, we performed multiple empirical security

analyses.

Memory snapshot analysis. As mentioned in §4.1.2, even it is unlikely, we cannot

guarantee kernel will never save code locators in unsafe memory, as our current design

did not instrument kernel code. To make sure there is no single plain code locator left

in the unsafe memory by kernel, we did a thorough memory analysis using our memory
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analysis tool described in §4.1.2. More specifically, we first applied ASLR-GUARD to

SPEC benchmark programs. And then we hooked the entry/exit points of the programs,

as well as all points right after syscalls, and dumped the whole memory core for memory

snapshot analysis. As expected, there is no single plain code locator left in unsafe memory.

All code locators are either isolated or encrypted, which prevents attackers knowing the

address of any executable memory. Note that, our memory analysis is conservative and may

contain false positives that some random data is falsely treated as code locator. Indeed, we

found two “code locators” that point to executable memory, in sphinx3. However both code

locators are eliminated due to they actually point to the the middle of instructions, so we

believe they are false positives. Furthermore, we evaluated other numbers, e.g., the map

table size, number of all encrypted code locators, number of load-time code locators, size

of .gotplt tables, etc. Out of them, an interesting number is the one of encrypted code

locators left in the unsafe memory. To get this number, we check if any 8-bytes is “pointing”

to the random mapping table by decrypting it in the way shown in Figure 27. Note that

such analysis is conservative, and the actual number could be even less. All the evaluated

numbers are shown in Table 18. In most programs, less than 10% encrypted code locators

are propagated to unsafe memory. Many of them have less than 20 ones in unsafe memory.

Nginx web server. We chose nginx to evaluate the effectiveness of ASLR-GUARD, not

only because it is one of the most popular web servers but also that it has been compromised

by couple of attacks [20, 65]. We took Blind Return Oriented Programming (BROP) 4 as an

example to show how ASLR-GUARD defeats the return address leak, which is an essential

step in BROP attack. BROP attacks nginx 1.4.0 (64-bit) by exploiting a simple stack

buffer overflow vulnerability. This attack consists of three steps: (1) guessing the return

address on the stack; (2) finding enough gadgets; and (3) building exploit. In step (1), BROP

proposed using stack reading approach to overwrite the return address byte-by-byte with

possible guess value, until the correct one is found. Naturally, ASLR-GUARD can prevent

4http://www.scs.stanford.edu/brop/
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Table 19: Comparison of average number of indirect branches between ASLR-GUARD and CFI
works, with the SPEC benchmarks. AG: ASLR-GUARD

Programs Original-CFI bin-CFI/CCFIR AG
ret call ret call ret call

perlbench 1 7,722 28,066 7,722 1 603
bzip2 1 1,097 11,905 1,097 1 20
gcc 1 16,697 65,519 16,697 1 187
mcf 1 1,234 12,935 1,234 1 9
gobmk 1 7,357 22,804 7,357 1 1,771
hmmer 1 1,473 16,898 1,473 1 10
sjeng 1 1,647 12,677 1,647 1 27
libquantum 1 1,184 13,405 1,184 1 9
h264ref 1 2,707 16,191 2,707 1 16
astar 1 3,398 27,301 3,398 1 29
xalancbmk 1 15,977 133,642 15,977 1 258
milc 1 1,814 14,435 1,814 1 9
namd 1 3,413 28,162 3,413 1 44
dealII 1 6,687 120,788 6,687 1 81
soplex 1 4,513 36,512 4,513 1 89
lbm 1 1,171 12,926 1,171 1 9
sphinx3 1 1,316 15,608 1,316 1 10

AIT 1 4,671 34,692 4,671 1 187

such attack at the first step, as return addresses are not stored in regular stack at all. To verify

it, we applied ASLR-GUARD to nginx, and run the exploit again. As expected, the exploit

failed at guessing the return address. Moreover, we did the memory analysis during this

attack. We found there were 1,474 code locators encrypted, out of which, 361 ones were

propagated to unsafe memory. Again, no plain code locator was left in unsafe memory.

Average indirect targets. If we conservatively assume the attackers can read the whole

unsafe memory and understand the semantics of the memory (as will be discussed in §4.1.6),

attackers may reused the leaked encrypted code locators to divert control flow. Given this

conservative assumption, we want to know how many encrypted code locators are left in

unsafe memory. Also we define a metric Average Indirect Targets (AIT) to measure the

average number of possible targets an indirect branch may have. The reason we do not reuse

AIR (Average Indirect target Reduction) metric proposed in [194] is that even the AIR is

99.9%, the number of possible targets is still huge, especially for some large programs. As

we can see in Table 19, ASLR-GUARD only left a small portion (4%) function pointers in
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Table 20: Evaluation of runtime performance with only AG-Stack and full ASLR-GUARD protec-
tion, load-time overhead, and increased file size.

Programs Runtime Load-time
Orig AG-Stack AG-Stack Full AG Full AG Orig AG AG

(s) (s) Overhead (s) Overhead (µs) (µs) Overhead

perlbench 4.17 4.20 0.72% 4.32 3.60% 1.1 1.8 62.8%
bzip2 12.2 12.3 0.82% 12.1 -0.82% 0.8 0.9 16.6%
gcc 1.75 1.74 -0.57% 1.93 10.29% 5.5 6.5 17.9%
mcf 3.14 3.10 -1.27% 3.10 -1.27% 2.4 3.2 30.8%
gobmk 25.6 25.5 -0.39% 25.7 0.39% 3.2 5.4 67.9%
hmmer 8.07 8.06 -0.12% 8.04 -0.37% 3.6 4.1 13.8%
sjeng 5.48 5.41 -1.28% 5.56 1.46% 2.7 3.9 41.8%
libquantum 0.161 0.165 2.48% 0.165 2.48% 2.4 2.5 4.7%
h264ref 31.5 31.2 -0.95% 32.3 2.54% 3.0 3.8 25.6%
astar 15.1 14.9 -1.32% 14.5 -3.97% 3.4 4.0 17.3%
xalancbmk 0.592 0.600 1.35% 0.615 3.89% 9.9 10.2 2.9%
milc 12.6 12.0 -4.76% 12.0 -4.76% 1.0 1.6 58.9%
namd 22.0 21.1 -4.09% 21.1 -4.09% 3.5 5.2 45.9%
dealII 73.1 76.3 4.38% 73.6 0.68% 4.1 5.1 24.2%
soplex 0.070 0.071 1.43% 0.071 1.43% 3.6 5.1 42.7%
lbm 3.16 3.12 -1.27% 3.16 0.00% 2.4 3.2 35.1%
sphinx3 2.39 2.37 -0.84% 2.38 -0.42% 2.5 3.2 24.2%

Average -0.33% 0.65 % 31.35%(0.86µs)

unsafe memory, which is much smaller than the ones of CFI implementations. Recently,

some CFI variants make use of type to further reduce the AIT numbers [136, 178]. As

shown in [136], the AIT number can be dramatically reduced to less than 1% compared

with original one. So we believe AIT of ASLR-GUARD can also be further reduced once

we consider type in the future.

4.1.5.3 Performance

In this subsection, we evaluate the performance overhead of ASLR-GUARD using the SPEC

CPU2006 benchmarks. The results are shown in Table 20. Note that, for fairly compari-

son, we used the same basic compilation options (e.g., -maccumulate-outgoing-args and

-mno-push-args) and only added “-aslrguard” and “-ffixed-r15” options in ASLR-GUARD

build. The results are the average numbers over 10 executions. On average, ASLR-GUARD

almost imposed no runtime (< 1%). In particular, 7 of them have even better performance

than the original ones. gcc intensively calls the encryption routine of ASLR-GUARD, so its
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performance overhead is about 10%. Compared with existing solutions for preventing code

reuse attacks, ASLR-GUARD is more efficient. For examples, the original CFI imposes

21%( [3]), bin-CFI imposes 8.5%( [194]), CCFIR imposes 3.6%( [193]), readactor imposes

6.4% ( [48]), and CPI imposes 8.4%( [98]) overhead. Compared with safe-stack of CPI [98],

performance of AG-Stack is slightly better, which is even better than the original one. With

this negligible runtime overhead, we believe ASLR-GUARD is a practical system to harden

programs with information leaks. We also performed load-time overhead evaluation for

ASLR-GUARD, which is shown in Table 20. The load-time overhead is as expected, as

ASLR-GUARD performs remapping, relocation, and encryption in load-time. However the

absolute time, i.e., 1 µs, is quite small. For space overhead, we measured the file size, which

is 6% increased in ASLR-GUARD. The memory space overhead has two megabytes more

for safe vault.

4.1.6 Discussion

Sophisticated attack defense. There are several sophisticated attacks proposed recently,

e.g., “missing the point” [65] and COOP [153]. As the size of safe vault in ASLR-GUARD

is only 2MB, there is no “always allocated” memory in ASLR-GUARD. Also offsets

between sections remapped by ASLR-GUARD are randomized. Provided these two features,

“missing the point” attack is not applicable to ASLR-GUARD. Regarding the COOP attack,

as mentioned in §4.1.3.3, all virtual table pointers are encrypted as code locators, so

attackers cannot know the locations of encrypted virtual function pointers to find vfgadgets,

and thus ASLR-GUARD can eliminate the COOP attack.

Reusing encrypted code locators. An astute reader may point out that in theory, all

the encrypted code locators that are stored in unsafe memory can leaked and reused to

construct code reuse attacks. However, to reuse these code locators, attackers have to

conquer the following challenges: (1) exploiting an arbitrary read vulnerability to leak the

whole unsafe memory; (2) understanding the semantics of leaked memory, e.g., recovering
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object boundaries, types and which functions the leaked encrypted code locators point

to; and (3) preparing parameters for the target function. Step (1) is relatively easy, if the

vulnerability can be repeatedly exploited without crashing the program. However, step

(2) is non-trivial. Previous works that tries to reverse engineer the data structures in a

memory snapshot either require an un-randomized anchor to bootstrap the traverse [29]; or

require execution traces [108]. But neither requirement is satisfiable under our attack model.

Step (3) is also challenging in x86-64 platform, where parameters are passed via registers.

Although a recent research has demonstrate using forged C++ object to pass parameters, as

discussed in §4.1.5.2, ASLR-GUARD can defeat such attack.

Despite raising the bar for attacks, we think ASLR-GUARD can be further improved in

two directions: (1) reducing AIT. According to MCFI [136], binding code locator with type

can significantly reduce the AIT to less 1% of original one. (2) code locator lifetime. We

observe that many of the remaining code locators should only be dereferenced under a very

specific context (e.g. pointers generated by setjump() should only be used in longjump()),

and their lifetime should be limited and easy to determine.

Timing side-channel attacks. Timing attacks [65, 158] can infer the bytes at a relative

address in unsafe memory or a guessed random address. ASLR-GUARD does not rely on

the default OS ASLR, instead it generates new random base addresses and specifies them

in mmap, so code sections are always randomized independently, which thus has 28-bits

effective entropy [79]. As the size of safe fault and code sections are small (say 100

MB), rewriting the data pointer with a guessed random value only has a probability of 1/214

to hit the mapped code or safe vault. The probability can be further reduced by improving

the entropy of the generated random base. Also, since all code locators in unsafe memory

are encrypted, such timing attacks can only obtain the encrypted code locators. More

importantly, our encryption scheme has the same computation costs for different locators,

so it is resistant against timing attacks.

Dynamic code generation. Besides static code, recent research also showed the feasibility
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of launching code reuse attack targeting dynamically generated code [10]. Our current

implementation of ASLR-GUARD cannot prevent such attacks. However, we believe our

current design can be naturally extended to protect dynamically generated code. Specifically,

since the code cache used to store the generated code is already randomized (as code

sections), we only need to identify pointers that may point to the code cache. This can be

done through a combination of our memory analysis tool and analyzing the code of the JIT

engine.

4.1.7 Related work

Pointer integrity. The most related work to ASLR-GUARD is PointGuard [43], which

also employed the idea of encrypting code pointers. However, it uses a single key to

encrypt all code pointers with XORing, which is vulnerable to chosen-plaintext attack and

forgery attack. Moreover, its type-based analysis cannot cover non-pointer code locators.

AG-RandMap overcomes all these problems without sacrificing performance.

Code pointer integrity [98] employed type-based analysis to identify code pointers and

unsafe stack objects, which misses non-pointer code locators. The 64-bit implementation of

CPI also relies on randomization to protect its safe region. Because its safe region contains

metadata of all recursively identified code pointers and safe stack, its size is so huge that

there is an “always allocated” memory. In addition, the mapped sections in CPI have fixed

offsets to each other. Due to these two issues, CPI is demonstrated to be bypassable by the

“missing the point” attack [65]. On the contrary, the size of safe vault in ASLR-GUARD is

much smaller (221 vs 242) and section-level randomization is performed 4.1.3.2. And thus

“missing the point” is mitigated by ASLR-GUARD.

Fine-grained randomization. Under the standard ASLR deployed in commodity OS, the

leak of a single address allows attacker to derive addresses of all instructions. To address

the shortcoming, many finer-grained randomization schemes have been proposed. [80, 142]

work at instruction level, [92, 187] work at basic block level, and [12] works at page level.

136



Unfortunately, as demonstrated in [168], all these fine-grained randomization schemes are

vulnerable to attacks that leverage a powerful information leak. Since ASLR-GUARD aims

to overcome the weakness against information leak, it is orthogonal to these work and can

be deployed together to protect them from information leak based attacks.

Dynamic randomization and re-randomization. JIT-ROP [168] circumvents all fine-

grained code randomization techniques by continually disclosing the code pages, assuming

the code memory layout is fixed at runtime. To break this assumption, Isomeron [54]

and Dynamic Software Diversity [46] dynamically choose targets for indirect branches at

runtime to reduce the probability for adversary to predict the correct runtime address of ROP

gadgets. However, the security of such scheme depends on the number of gadgets required to

perform a ROP attack. If a small number (say 2) of gadgets is enough to perform the attack

(e.g., calling mprotect()), the attack still has a high chance to survive (e.g., it is 25% in

Isomeron). OS-ASR [71] prevents memory disclosures by live re-randomization. However,

the effectiveness and performance are dependent on the frequency of re-randomization. For

example, JIT-ROP can finish the attack as fast as 2.3s. To prevent such attack, OS-ASR need

provide a re-randomization with interval less than 2.3s. Based on its evaluation, an interval

with 2s will impose about 20% runtime overhead. In ASLR-GUARD, we completely prevent

attackers reading the code sections and code pointers, which provides a better security. Also

ASLR-GUARD imposes a negligible overhead.

Execute-only memory. Another approach to defeat information leak attacks is to combine

fine-grained randomization and execute-only memory [11, 48]. However, they all require

modification to the operating system. As a comparison, ASLR-GUARD does not require

any OS modification thus is more practical. Moreover, leaking the address of trampoline

table in Readactor may decrease the security provided by it to the one of coarse-grained CFI,

as all entries in the table may be reused. To mitigate this issue, Readactor performs register

allocation randomization and callee-saved register reordering. However the semantic of the

whole function are remained the same. So return-into-libc attack still works under Readactor.
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ASLR-GUARD prevents all code reuse attacks, including return-into-libc.

Control flow integrity. Control flow integrity (CFI) [3] is considered as a strong defense

against all control-flow hijacking attacks. Recent works mainly focused on making this

approach more practical, eliminating the requirement of source code, reducing the perfor-

mance overhead, providing modular support, or integrating into standard compiler toolchain

[136, 178, 193, 194]. Unfortunately, many of these CFI implementations are bypassable

[31, 55, 72]. Furthermore, CFI-like code reuse attack detection techniques (e.g. [38, 143])

have also been found to be bypassable [55]. Compared with these works, ASLR-GUARD’s

encryption scheme can provide similar or better effectiveness for reducing the possible code

reuse targets §4.1.5.2, and has lower performance overhead §4.1.5.3.

Type-based CFIs [8, 86, 136, 178] reduce the average indirect targets (AIT) by checking

indirect branches with type. In particular, MCFI [136] checks type and number of param-

eters, Forward-edge CFI [178] checks the number of parameters, Safedispatch [86] and

vfGuard [8] check class type for virtual function calls. All these protections are orthogonal

and inspiring to ASLR-GUARD. In the future, we will also bind type to indirect branches

to further reduce AIT. Opaque CFI [127] relies on static analysis to identify targets for

indirect branches, and insert checks to limit each branch in the range from the lowest ad-

dress to the highest address of all targets. So the security is various based on the range of

bounds. Another very related work is Crypto-CFI [123] which encrypts all code pointers

and return addresses. As a result, it imposes a significant overhead (45%). On the contrary,

ASLR-GUARD leverages efficient protection techniques for stack and encryption, thus has a

much lower performance overhead (< 1%). HAFIX [9] achieves fine-grained backward-edge

CFI in hardware with a reasonable performance overhead (2%). ASLR-GUARD not only

protects return address but also function pointer without the need of hardware support, and

its performance is even better.
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4.2 BUDDY: Detecting Memory Disclosures with Replicated Execution

Modern systems widely employ randomization-based security mechanisms (e.g., ASLR) to

prevent a variety of attacks such as code-reuse and privilege escalation attacks. These attacks

generally require overwriting a code/data pointer with a malicious one. To achieve this goal,

attackers have to know both the address of the target pointer and the address of malicious

code pieces (i.e., the value of the malicious pointer), whereby both of them are randomized

by ASLR. However, the randomized addresses are susceptible to memory disclosures.

Attackers have exploited memory disclosures to bypass ASLR. For example, recently

proposed advanced code reuse attacks [66, 106] all leak a randomized pointer to bypass

ASLR and then compromise the fine-grained control-flow integrity techniques [136, 178].

In addition, memory disclosures also directly result in the loss of sensitive data such as

private keys. For example, the HeartBleed [62] vulnerability allowed attackers to remotely

read sensitive memory regions from 24-55% popular HTTPS sites. Even worse, according

to vulnerability databases [57], memory disclosures are very common, and its number is

increasing. As a result, memory disclosures are posing a rising threat to our modern systems.

The most common technique [20, 157, 167] for disclosing memory is exploiting memory

errors such as buffer over-read. In response, many defense techniques [19, 49, 110, 120, 131]

have been proposed to prevent memory disclosures. In particular, Readactor [49], ASLR-

Guard [120], and TASR [19] transform or track code pointers to prevent them from being

leaked. SeCage [110] protects private keys by storing them in an isolated memory region.

Memory safety techniques (e.g., SoftBound [131], CETS [132], and AddressSanitizer [160])

provide a strong protection by preventing memory errors that can cause memory disclosures.

Unfortunately, these defense techniques all suffer from several shortcomings. Specifically,

code-pointer-only protections leave the data pointers and other sensitive data unprotected.

Note that consequences from leaking data pointers can be equally (if not more) severe

as recent attacks have shown how data pointers can be hijacked to launch attacks. For

example, Stackdefiler [106] showed that fine-grained control-flow integrity can be bypassed
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by leaking the stack address or modifying virtual function table pointers. Isolation-based

protections [110] save the target data in an isolated memory, and only the pre-defined

trusted code can access it. Such approaches suffer from two limitations: (1) finding all

the trusted references to the target data in complex programs is hard and (2) the target

data can still be leaked if the “trusted code” itself contains vulnerabilities. Memory safety

techniques are effective in preventing memory errors caused by memory errors; however,

they require re-compilation of all code, and their significant performance overhead (about

2x) impedes the adoption. In general, preventing memory disclosures caused by memory

errors is very challenging. End-to-end preventions (e.g., code pointer protection) suffer

from significant false negatives and low extensibility, while general solutions (e.g., memory

safety techniques) suffer from high performance overhead and deployment issues.

In this work, we propose BUDDY, a runtime protection framework that effectively detects

memory disclosures caused by memory errors. BUDDY can work on COTS binaries directly.

The main idea behind BUDDY is that by seamlessly maintaining two running instances and

diversifying only the target data, we can always detect any leak of such data because the

leak will result in the two instances outputting different values. The two buddy instances

are well synchronized in such a way that they act as a single instance from the perspective

of external attackers. The only difference between the buddy instances is the diversified

target data. To avoid false positives, we (1) synchronize these buddy instances by thoroughly

virtualizing syscalls, virtual syscalls, and instructions that may return different values (i.e.,

non-deterministic sources) to the buddy instances, and (2) only synchronize buddy instances

and detect divergence at I/O write: BUDDY reports leaks only when the disclosed data

leaves OS. This way, the false positive issues caused by data structure padding [117] are

eliminated. With this design, in principle, BUDDY can completely (i.e., no false negatives)

and accurately (i.e., no false positive) prevent any leak without the need to identify or track

the data in memory, which can be error-prone and expensive.

BUDDY is a general framework that mitigates memory disclosures caused by memory
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errors through replicated execution. To realize such a framework, we first develop a

formal model for BUDDY and define two properties that a BUDDY system should satisfy. To

illustrate the effectiveness of BUDDY, we then develop multiple schemes on top of BUDDY to

comprehensively detect memory disclosures caused by various memory errors. Specifically,

we propose partitioned address randomization to detect memory disclosures caused

by absolute address-based over-reads. The partitioned address randomization scheme

ensures that the address spaces for buddy instances are non-overlapping and randomization

enabled. Any absolute address-based over-read will already result in one instance crashing,

thus triggering detectable divergences. Further, to detect memory disclosures caused by

relative address-based over-reads, we develop the random padding scheme that introduces

paddings with random values among both stack frames and heap objects. Whenever such

an over-read occurs, different data values will be obtained; therefore, leaking them will

also trigger the divergence detection of BUDDY. To detect memory disclosures caused by

temporal memory errors (e.g., use-after-free), we borrow the randomization scheme from

Diehard [16] that allocates objects in a random address, so that an uninitialized value or a

defined value after free will likely differ in buddy instances; leaking the value will trigger

the divergence detection of BUDDY. Applying all these schemes on top of BUDDY, we are

able to comprehensively detect memory disclosures caused by various of memory errors.

For example, BUDDY can effectively detect the emerging address leaks and the Heartbleed

attack.

BUDDY-based memory disclosure detection has three important advantages. First, the

error-prone and expensive data tracking are completely avoided. That is, whenever the

diversified data is leaked through I/O by a remote attacker, we can detect it. Second, in

principle, BUDDY-based detection can detect leaks without false negatives. That is, as long

as the returned data from the buddy processes contains any diversified data, they must be

different, otherwise, the leak is not meaningful for the attacker to infer the data. Third,

BUDDY can directly work on binaries without the need to recompile the source code. Note
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that, although BUDDY double-executes the user-space code (kernel code and drivers are

executed only once), its performance overhead is amortized with multi-core CPU that is

commonly deployed in modern devices. As shown in §4.2.6, BUDDY only imposes a small

performance overhead.

Although BUDDY leverages the n-version approach [35], its goal is not to build an

enhanced n-version system, instead it aims to use the n-version approach to achieve a new

security goal—detecting memory disclosures caused by memory errors. To this end, we have

proposed multiple new mechanisms such as single syscall synchronization (Table 4.2.4.2),

partitioned address randomization (§4.2.4.1), and random padding (§4.2.4.1). We differ-

entiate BUDDY from many previous n-version systems [16, 45, 69, 81, 94, 100, 124, 183]

that were mainly designed to detect intrusions or errors. First, since intrusion or error may

happen at any point during execution, these n-version systems (e.g., n-variant systems [45])

have to intercept and synchronize all syscalls. A fundamental problem with such a design is

that synchronizing every syscall is expensive because of the frequent waiting and notifying

between variants. More seriously, synchronizing every syscall may cause false positives.

For example, divergent data caused by uninitialized memory (it is common due to data

structure padding [117]) should not be treated as a leak if it does not leave the OS through

I/O write. ReMon [183] improves the efficiency by eliminating the synchronizations of

non-sensitive syscalls; however, its ptrace-based syscall interception requires extra context

switches, which can cause considerable runtime overhead. BUDDY only synchronizes and

detects memory disclosures with a single synchronization point—I/O write (i.e., file write

and socket write) and thus minimizes performance overhead and false positives. Second,

traditional n-version systems typically detect intrusion or error by monitoring divergence in

the syscall sequence, which is not applicable to information leak detection because informa-

tion leak does not necessarily change the control flow. BUDDY strictly synchronizes at only

I/O write and detects divergence in the outgoing contents in a fine-grained manner.

We implemented the BUDDY framework on the Linux 64-bit platform. BUDDY is a
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practical system that does not require the availability of source code of a target program,

modification of compilation toolchain, or recompilation of OS kernels. Instead, it directly

supports any COTS program. BUDDY mainly consists of (1) a kernel space coordinator that

hooks the syscall table to intercept and synchronize syscalls, (2) a user space coordinator that

synchronizes virtual syscalls and instructions in user space, and (3) a controller that prepares

both coordinators, starts and monitors the buddy instances. With the BUDDY framework,

we further implemented two diversification schemes for detecting memory disclosures, the

partitioned address randomization scheme and the random padding scheme.

We evaluated the performance of the BUDDY framework with the partitioned address

randomization scheme and the random padding scheme using the SPEC CPU2006 bench-

marks and multiple server programs, including Apache web server, Nginx web server,

OpenSSL, PHP, Lighttpd, and Orzhttpd. For effectiveness evaluation, we evaluated BUDDY

using a set of real address leak attacks and the HeartBleed attack. The evaluation results

show that BUDDY can effectively prevent all tested data leaks. Since BUDDY is a 2-variant

system that runs user-space code in parallel, for a single-core processor, BUDDY may incur a

performance overhead of more than 100%. However, with a multi-core processor, BUDDY’s

performance overhead is small: 2.3% on the SPEC benchmark and around 4% on web

server programs. Moreover, the partitioned address randomization scheme introduces a

non-measurable overhead, and the random padding scheme introduces an additional 2.8%

overhead. Even in the scenario where the CPU is highly loaded already (e.g., 99% CPU

usage), BUDDY introduces a performance overhead of only 8.3% on the SPEC benchmarks.

In summary, this work makes the following contributions:

• We proposed BUDDY, a framework for detect memory disclosures caused by memory

errors. BUDDY avoids the expensive and error-prone date tracking process.

• We proposed the adaptive ring buffer based virtualization mechanism (with a single

synchronization point) to boost the performance of the buddy execution and minimize

its false positives.
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• Based on the BUDDY framework, we designed the partitioned address randomization

and the random padding scheme to detect memory disclosures caused by spatial

memory errors in general.

4.2.1 Challenges in Detecting Memory Disclosures

A common way for attackers to disclose memory is to exploit memory-error vulnerabil-

ities. Such vulnerabilities can be spatial such as out-of-bound read or temporal such as

uninitialized-data read and use-after-free. According to CVE details [57], the number of

memory disclosure-related memory errors is still increasing in general. Researchers have

attempted to mitigate memory disclosures with various approaches, which can be classified

into four categories: data-flow tracking, memory isolation, data encryption, and memory

error elimination. We now discuss these approaches and their limitations.

Data flow tracking. Data flow tracking aims to detect illegal data usages (e.g., data leak).

Static data flow tracking performs a reachability analysis from the data sources to the sinks.

Since such analyses are guided by the pre-built data dependency graph, they cannot catch

leaks that are out of the graph (e.g., flow diverted by memory errors). Dynamic data flow

tracking [155] is accurate in detecting leaks; however, its orders of magnitude of the runtime

performance overhead is unacceptable to be used in production.

Memory isolation. Memory isolation approaches [110] save the target data in an isolated

memory region, and only the pre-defined trusted code can access it; therefore, external

attackers cannot touch the isolated memory. Two fundamental limitations with these ap-

proaches are: (1) it is difficult to find all the trusted references to the target data in complex

programs; and (2) the target data in the isolated memory still can be leaked if the “trusted

code” itself contains vulnerabilities.

Data encryption. Data encryptions are extensively used to protect the target data, which

aim to render the disclosure of the memory useless in inferring the content of the target data.

Effectiveness of such approaches relies on the confidentiality of the encryption key. Further,
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data encryption is expensive and thus not suitable for protecting data (e.g., data pointer) that

is prevalently scattered over the memory. More importantly, encryption-based protections

may suffer from replay attacks. Attackers can replace an encoded pointer with another to

hijack the control flow.

Memory-error elimination. Memory safety techniques [131] can eliminate memory

errors, so memory disclosures caused by them are naturally prevented. However, such

techniques require modification of toolchain and runtime, and usually impose a significant

performance overhead (e.g., SoftBound [131] imposes a 70% runtime overhead).

Conclusion: While preventing memory disclosures is a pressing security goal, for practical

deployment, it is very challenging to achieve effectiveness, completeness, and efficiency.

4.2.2 Formal Model

We aim to detect attacks that exploit memory errors to disclose memory data. As discussed

in §4.2.1, existing approaches are not adequate in detecting memory disclosures, hence we

need a new solution that is general, effective, and efficient. To this end, we propose BUDDY,

a new framework for detecting memory disclosures. At high level, BUDDY maintains

two identical instances (i.e., buddy instances), P and P ′, for an original process Po, and

diversifies the target data in the two buddy instances. BUDDY detects disclosures by

monitoring divergences when the diversified data values are disclosed through some points

such as I/O write. This way, the expensive and error-prone data-flow tracking is avoided. In

this section, we present the formal model of BUDDY.

We first define detecting points: [D0, D1, D2, ...]. In BUDDY, detecting points

trigger detection for memory disclosures. Examples of detecting points include I/O write

system calls. We then view an execution of a process as a potentially infinite sequence of

states: [S0, S1, S2, ...]. In BUDDY, at detecting point i, we have a pair of states for the two

buddy instances: <Si, S ′
i>. Therefore, for detecting points from 0 to i, the execution of the

two buddy instances is represented as: [<S0, S ′
0>, <S1, S ′

1>, <S2, S ′
2>, ...]. Note that the
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sequence of states at detecting points is a subset of the whole state sequence of a process.

States of buddy instances in each state pair are semantically equivalent. However,

BUDDY diversifies non-semantic attributes such as memory layout (we assume the

semantics of a process are independent from memory layout) in the two buddy instances.

Besides semantic equivalence, the BUDDY system also maintains the mapping from the

states (i.e., <Si, S ′
i>) of buddy instances P and P ′ to the state (i.e., So,i) of original process

Po through mapping function Map(), at detecting point i. The original process has a

transition function To, and the two buddy instances have transition functions T and T ′,

respectively. All these transition functions take an input and a state at a detecting point, and

then produces the state at next detecting point. Note that we will ensure that the state at the

last detecting point represents the last state of a process execution for an input.

The equivalence property under normal execution. Under normal execution (i.e., no

memory disclosure), we have the following induction:

Map(S0) = Map(S ′
0) = So,0. (1)

∀0 ≤ i ≤ N,∀I ∈ Normal inputs :

Map(T (Si, I)) = Map(T ′(S ′
i, I)) = To(So,i, I).

(2)

The above equations shows the following property, namely equivalence property, under

normal execution when we assume the two buddy instances are synchronized at each

detecting point.

• Equation 1 shows that both two buddy instances are in the equivalent initial states that

can be mapped to the state of the original process.

• Equation 2 shows that, given an input, the transition functions in both two buddy

instances preserve mapped equivalence at each detecting point.

• Since the last detecting point is the end of the execution, Equation 2 also shows that
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both instances produce the same outputs as the original process, ensuring semantic

equivalence.

The divergence property under memory disclosures. We assume that the initial states

of buddy instances are not under attack, so Equation 1 is always satisfied. However,

whenever an attacker discloses some memory data, we need to ensure a property, namely

divergence property, so that Equation 2 is not satisfied. Formula 3 shows that if some

memory disclosures occur during transition right after detection point i, the states at

detection point i + 1, Si+1 and S ′
i+1, must be different. With the divergence property, we

detect memory disclosures in this way: Whenever the states of the two buddy instances are

not equivalent, we know there is a memory disclosure attack.

∀0 ≤ i ≤ N,∀I ∈ Inputs :

T (Si, I)) or T
′(S ′

i, I)) ∈ Memory disclosures =⇒ Map(Si+1) ̸= Map(S ′
i+1).

(3)

Threat model. We have modeled the BUDDY system, including its properties and how

we detect memory disclosures. To make the model as practical as possible, we make the

following main assumptions:

• Attackers have to disclose memory through pre-defined detecting points such as I/O

write system calls.

• The target program will not intentionally use unspecified memory such as uninitialized

memory as part of its semantics.

• We have the list of non-determinism sources so that we can virtualize them and ensure

the divergence of Equation 3 is caused by memory disclosures.

Moreover, we focus on preventing remote attacks that disclose memory by exploiting

memory errors (not logic errors). After gathering the memory data, the attacker may further

launch subsequent attacks, such as code reuse attack. We assume the hardware and the OS

kernel as our trusted computing base (TCB), so attacks that target the hardware (e.g., cold
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boot attack [75]) and the kernel are excluded. Since there are many ways to acquire data

of a program locally (e.g., by directly reading /proc/pid/mem and cache side-channels),

we do not consider attacks where attackers already have the ability to execute arbitrary

code. BUDDY currently does not support web browsers; however, the concept of BUDDY is

general, and we discuss how to support script environments with BUDDY in §4.2.7. Side-

channel-based leaks are still possible because we are not able to cover all detecting points

of side channels. The target program may contain one or more vulnerabilities that can be

exploited to disclose memory. The program’s source code and binary may be available to

attackers, and they can perform both static and dynamic analyses. We do not limit the types

of vulnerabilities (except side-channels); they can be buffer over-read, format string, reading

uninitialized memory, etc. For defense mechanisms, we assume that the target program is

PIE-enabled (position-independent-executable) and the underlying operating system enables

both ASLR and DEP (i.e., no code injection attack). Finally, we assume that the processor

is multi-core.

4.2.3 The BUDDY Approach

Instance 1 Instance 2

data

pointer

Virtualization

Input

Output (only if output=output')

Output'

Sync. and Leak detection

Output

data'

pointer'

Figure 30: Overview of the BUDDY approach. BUDDY virtualizes all virtualizing points and strictly
synchronizes at I/O write to detect any divergence in outgoing data. For example, If pointer and
pointer′ are disclosed, BUDDY is able to detect it at socket write because they are not equal.

Figure 30 illustrates how BUDDY works: whenever the target program is about to run,
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BUDDY launches two identical instances (processes). The diversification schemes ensure

that reading the target data in these buddy instances through memory errors will get different

values. Now let us consider a concrete scenario where the attacker sends a malicious

payload to disclose the target data. BUDDY duplicates and sends the payload (input) to

both instances. To make sure both instances exhibit the same semantics during payload

processing, all syscalls, virtual syscalls, and instructions that may return different results

(i.e., non-determinisms) are virtualized to always return the same value to both instances.

After processing the attacker’s payload, both instances generate the corresponding outputs

and write them to the socket. At this moment, by hooking I/O write syscalls, BUDDY

captures the data to be sent out and compares their contents. If both outputs are the same,

BUDDY continues the write operation (but only performs once); otherwise, a divergence is

detected, and BUDDY indicates that the target data is being disclosed.

Based on the above scenario, to achieve memory disclosure detection, BUDDY needs

to include the following three parts: (1) non-interference diversification that diversifies the

target data but will not break program semantics, (2) virtualization of buddy instances, which

properly intercepts non-determinisms to ensure that they always return the same value, and

(3) disclosure detection that captures divergences at I/O write.

4.2.4 Design

In this section, we present the design of the three key components of BUDDY: non-

interference diversification, coordination of buddy instances, and memory disclosure detec-

tion.

4.2.4.1 Non-Interference Diversification

BUDDY detects memory disclosures by catching divergences in outgoing data, which re-

quires that the target data is diversified. Diversification should be performed in a non-

interference manner to satisfy the equivalence property, i.e., during normal execution, the

diversification should not break the semantics of the target program or cause any difference
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Table 21: Non-interference diversification schemes.

Category Spatial (Buffer over-read) Temporal

Type Absolute addr Relative addr Uninitialized read Use-after-free
Continuous Offset-based

Diversification Partitioned Random Random Diehard [16] Diehard [16]ASLR padding padding

Equivalence
✓ ✓ ✓ ✓ ✓property

Divergence
✓ Probabilistic Probabilistic Probabilistic Probabilisticproperty

in outputs. Further, the diversification scheme should also satisfy the divergence property,

i.e., any memory disclosures can be detected. In this work, we design two diversification

schemes. The partitioned address randomization scheme detects any over-reads that

are based on an absolute address. The random padding scheme detects continuous over-

reads that are based on a relative address. When an over-read is offset-based (i.e., skipping

some data), the random padding scheme provides probabilistic detection. To detect memory

disclosures caused by temporal memory errors (e.g., use-after-free), we borrow the diversifi-

cation scheme from Diehard [16], which allocates objects in random addresses. Note that,

BUDDY is a general framework; more diversifications such as fine-grained ASLR [12, 92]

can be applied to BUDDY to achieve other security properties.

Partitioned Address Randomization. The scheme we propose to detect absolute address-

based over-reads is partitioned address randomization. We first equally partition the

available address space into two non-overlapping sub-spaces. The two buddy instances are

then loaded into the sub-spaces, respectively. We retrofit the loader (ld.so) to ensure that

memory layout randomization is also enforced separately in each sub-space. Compared to

the default ASLR, our randomization has 1-bit less entropy because of the partitioning.

Equivalence property. The position-independent code (PIC) or position-independent

executable (PIE) technique in modern compilers already allows us to map the process

memory into a random address, so our partition address randomization is non-interference.
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That is, it satisfies the equivalence property.

Divergence property. Since the sub-spaces are non-overlapping, we ensure that any

absolute address-based over-read will result in one instance crashing, and we can detect it.

Therefore, such a scheme also satisfies the divergence property.

Random Padding Scheme. To detect memory disclosures caused by relative address-

based over-reads, we propose the random padding scheme. The design of the random

padding scheme is based on our observation that an relative address-based over-read will

get different values if we append different paddings to the target data in the buddy instances

so that BUDDY can detect divergences when the overread data are disclosed through I/O

write. Figure 31 shows the design of the scheme: in one instance, the padding consists of an

8-byte random value and a 24-byte undefined memory (i.e., a placeholder); in the other, the

padding consists of an 8-byte random value and an 8-byte undefined memory. The size of

the padding is set to either 32 or 16, in order to conform to the data alignment requirement.

The sizes of the padding in two buddy instances are set to be different so that an offset-based

over-read (i.e., discontinuous over-read) will also get different values. The random value

in the padding is set to the value of register RIP, for two reasons: (1) values of RIP are

guaranteed to be different because the base addresses are different, so an over-read of the

paddings will always get different values; (2) compared to using real random value, using

RIP is much more efficient.

For stack, the padding is inserted between stack frames (right after return address). x86_-

64 calling convention passes the first 6 parameters through registers, but the remaining ones

are still passed through stack. As such, we also need to update all the parameter-accessing

instructions in the function by patching the offsets. For heap, the padding is inserted

between the metadata (i.e., head of the object) and the actual object memory. The padding

can be enforced in a finer-grained manner (e.g., field level); however, it will incur more

performance overhead. We currently choose object-level and stack-frame-level padding for

a better performance.
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Instance 1 Instance 2
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24-bytes junk over
read
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Instance 1 Instance 2
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24-bytes junk
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local variable

8-bytes junk

8-bytes pad'
8-bytes pad'

heap object

8-bytes junk

Figure 31: The random padding scheme for stack and heap objects. Random value is inserted
between any two stack frames or heap objects. The size difference between placeholders ensures
different offsets.

Equivalence property. Similar to the partitioned address randomization scheme, our

random padding scheme does not change the original semantics of a program. Instead, it

only changes the memory layout of objects in stack and heap, and updates the offsets in

instructions to ensure proper accesses. Therefore, we establish the equivalence property in

the random padding scheme.

Divergence property. Continuous over-reads will always read the inserted padding

bytes. Since we guarantee that the padding bytes in the two buddy instances have different

values, such over-reads will always get different values. Therefore, whether the divergence

property is satisfied depends on the computation between the over-read and the next de-

tecting point. If the computation is a deterministic, one-to-one function (such as in the

Heartbleed attack [62]), we can guarantee that the outputs from the two buddy instances

at the next detecting point must be divergent, and thus the divergence property is satisfied.

However, if the computation is non-deterministic or n-to-one function, it is possible that

the outputs are the same at the next detecting point. In this case, the divergence property is

probabilistic. As for offset-based over-reads, we cannot guarantee the divergence property

because such over-reads may skip the inserted padding bytes and junk bytes. Whether the

read data differs depends on the values of the target data. If the target data is random, the

read data has a probability of 2N − 1 out of 2N to differ, where N is the number of read bits.

However, if the target data is a sequence of a repeating bytes, attackers may read the same
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value at the diversified offsets, bypassing the scheme. Such a case is not common for secret

data such as encryption keys and randomized address of ASLR.

4.2.4.2 Coordination of BUDDY Instances

The goals of coordination are to ensure that (1) the buddy instances always receive the same

inputs and (2) any operation that has an external impact to the program is executed only

once. In this way, we ensure the BUDDY system behaves as a single entity to attackers, and

whenever an divergence is detected at output, we can conclude with confidence that the

target data is being disclosed.

Virtualizing Points. We need to virtualize the execution of BUDDY for two reasons: (1) the

two buddy instances are maintained to be identical except the intentionally enforced diversity

(e.g., randomized memory layout), so all non-deterministic operations should be virtualized

to return same values; (2) BUDDY replicates the execution for only user space, so non-user-

space operations such as kernel space operations should also be virtualized to return same

values to the two buddy instances. In this work, we use the term virtualizing point to refer

to a syscall, a virtual syscall, or an instruction that may return non-deterministic values (e.g.,

RDRAND instruction) or different values (e.g., open syscall) to the buddy instances, or have

observable external effect (e.g., write syscall). Using this definition, to make sure that both

buddy instances exhibit the same semantics and act as a single application to external entities,

we need to make all the virtualizing points return the same values to the buddy instances,

except memory-layout-related ones such as mmap. Please note that identifying all virtualizing

points is not a new problem, which is necessary for all n-version systems [16, 27, 45, 81].

Similar to these previous systems, we also conservatively include most syscalls, all virtual

syscalls, and non-deterministic instructions as the virtualizing points. The summary of

virtualizing points is shown in Table 22.

Completeness of virtualizing points. Although both traditional n-version systems and

BUDDY have conservatively selected the virtualizing points, we still cannot claim they are
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Table 22: Included virtualizing points. Besides memory space related syscalls, they are conform to
previous N-version systems [16, 27, 45, 81].

Category Virtualizing points

Syscall All syscalls except memory space
related ones (e.g., mmap)

Virtual syscall All virtual syscalls

Instruction RDTSC and RDRAND

always complete for all programs because new non-determinisms (e.g., new instructions or

new syscalls) may be added to the system over time, and some non-deterministic inputs or

output channels may be unique to a system or a program (e.g., special hardware feature). If

a new non-determinism is introduced, we need to include it as a virtualizing point. Please

note that the completeness of current virtualizing points has been validated by extensive

experiments over many real server programs. As shown in §4.2.6, BUDDY can reliably run

these programs without triggering any real false positive. Therefore, we believe our current

set of virtualizing points is arguably complete for practical deployment.

Intercepting Virtualizing Points. To coordinate a virtualizing point, we need to intercept

it first so as to insert the virtualization logic. There are two requirements for intercepting

virtualizing points. First, the interception must be reliable so that the attacker cannot

bypass it. Second, since many operations may be frequently executed (e.g., getpid and I/O

operations), the interception must be efficient. To satisfy both requirements, our interception

employs different approaches to intercept syscalls, virtual syscalls, and instructions.

Syscall. There are many ways to intercept syscalls. A common way is to use ptrace [45],

as it is available in most *nix systems. However, because ptrace introduces extra context

switches for each intercepted syscall, this approach is not efficient enough. Therefore,

instead of using ptrace, we chose to temporarily patch the syscall table using a kernel

module. In this way, extra context switches can be avoided to improve performance. Note

that patching the syscall table will also affect other programs, as such, we add a PID-based

filtering scheme to only intercept the buddy instances. Since PID is obtained in the kernel
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Figure 32: The adaptive ring buffer-based virtualization. Normal virtualizing points are virtualized in
a ring buffer manner. However, upon I/O write, BUDDY locks the ring buffer and strictly synchronizes
to detect memory disclosures.

module, the attacker cannot modify it.

Virtual syscall. To accelerate the execution of certain “read-only”syscalls like gettimeofday,

kernel developers export a small set of functions to the virtual dynamic shared object (vDSO).

Since virtual syscalls do not actually go through the kernel, the syscall table patching based

interception is not applicable. For these syscalls (only four in x86_64 systems), we chose to

patch the GOTPLT table that contains the entries to these virtual syscalls.

Instruction. In general, binary rewriting is necessary for intercepting particular instructions.

But rewriting an instruction with another one with more bytes (e.g., jmp) may change the

code layout. To reliably intercept instructions, we replace them with an one-byte interrupt

instruction (e.g., INT3), which allows us to perform virtualization by handling the interrupt.

At the same time, because the intercepted instructions like RDTSC and RDRAND are typically

not executed frequently, our approach does not generate much more overhead than jmp-based

interception.

The Adaptive Ring Buffer Virtualization. Traditional n-version systems perform coor-

dination in a fully synchronized manner (i.e., lockstep), which would introduce significant

overhead. For example, for Apache web server, because of frequent CPU swap, the fully
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synchronized approach can impose a performance overhead of over 50%. To solve this

problem, we take an approach similar to [81, 179]. Specifically, one of the buddy instances

is assigned as the leader instance, and the other is assigned as the follower instance. The

leader instance performs the actual operation and stores the results in a shared memory,

while the follower just retrieves the results without actually performing the operation. In

this way, from the perspective of the buddy instances themselves, they are independent

instances; but from the perspective of an external entity (e.g., the attacker), they are a single

instance. At the same time, because the leader does not need to wait for the follower, the

performance overhead is much lower. However, in order to prevent memory disclosures, it

is still necessary to synchronize at every I/O write operation and check for divergences in

the outgoing data.

To implement our coordination scheme, we designed the adaptive ring buffer-based

virtualization mechanism (Figure 32). The ring buffer has a configurable but fixed amount of

slots shared by both the leader and follower. Each slot consists of an arguments holder and a

result holder. For virtualizing points other than I/O write, the leader performs the operation

and puts the result in the result holder of a ring buffer slot; and when the follower reaches

the same execution point, it picks up the result without actually performing the operation.

Please note that because both buddy instances are exactly the same, any divergence in the

syscall sequence will also be a sign of attack and will result in termination. For I/O writes,

the leader puts the content in the arguments holder and waits for the follower; and when

the follower reaches the same execution points, it compares its own output arguments with

the leader’s and informs the leader of the result. If the outgoing data is the same, then the

leader performs the operation and puts the result in the ring buffer; otherwise, the operations

is aborted. It is also worth noting that because syscalls are handled in the kernel space,

BUDDY utilizes two ring buffers, one for user space coordination (i.e., virtual syscalls and

instructions) and the other for syscall coordination. Obviously, attacker cannot modify the

ring buffer in kernel space. For the ring buffer in user space, because it is mapped into
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randomized (and different) addresses in the buddy instances, and memory addresses are

protected by BUDDY, attackers cannot modify the data in shared memory either.

Multi-processing/threading support. Thread scheduling is another important source of

non-determinism for multi-threaded programs. To completely resolve this issue, synchro-

nizing all shared memory accesses is necessary to ensure that the leader and follower have

consistent views on shared memory whenever they issue a syscall. In other words, the

follower should follow exactly the same order of shared data accesses as the leader. How-

ever, such a total order synchronization can hardly be achieved without a high performance

overhead or special hardware support, as evidenced in the deterministic multi-threading

(DMT) domain [15, 140]. Neither is it necessary for many of the multi-threaded programs.

In BUDDY, we implemented a lightweight (but potentially incomplete) support for

multi-threaded programs. At a high level, BUDDY assigns each pair of leader-follower

processes/threads of the buddy instances to the same execution group; and each execution

group has its own ring buffer. Forking/cloning is monitored to maintain execution groups:

when the leader instance forks a process/thread, the child process/thread automatically

becomes the leader process of the new execution group; and the forked process of the

follower instance automatically becomes the follower process in the new execution group.

Note that if the follower does not fork, it is a divergence in syscall sequence and will be

detected by BUDDY.

In fact, for daemon-like programs (e.g., a majority of server programs such as Apache,

Nginx, sshd), BUDDY’s lightweight solution is sufficient to eliminate the syscall sequence

deviations caused by non-deterministic schedulers because, for those programs, each thread-

/process is highly independent of others and hardly or never access shared memory. We have

also verified that BUDDY does not raise false alerts when synchronizing the aforementioned

daemon server programs (§4.2.6). Developing sophisticated DMT solutions is out of scope

for this work. In fact, BUDDY can leverage the latest development in DMT domain by

directly plugging-in many existing DMT solutions, such as [15, 52, 109, 115].
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4.2.4.3 Memory Disclosure Detection

Once all the virtualizing points are virtualized, BUDDY strictly synchronizes I/O write (e.g.,

local file write and socket write) and performs a quick comparison on the outgoing data to

accurately detect memory disclosures. In particular, for arguments of non-pointer type (e.g.,

size of the buffer), we compare their values; and for pointers, because their values have been

randomized by ASLR, we compares the content of the buffers they point to. Note that if one

of the buddy instances crashes, or the syscall sequence is different, BUDDY also treats them

as divergences.

Although we assume the attack is remote, it is still necessary to check local file write

operations. The reason is that some vulnerability may allow attackers to use local “storage”

(e.g., files) as “trampoline” to disclose the data indirectly. For example, an attacker can

cause the leader instance to write the diversified data into a local file first; then read it from

file and send it out through network. If there is no check for divergence is performed, we

will miss such attack.

4.2.5 Implementation

We implemented a prototype of the BUDDY framework on the 64-bit Linux, which consists

of a kernel space coordinator, a user space coordinator, and an instance controller. We will

further the random padding scheme.

4.2.5.1 Diversifiers

Partitioned address randomizer. The partitioned address randomizer has two tasks:

partitioning the address space into two sub-spaces and randomizing memory layout of

instances in their own sub-spaces. We implemented the randomizer by customizing the

dynamic linker (i.e., ld.so). The only modification we made to the dynamic linker is in-

strumenting the call to the mmap syscall. We modify the mmap call to ensure that it always

maps the memory to a random address in the partitioned sub-spaces. In default 64-bit
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Linux systems, ASLR has 28-bit randomness entropy; the randomized base address is of

the form 0x7f???????000, where ? bits are randomized. In our partitioned address random-

izer, we partition the address space into two ranges: <0x7f0000000000, 0x7f7ffffff000>

and <0x7f7ffffff000, 0x7ffffffff000>, and randomize the memory layout of buddy

instances in the two ranges by specifying a legitimate and random base address to the mmap

system call.

Random padding diversifier. As shown in Table 4.2.4.1, we insert random paddings

among stack frames and heap objects. We insert random paddings among stack frames by

modifying the GNU assembler. Such an implementation can support COTS binaries as long

as the disassembly is complete and reassembleable [184]. Specifically, we first identify

function prologues with the .cfi_startproc label, and return instructions. At function

prologue, we create the padding: subtracting RSP and setting random value with the value

of register RIP, which is obtained with the LEA instruction. Before return instructions, we

restore the stack. The repz ret instruction (equivalent to nop; ret;) is used to improve the

AMD processor performance; we also treat it as a return. If a function contains a tail call,

we do not enforce padding for it. Parameter-accessing instructions are identified by pattern

“offset(%rbp).” We update offset by increasing its value by either 32 or 16, depending

on which instance it is in. For heap object, we use LD_PRELOAD to intercept heap allocation

functions. After that, we enlarge the size of the object by 32 or 16, and insert the random

value after the metadata of the object.

4.2.5.2 Kernel Space Coordinator

The kernel space coordinator is implemented as a Linux kernel module. It is responsible

for virtualizing syscalls, synchronizing I/O writes, and performing leak detection. Syscall

interception is done through standard syscall table patching, i.e., replacing the original

syscall handlers with our callbacks.

Syscall filtering. Since BUDDY patches the syscall table at kernel space, syscalls from all
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processes will be redirected to our callbacks. To quickly differentiate the BUDDY processes

from other processes, we implemented a PID-based process filtering scheme. The kernel

space coordinator holds a hashtable with PID as keys and variant control bock (vcb) as

values. A vcb holds critical information about the BUDDY processes, such as the address

of the ring buffer, whether the process is leader or follower, etc. Upon program launch,

the instance controller will first inform the kernel space coordinator of the PIDs of the

buddy processes. Upon task fork, the newly created task is automatically added to the

hashtable; and upon task exit, the corresponding hashtable entry is removed. By looking up

the hashtable, we could reliably distinguish whether the entered process is a BUDDY process

or not.

4.2.5.3 User Space Coordinator

The user space coordinator is implemented as a shared library, which is preloaded into

both buddy instances upon program start-up. The user space coordinator is responsible for

intercepting and virtualizing virtual syscalls and instructions.

Intercepting virtual syscalls and instructions. Because virtual syscalls are essentially

libc function calls, we can hook them by replacing the corresponding entries in the GOTPLT

table callbacks to ours virtualization function. To do so, we use LD_PRELOAD to prioritize

our library so that old virtual syscall functions are overridden with ours. Beside virtual

syscalls, we found another special syscall that may not invoke the kernel—the glibc wrapper

function getpid(). Because the result of this syscall will not change, glibc caches the result

in user space to improve the performance. In other words, after the first syscall of getpid,

it becomes a virtual syscall. Therefore, we also hook getpid() by patching the GOTPLT

table.

To intercept non-deterministic instructions (e.g., RDRAND), we patch the first byte of

the instruction with INT 3. At runtime, when this interrupt is triggered, we virtualize

it through the standard signal handling mechanism. For RDTSC, binary-rewriting is not
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even necessary: we can trap for RDTSC by making timestamp counter non-readable (i.e.,

prctl(PR_SET_TSC, PR_TSC_SIGSEGV, 0, 0, 0)). Whenever the timestamp counter is

read, a SIGSEGV will be triggered, allowing for our virtualization.

Ring buffer for synchronization. The ring buffers in the user space must be explicitly

created in the shared memory and mapped (using mmap) into both instances. The logic of

creating and mapping this shared memory is also implemented in the shared library.

4.2.5.4 Instance Controller

The instance controller program is responsible for starting, monitoring, terminating, and

restarting the buddy instances. It first informs the kernel space coordinator of the incoming

buddy processes and then sets the LD_PRELOAD environment variable to the shared library.

It then forks two children processes and uses execve to launch the target program in each

forked process. After that, the instance controller pauses and waits for status change of

the buddy instances. In case any of the buddy processes is killed, the instance controller is

waken up, prints alerts and executes corrective actions (e.g. restart the system) according to

policy specified by users.

4.2.6 Evaluation

BUDDY is designed to be a general framework that can detect memory disclosures caused

by memory errors. In principle, the effectiveness of BUDDY is guaranteed by the fact that

the disclosure of diversified data will cause a divergence at some points, and BUDDY detects

the memory disclosure by catching the divergence. Efficiency is also a faithful goal for

BUDDY to be practical. We extensively evaluated the robustness, security, and performance

of BUDDY.

• Robustness. Evaluating BUDDY on various programs to empirically show that it

incurs no false positives and does not break the semantics of original programs.

• Security. Analyzing the security of BUDDY and validating it with multiple real

exploits.
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• Performance. Evaluating BUDDY’s performance with two sets of benchmarks: the

SPEC CPU2006 Benchmarks (CPU intensive) and ApacheBench (I/O intensive).

Experiment setup. All experiments were conducted on an eight-core server machine with

a 3.60 GHz Intel Xeon E5-1620 CPU and 64 GB RAM running 64-bit Ubuntu 14.04

LTS with 3.13.0-63-generic Linux kernel. For evaluation on web servers, we dedicate a

remote machine as the client and use it to simulate client requests as well as measure the

request roundtrip time and data transfer rate. Server and client machines are connected in a

university-level LAN.

4.2.6.1 Robustness

There are two goals of robustness evaluation: (1) to empirically validate the completeness of

the set of virtualizing points in practice; (2) to validate that BUDDY do not cause any error. In

particular, we ran BUDDY on the SPEC CPU2006 benchmarks and popular server programs,

including Apache web server (configured to include PHP module and use OpenSSL), Nginx

web server, Lighttpd, and Orzhttpd. For server programs, we wget the homepages of top

100 websites by Alexa [5], which contain HTML, scripts and images. We then configured

the servers to host them. After that, we ran ApacheBench [7] to iteratively access these

web pages with various concurrencies (i.e., concurrent connections = 1, 64, and 256). In

our experiments, we did not observe any error; worker processes of server programs did

not crash; outputs with and without BUDDY (i.e., temporally) were always identical, and

outgoing data of the buddy instances did not trigger any divergence (except one case).

The only inconsistency case we observed was a false positive in OpenSSL. Specifically,

the SSLeay implementation of OpenSSL uses an uninitialized buffer that may contain

unspecified values as an additional source of entropy for pseudo random number generation.

As a result, nonce in the SSL handshake will be different in the buddy instances. We argue

that, since reading uninitialized memory is classified as a type of memory error [77], it is

162



bzip2 gcc mcf milc namd gobmk dealII soplex povray hmmer sjeng libquantumh264ref lbm omnetpp astar sphinx3xalancbmk
0%

5%

10%

15%

20%

R
un

tim
e

ov
er

he
ad

(%
)

2% 20% 40% 60% 80% 99% (CPU Usage)

Figure 33: Performance of SPEC benchmarks when CPU is in various load levels. CPU usage is
controlled by stress-ng. When CPU is highly-loaded (99% usage), BUDDY imposes an average
performance overhead of 8.3%.

insecure and should be avoided at best5. In fact, OpenSSL developers are aware of this

issue and have provided the -DPURIFY flag to avoid using uninitialized buffer as a source of

randomness. After compiling OpenSSL with this flag, BUDDY functioned correctly without

any false positive.

4.2.6.2 Security

To evaluate the security of our prototype implementation, we tested BUDDY with in-the-wild

memory disclosure attacks. In this experiment, we enable both the partitioned address

randomization scheme and the random padding scheme.

Direct address leak. Data-oriented exploits [82] showed that a format string vulnerability

in Orzhttpd 6 could be exploited to leak the randomized addresses in the GOTPLT table. We

reproduced the exploit in the same way— a data pointer used to retrieve the HTTP protocol

version string is changed to point to the address of GOTPLT table. When the server responds

to client, the content of GOTPLT table is sent to client. We applied BUDDY to Orzhttpd and

tested the leak. The result shows that the leak is reliably detected when the randomized

addresses in GOTPLT table are written into socket.

Crash-based address leak. Blind ROP [20] showed that ASLR can be bypassed within

a few minutes. Its core idea is to leverage a simple stack buffer overflow vulnerability to

5 Other SSL libraries, such as Google’s BoringSSL, explicitly rely on system’s randomness (e.g.,
/dev/urandom) [14]

6http://code.google.com/p/orzhttpd/source/detail?r=141
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overwrite the return address with guessed value byte by byte, and based on whether the

worker process crashes or not, it can get 1-bit information each time. We ran the BROP

attack7 against Nginx-1.4.0 with BUDDY applied. Again, the result shows that BUDDY

is also able to detect Blind ROP attack because this attack cannot succeed in both buddy

instances. When one instance reaches the point of socket write, the other one crashes, so

BUDDY is able to detect this divergence.

Control-flow-based leaks. Information can be implicitly leaked through program control

flow. However, as long as the leaked data is meaningful for the attacker to infer the

randomized address, it must be different when outputted from the buddy instances even if

it is implicitly transformed based on control flow. Seibert et al. [157] developed an attack

that redirects a data pointer to a chosen byte by overwriting the pointer value. The data

pointer is then dereferenced, and the chosen byte is used as the terminating condition of

loop iteration. Therefore, the timing of executing the loop indirectly reflects the value

of the chosen byte. We crafted this attack as in [157] and ran BUDDY against it. Since

dereferencing the attacker-provided data pointer is an absolute address-based over-read,

BUDDY is capable of detecting such an attack.

HeartBleed Leak. The over-read vulnerability (caused by memcpy) was exploited for the

HeartBleed attack – leaking sensitive data. This attack can leak up to 64KB each time. To

test BUDDY with this attack, we downloaded the vulnerable openssl-1.0.1a and obtained

the existing exploit8. We then enforced the random padding scheme to this OpenSSL and

ran the exploit against it. It turns out the exploit is always detected because the over-read

always obtain different values.

7http://www.scs.stanford.edu/brop/
8https://www.exploit-db.com/exploits/32998/
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Table 23: Performance (processing time in ms per request) of Apache httpd under BUDDY with
various numbers of worker processes and workloads. s=1MB.

Level c = 1 c = 16 c = 64 c = 256

Worker Orig. BUDDY Orig. BUDDY Orig. BUDDY Orig. BUDDY Average

p=1 16.2 17.2 15.2 16.8 14.5 16.1 13.6 14.8 9.2%
p=2 15.5 17.2 10.1 10.5 9.8 10.7 9.7 10.4 7.5%
p=3 16.2 16.6 9.7 9.7 9.5 9.7 9.4 9.7 1.7%
p=4 15.9 17.1 9.8 10.0 9.5 9.7 10.5 11.0 4.3%
p=5 17.1 17.4 9.4 9.5 9.7 9.8 10.6 11.2 2.0%
p=6 16.1 17.4 9.3 9.7 9.7 9.8 10.7 11.8 6.2%
p=7 15.2 16.7 9.2 9.5 9.8 10.1 11.2 12.3 6.5%
p=8 16.6 16.6 9.4 10.1 10.6 10.9 12.4 13.1 4.0%

Geomean 4.4% 2.1% 2.9% 6.2% 3.6%

Table 24: Performance (number of requests per second) of popular web servers with and without
BUDDY under various workloads. p=4, s=1MB.

Level c = 1 c = 16 c = 64 c = 256

Server Orig. BUDDY Orig. BUDDY Orig. BUDDY Orig. BUDDY Average

Apache 63.0 58.3 102.4 100.0 105.1 103.2 95.6 91.0 4.1%
Nginx 64.0 60.7 55.2 52.7 52.6 51.1 31.6 30.1 4.7%
Lighttpd 63.3 60.3 58.1 54.9 59.2 54.8 40.3 37.6 6.2%
PHP 64.9 64.7 58.7 54.2 44.5 42.9 28.2 26.9 4.0%

Geomean 2.9% 4.6% 3.4% 5.1% 3.9%

Table 25: Performance (rate of data transfer, in MB/s) of popular web servers with and without
BUDDY when serving various sizes of resource. p=4, c=16.

Level s = 1KB s = 256KB s = 1MB s = 16MB

Server Orig. BUDDY Orig. BUDDY Orig. BUDDY Orig. BUDDY Average

Apache 2.3 2.2 78.7 71.8 102.4 100.0 111.1 105.1 5.0%
Nginx 2.8 2.6 17.2 17.0 55.2 52.7 96.5 90.1 4.5%
Lighttpd 3.3 3.0 17.4 16.9 58.1 54.9 105.6 99.1 5.4%
PHP 2.4 2.2 17.3 16.4 58.7 54.2 93.1 91.3 5.5%

Geomean 5.4% 3.9% 4.7% 4.5% 4.6%

4.2.6.3 Performance of the BUDDY Framework

We first measured the performance of the BUDDY framework with only the partitioned

address randomization scheme. In this evaluation, the random padding scheme is not

included, which will be evaluated in §4.2.6.4. We conducted an extensive performance

evaluations using both CPU intensive programs, represented by the SPEC2006 benchmarks;
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and I/O intensive programs, represented by four popular server programs: Apache web

server, Nginx web server, PHP, and Lighttpd. Note that all performance numbers are

measured over a pair of buddy instances, not individual instance.

SPEC Benchmarks. We first tested the performance of BUDDY with the SPEC2006

benchmarks. We evaluated all C and C++ benchmarks and the results are the average

number over 10 executions so as to minimize the effect of random fluctuations.

Table 26: Performance evaluation of BUDDY on the SPEC2006 benchmarks

Programs Baseline BUDDY (%) +RandPad (%)

perlbench 3.53 3.64 (3.1%) 3.65 (3.4%)
bzip2 4.37 4.42 (1.1%) 4.42 (1.1%)
gcc 0.928 0.947 (2.0%) 0.979 (5.5%)
mcf 2.11 2.32 (10.0%) 2.39 (13.3%)
milc 4.03 5.03 (24.8%) 5.12 (27.0%)
namd 8.87 8.88 (0.1%) 8.93 (0.7%)
gobmk 13.2 13.6 (3.0%) 13.7 (3.8%)
dealII 10.7 10.8 (0.9%) 11.4 (6.5%)
soplex 0.242 0.288 (19.0%) 0.288 (19.0%)
povray 0.424 0.431 (1.7%) 0.441 (4.0%)
hmmer 2.00 2.01 (0.5%) 2.02 (1.0%)
sjeng 2.95 2.99 (1.4%) 3.09 (4.7%)
libquantum 0.0355 0.0399 (12.4%) 0.0413 (16.3%)
h264ref 9.30 9.33 (0.3%) 9.57 (2.9%)
lbm 1.69 1.93 (14.2%) 1.93 (14.2%)
omnetpp 0.307 0.308 (0.3%) 0.318 (3.6%)
astar 7.17 7.21 (0.6%) 7.32 (2.1%)
sphinx 1.06 1.13 (6.6%) 1.14 (7.5%)
xalancbmk 0.0564 0.0653 (15.8%) 0.0676 (19.9%)

Geomean (s) 2.34% 5.16%

Performance on lightly loaded system. The performance overhead (geo-mean) of BUDDY

is 2.34% when there is no additional load on the system. Table 26 shows details. For

comparison, CFI approaches typically impose 2-10% performance overhead and they do

not protect attacks against data pointers. BUDDY is even slightly more efficient than

Readactor [49] that protects code pointer only and requires source code and hardware

assistance. BUDDY is significantly more efficient than previous n-version systems (e.g.,

even the latest n-version system Varan [81] imposes 14.2% performance overhead on SPEC

benchmarks). We believe the performance gain is from the fact that BUDDY synchronizes
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Figure 34: Micro-benchmarks on syscall execution. A negative overhead could only happen to the
follower instance.

only I/O write.

Performance on heavily loaded system. The above experiment is performed on an

unsaturated CPU. Since BUDDY double-executes the user-space code of target program,

it is important to understand how BUDDY performs when the system is already heavily

loaded. To get such performance results, we used stress-ng9 to control the CPU usage

so that it ranges from 2% (lowest load) to 99% (highest load, to finish the execution of

benchmarks, we cannot set CPU usage to 100%). After setting the CPU usages, we ran

SPEC benchmarks with and without BUDDY, and then computed the runtime overhead

introduced by BUDDY. BUDDY imposes a runtime overhead of 8.3% when CPU is highly

loaded (i.e., CPU usage=99%). The detailed results are shown in Figure 33.

The low overhead on SPEC benchmarks indicates that BUDDY is also a practical solution

in protecting CPU intensive programs.

Web Benchmarks. Since we are focusing on remote attacks, we believe the performance

of BUDDY for web server programs is more representative for practical deployment. For

web servers, we simulate various scenarios by combining the following three parameters: (1)

number of worker processes (denoted by p); (2) number of concurrent connections (denoted

by c); (3) size of requested file (denoted by s).

Note that since the experiments are conducted on an eight-core machine, we evaluated

the cases with number of worker processes from p=1 to p=8. The size variable s has values

of 1KB, 256KB, 1MB and 16MB, to simulate the cases when requested resource is metadata,

HTML/Javascript file, images or large files, respectively. In terms of concurrency level, c=1

9http://kernel.ubuntu.com/ cking/stress-ng/
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means the requests are always processed sequentially. Since web server is not CPU intensive,

we used c=256 to simulate a saturated load condition (i.e., when c=256, our Gigabit Ethernet

I/O is already saturated). To reduce noise, experiment with each setting is repeated 10 times.

Given that many server programs use multi-processing/threading to boost performance

as well as their capability to handle concurrent requests, our first experiment measured

the performance of Apache httpd with different numbers of worker processes and different

numbers of concurrent connections. Table 23 shows the average processing time of Apache

httpd with different configurations. BUDDY introduces an overhead of 0.04% - 10.79%,

which indicates that BUDDY is capable of handling multi-process programs efficiently.

When server is in the simulated saturated condition (i.e., c=256), BUDDY introduces an

average performance overhead of 6.83%.

To show that BUDDY can also be applied to other server programs, we evaluated the

performance of BUDDY with different server programs, including Nginx (multi-processing

server), Lighttpd, and PHP embedded server (single-threaded servers). In this experiment,

we set the number of worker process to 4 (the default number by Apache) for both Apache

httpd and Nginx. To measure the impact of different concurrency level, we fixed the size

to 1MB. The result of this experiment is shown in Table 24, and the average overhead of

BUDDY is less than 8%. To measure the impact of different file size, we set the concurrency

to 16. Table 25 show the results and the average overhead of BUDDY is also less then 8%.

Microbenchmarks on Syscalls. We used RDTSC (interception of RDTSC and alert for

divergence are temporarily disabled) to get the CPU cycles to accurately measure the cost of

syscall virtualization. We tested the SPEC2006 benchmarks and server programs (Apache

httpd, Nginx, Lighttpd and PHP embedded web server) to generate a profile of syscall

performance. We measured the actual CPU cycles elapsed in (1) the syscall execution

without BUDDY; (2) the syscall execution in leader instance; (3) the syscall execution in

follower instance. Among all the executed syscalls, we selected 12 most popular syscalls

(Figure 34). The first 9 syscalls are virtualization-only syscalls, hence are executed by leader
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without waiting for follower’s arrival; while the last 3 syscalls are synchronized. The results

(normalized to the overhead over normal execution) showed that: (1) for virtualization-only

syscalls, the execution time for the leader instance is longer (for updating the ring buffer)

with an average overhead of 68%; but the execution time for the follower instance is often

faster than normal execution with an average reduction of 39%. (2) kernel level virtualization

is usually faster than virtualizing virtual syscalls like gettimeofday and time at user level.

(3) for syscalls that needs synchronization, the execution time for both leader process and

follower process increases, with average overhead of 227% and 231%, respectively.

Memory consumption. Since BUDDY double-executes the user-space code, the memory

consumed by the user-space of the target program can be doubled. Code segments are the

same in both buddy instances so can enjoy the Copy-on-Write mechanism. Therefore, only

the memory of user-space data segments is doubled. Moreover, the instance controller also

consumes some memory; however, its memory consumption is constant—independent on

the memory usage of target program.

4.2.6.4 Performance of Random Padding Scheme

At last, we measured the performance of the random padding scheme. Since it only inserts

instructions that will not trap into kernel, we use the CPU intensive SPEC benchmarks to test

its performance overhead. All the test setting are the same as in §4.2.6.3, and the results are

also shown in Table 26. In addition to the overhead introduced by the BUDDY framework,

the random padding scheme further incurs a runtime overhead of 2.8%, which is small.

4.2.7 Limitations and Discussion

Unifying attacks. The effectiveness of BUDDY relies on that a memory disclosure attack

will read divergent data at a detecting point because of diversification. One possible attack

to circumvent BUDDY is unifying the diversification. Specifically, if attackers have the write

primitive, they can overwrite the memory in one instance to make the value the same as the

other, so that a memory disclosure can get the same value, breaking the divergence property.
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Since attackers do not know the value in the other instance, the best attack strategy is to

launch a probing attack: randomly overwriting some bytes in one instance and testing if the

other has the same value (i.e., bypassing the divergence detection). If the values are not the

same, BUDDY will detect the probing attack. Therefore, the success rate for such a unifying

attack is 1/2N , where N is the number of bits to be disclosed.

Hardware resource consumption. The low performance overhead of BUDDY benefits

a lot from multi-core processors. Since BUDDY double-executes user-space code, the

performance overhead can be more than 100% on a single-core processor, which is an

obvious limitation of BUDDY. As such, a multi-core processor is recommended to enjoy

the security and efficiency provided by BUDDY. Given that most devices are equipped with

processor with increased number of CPU and size of cache, we believe BUDDY is beneficial

to users who give priority to security and privacy.

False positive. Reading uninitialized data may cause divergence at I/O write. We do not

plan to handle uninitialized data read for two reasons. (1) We believe using uninitialized data

is a bad programming practice and is a violation of memory safety [16, 77, 134]. (2) Leaking

uninitialized data out is not always a “false positive”, they may indeed leak addresses or

sensitive data in many other cases [172]. On the other hand, if there is a real false positive

due to some virtualizing points are not covered, it is straightforward to include them under

the design of BUDDY.

Side-channel based leaks. In general, side-channel based leaks cannot be completely

prevented because it is hard to identify all possible side-channels and leakage methods. The

best we can do is to mitigate or detect existing or known side channel based attacks [26,

51]. In §4.2.6, we showed that BUDDY can successfully detection a timing side-channel

attack [158] and a crashing side-channel attack [20]. Although BUDDY can prevent these

specific side-channel attacks, we want to emphasize that BUDDY cannot prevent side-channel

attacks in general.

Supporting script environments. The detection mechanism of BUDDY is general—two
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Table 27: Comparison with representative n-version or multi-execution systems.

System Synchronization False Overhead Addr. Over- Defeat

strict? target report (SPEC) (latency) leak∗ read∗ ROP∗

N-variant [45] yes all syscalls high N/A 17.8% ✗ ✗ ✓
Varan [81] no all syscalls low 14.2% 2.4% ✗ ✗ ✗
DCL [182] yes most syscalls high 6.37% N/A ✗ ✗ ✓
TightLip [192] yes all syscalls high N/A 5% ✓ ✗ ✗
ShadowExe. [28] yes all inputs high N/A >100% ✓ ✗ ✗
ReMon [183] yes some syscalls low 3.1% 2.4% ✓ ✗ ✓
MvArmor [94] yes syscalls low 9% 55% ✓ heap ✓
LDX [100] no outputs high 4.7% N/A ✓ ✗ ✓
Detile [70] yes interpreter low N/A 17% ✓ ✗ ✓

BUDDY yes I/O write low 2.34% 4% ✓ ✓ ✓

instances are virtualized to act as a single one, and outgoing data is checked for divergence.

The primary steps to implement a BUDDY system are to (1) clearly define the boundary

between internal and external; (2) identify virtualizing points so that external behaviors of

two instances (e.g., user interaction) can be virtualized to be performing as a single entity; (3)

clearly define and monitor the leaking channels. So in theory, BUDDY can also be extended

to support script environment, such as the JavaScript engine in browsers, and prevent attacks

like JIT-ROP. The challenges, however, lie in the facts that the current architecture of

browsers do not have a clear boundary and there are excessive leaking channels, especially

in JIT (just-in-time compilation) mode. Specifically, because the JITed code is in the same

process address space as the browser, it may read any memory address. To prevent attacks

from scripts, we either need to disable JIT or check every memory read from JITed code;

but either way will introduce a significant performance overhead.

4.2.8 Related Work

Address Protection. Readactor [49], Binary Stirring [187], and ASLR-Guard [120]

prevent code address leak by either decoupling the code pointer and code address so that

leaking the code pointers does not directly reveal the address of code, or hiding the code

pointers by isolation. None of these approaches can protect data pointers that are protected

by BUDDY. PointGuard [43] uses a single key to XOR all pointers, which is vulnerable to
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chosen-plaintext attacks [120]. BUDDY does not suffer from these issues.

To mitigate the impact of address leak, many proposed approaches [12, 80, 92, 187]

improved ASLR in granularity. These fine-grained randomizations have been shown to be

vulnerable to memory disclosure attacks [167]. Several re-randomization approaches [19,

71, 116] have been proposed to improve ASLR in frequency. OS-ASR [71] requires kernel

modification. TASR [19] does not re-randomizes data sections. A general problem with

such re-randomization approaches is the significant performance overhead. Compared to

these approaches, BUDDY is a general memory disclosure mitigation framework that can

prevent leaks of both code and data addresses.

N-Version and Multi-Execution. Many systems leverage n-version or multi-execution

techniques to achieve security or privacy goals [16, 27, 35, 101, 124, 152]. BUDDY leverages

the same concept for a new goal—mitigating memory disclosures caused by memory errors.

More importantly, BUDDY illustrates that with a single synchronization point, we can

effectively detect data leaks with a small performance overhead. Further, we design the

random padding scheme to enable BUDDY to generally detect data leaks caused by spatial

memory errors. Specifically, we differentiate BUDDY from traditional n-version or multi-

execution systems in some important aspects. In general, all traditional n-version systems

have to synchronize all syscalls to achieve the security—they have to use lockstep to strictly

synchronize both instances at each syscall; otherwise, attacks can succeed in the faster

instance. Such design has two main issues: (1) performance overhead, waiting and notifying

for lockstep at each syscall is expensive; and (2) false positives, some internal divergences

are normal and should not be reported as leak. For example, compilers often inset paddings

into data structures for alignment. These padding bytes are usually uninitialized thus may

contain divergent values in the two buddy instances, which should not be treated as a leak

if the uninitialized data do not leave the OS. Unlike traditional n-version systems, BUDDY

reports divergence only at I/O write—when the uninitialized data indeed leaves the OS. This

design choice minimizes the performance overhead and false positives. Table 27 summarizes
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the major differences between BUDDY and representative n-version and multi-execution

systems. More specifically, n-variant systems [45] imposes a significant performance

overhead caused by the synchronization of every syscall. DCL [182] only focuses on

code-reuse attacks without preventing data-only attacks [82]. Both approaches focus on

preventing control flow hijacking attacks. In contrast, BUDDY prevents not only control

flow hijacking attacks by protecting randomized address but also general data leaks (e.g.,

HeartBleed) caused by spatial memory errors. Once more diversifications are available,

BUDDY can be easily adopted to enable more protections. Varan [81] is an efficient and

general n-version execution framework. It however does not strictly synchronize syscalls,

allowing the leader instance to leak data out without waiting for the follower to arrive (i.e.,

the asymmetrical attacks [182]). BUDDY does not suffer from such attacks, because I/O

write is synchronized. TightLip [192] and Shadow execution [28] use multi-execution to

prevent privacy leaks. In particular, TightLip triggers parallel execution only when pre-

defined private data is accessed. It cannot support programs having control flow dependent

on inputs. Shadow execution [28] achieves shadow execution at virtual-machine level, which

dramatically enlarges the TCB and increases the performance overhead.

This year, concurrent works, ReMon [183], MvArmor [94], and LDX [100] also support

selective synchronization. However, ReMon [183] still uses ptrace for syscall interception,

whose performance can be improved with the syscall table-patching-based approach (Ta-

ble 4.2.4.2) employed by BUDDY. MvArmor [94] cannot detect over-read resulted from

stack, and its performance overhead is still significant. LDX [100] mutates inputs to detect

divergence, which cannot detect over-read. In contrast, BUDDY can efficiently detect address

leaks and general memory disclosures caused by out-of-bound over-read resulted from both

stack and heap. Detile [70] instead detects address leaks in script environment. Since it

has to instrument call and return bytecodes in interpreter, which are executed frequently, it

imposes a performance overhead of 17%. Further, it does not detect general out-of-bound

over-reads.
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Memory Corruption Preventions. Memory errors can be exploited to leak data. Many

memory safety approaches [16, 99, 129, 131, 132] provide a strong protection against a broad

range of memory errors (e.g., out-of-bound read/write and use-after free). However, they

usually require the source code or hardware support. BUDDY prevents memory disclosures

without the requirements of source code or specific hardware features. Besides, memory

safety approaches usually impose a significant performance overhead. For example, even

the recent hardware-accelerated memory safety approach WatchdogLite [129] imposes a

29% performance overhead on the SPEC Benchmarks. More importantly, memory safety

approaches cannot always prevent information leaks. For example, they usually do not

prevent control-flow-based information leaks [158].

Quite a few control flow integrity (CFI) approaches [3, 123, 127, 136, 137, 178, 181,

193, 194] have been proposed to mitigate code reuse attacks assuming ASLR is bypassed.

CFI can provide a strong protection even when address is leaked. Unfortunately, they are

often shown to be bypassable [66, 72, 106, 178]. It is worth noting that Control-Flow

Bending [30] illustrates that even fully-precise static CFI can be bypassed in some scenarios.

Unlike CFI approaches, by preventing leaks of randomized addresses, BUDDY not only

stops code reuse attacks but also data-oriented exploits (that hijack data pointers).
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CHAPTER V

FUTURE WORK AND CONCLUSION

5.1 Future Work

We listed the causes of reported information leaks in Table 1. In this thesis, we have

presented how to eliminate the most common information-leak vulnerabilities and fix some

insecure designs that may cause information leaks. However, the table is by no means

complete, and there are more causes of information leaks. In addition, we still do not have

effective prevention against causes such as side channels.

Logic errors and design flaws. Information-leak vulnerabilities can be caused by memory

errors, logic errors, and design flaws. In contrast to memory errors which have clear patterns,

logic errors and design flaws are diverse, whose patterns are ad hoc. With the continuously

introduced new features, software systems will suffer from a variety of unknown logic errors

and design flaws. In general, we have to fix logic errors and design flaws case by case because

we are not even able to abstract a uniform pattern for them. Fixing such vulnerabilities is

therefore challenging and requires long-term research efforts. One challenge in this research

direction is discovering new logic errors and design flaws. Since we do not have the pattern

of unknown logic errors and design flaws, we plan to leverage empirically analyses (e.g.,

analyzing patch history of well-maintained software systems) and fuzzing techniques to

discover new classes of vulnerabilities in systems.

Detecting (side-channel) probing attacks. A number of attacks [73, 104, 157] show

that sensitive information in systems can be efficiently inferred by repeatedly probing

victim systems. Traditional side-channel attacks are examples of probing attacks, which

repeatedly perform certain operations and use statistical methods to infer secrete data such

as encryption keys. While randomization-based techniques are increasingly used as a
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building block of defense mechanisms [99, 118], recently probing attacks [73, 157] have

been targeting derandomization to break these defense mechanisms. A general pattern of

all these probing attacks is that attackers have to repeatedly and frequently probe the target

system to infer secrete information. Such probing attacks will introduce abnormal features

such as significant CPU cache miss. Therefore, by monitoring proper features, we can

generally detect probing attacks. However, detection accuracy and efficiency are the main

challenges. We will explore using multiple hardware features, including Intel Performance

Counter Monitoring (PCM), Intel Cache Monitoring Technology (CMT), Intel Memory

Bandwidth Monitoring (MBM), and Intel Process Trace (PT) for efficient monitoring. We

will also design algorithms to synthesize these metrics to improve detection accuracy.

5.2 Conclusions

Vulnerabilities and insecure designs are very common in foundational software systems

such as OS kernels and web servers. This is because that these systems are still implemented

in unsafe programming languages, and system designers often prioritize performance over

security. We have continuously witnessed critical system attacks exploiting vulnerabilities

and insecure designs. Two typical goals of system attacks are to control victim systems and

to leak the sensitive data. It is critical that a single system attack may cause a disaster to our

cyber world, so it is pressing to prevent both data leaks and control attacks.

In this thesis, we proposed defeating both data leaks and control attacks by preventing

information leaks. We identified that preventing information can be a general and efficient

solution to defeating both attacks. We have worked on three ways to prevent information

leaks: eliminating information-leak vulnerabilities, retrofitting system designs against

information leaks, and protecting sensitive data from information leaks. For each way, we

have developed multiple practical tools. Extensive evaluation results show that preventing

information leaks can be achieved automatically, reliably, and efficiently, even for complex

software systems.
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