
Securing	Software	Systems	by	
Preventing	Information	Leaks

Kangjie	Lu

Georgia	Institute	of	Technology



Computer	devices	are	everywhere

2



Foundational	software	systems

3



Inherent	insecurity:	
Vulnerabilities	and	insecure	designs
Implemented	in	unsafe	languages	(e.g.,	C/C++)

– Increasing	vulnerabilities

4

System	designers	prioritize	performance	over	security
– Many	insecure	designs

Data	source:	U.S.	National	Vulnerability	Database

0
50
100
150
200
250
300
350
400

Number	of	reported	vulnerabilities	in	Linux



Critical	system	attacks	exploiting	
vulnerabilities	and	insecure	designs

System	attacks	are	evolving:	More	and	more	advanced,	
harder	and	harder	to	defend	against

5



Two	typical	goals	of	system	attacks

To	control	
victim	
systems

To	leak	
sensitive	
data

6

Control	attacks

Data	leaks



Defeating	both	data	leaks and	
control	attacks by	preventing	

information	leaks

7



Malicious	
code	pieces

A	fundamental	requirement	of	
control	attacks

Attackers	have	to	replace	a	code	pointer	with	a	
malicious	one	to	gain	control

Code	pointer

Memory

Overwriting	
control	data

Malicious	pointer

Memory

8



Malicious	
code	pieces

A	fundamental	requirement	of	
control	attacks

Attackers	have	to	replace	a	code	pointer	with	a	
malicious	one	to	gain	control

Code	pointer

Memory

Overwriting	
control	data

Have	to	know	the	addresses	of	both	a	code	pointer	and	malicious	code

Malicious	pointer

Memory
Address	of	
a code	
pointer

Address	of	
malicious
code

9



A	widely	deployed	defense---ASLR

ASLR:	Address	Space	Layout	Randomization
– Preventing	attackers	from	knowing	addresses

Code/data

Memory

Code/data

Memory

Code/data

Memory

1st run 2nd run 3rd run n run…	

240
possibilities

10



In	principle,	ASLR	is	“perfect”

Randomized	
addresses

Memory

ASLR	is	efficient,	easy	to	deploy,	and	effective	as	long	as	
there	is	no	information	leak

11



In	practice,	ASLR	is	weak

0

500

1000

1500

2000

2500

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Number	of	reported	information-leak	vulnerabilities

Control	attacks	still	work	because	of	information	leaks

12

Data	source:	U.S.	National	Vulnerability	Database



ASLR	re-defines	the	prevention	
problem	in	modern	systems

Preventing	address	leaks	can	defeat	control	attacks

13

Control	attack	
prevention	
problem

Address
leak	prevention	

problem
ASLR



Information	leak	is	inevitable	for	
both	attacks

Exploiting	
information	leaks

Bypassing	
ASLR

Data	leaks Control	attacks

14



Research	goal:	
Preventing	information	leaks

Exploiting	
information	leaks

Bypassing	
ASLR

Data	leaks Control	attacks

15



Root	causes	of	known	information	leaks

16

Root	causes

Vulnerabilities

Memory	error Uninitialized	
read

Logic	error Missing	check

Hardware	error Row	hammer

Design	flaws

Specification	
issue

Uninitialized	
padding

Organization	
issue Refork-on-crash

Mechanism	
issue

Deduplication	+	
COW

Side	channels AnC on	MMU

Type ExampleCategory



Three	ways	to	prevent	information	leaks

17

Eliminating	information-leak	vulnerabilities

• UniSan:	Eliminating	uninitialized	data	leaks	[CCS’16]
• PointSan:	Eliminating	uninitialized	pointers	[NDSS’17]

Securing	system	designs	against	information	leaks

• Runtime	re-randomization	for	process	forking	
[NDSS'16]

Protecting	sensitive	data	from	information	leaks

• ASLR-Guard:	Preventing	code	pointer	leaks	[CCS’15]
• Buddy:	Detecting	memory	disclosures	for	COTS



Motivation	of	UniSan

OS	kernels	are	the	trusted	computing	base
– Contain	sensitive	data	like	crypto	keys
– Deploy	security	mechanisms	like	ASLR

Hundreds	of	information-leak	vulnerabilities
– Data	leaks
– ASLR	bypass

18



UniSan:
To	eliminate	(the	most	common)	

information-leak	vulnerabilities	in	OS	
kernels

àMitigate	data	leaks,	code-reuse	
and	privilege-escalation	attacks

19



Main	contributions	of	UniSan
• Automatically	secure	the	Linux	and	Android	
kernels	with	negligible	runtime	overhead

• Reported	and	patched	19 kernel	vulnerabilities
– CVE-2016-5243,	CVE-2016-5244,	CVE- 2016-4569,	CVE-2016-4578,	

CVE-2016-4569,	CVE-2016-4485,	CVE-2016-4486,	CVE-2016-4482,	……

• Found	and	fixed	a	critical	security	problem	in	
compilers

• Porting	UniSan to	GCC	for	adoption
20



The	main	cause	of	information	leaks:	
Uninitialized	data	read

Data	source:	U.S.	National	Vulnerability	Database
(kernel	information	leaks	reported	between	2013	and	2016) 21

57% 29% 

14% 
Uninitialized	
data	read

Out-of-bound	
read	&	use-
after-free	

Logic	error	(e.g.,	
missing	check)

UniSan



How	an	uninitialized	data	read	leads	to	
an	information	leak

sensitive

User	A	allocates	
object	A	and	

writes	“sensitive”	
into	it

Kernel	space

Object	A

User	A	deallocates
object	A;	

“sensitive”	is	not
cleared

User	B	allocates
object	B	without
Initialization;

“sensitive”	kept

User	B	reads	
Object	B;
“sensitive”	
leaked!

1 2 3 4

sensitive sensitive

Object	B Object	B

sensitive

22

We	call	such	information	leaks
“uninitialized	data	leaks”

User	spaceKernel	space Kernel	space



Troublemaker:		Developer

Missing	field	initialization:	Blame	the	
developers?

Difficult	to	avoid
– Too	complex

23

Data	struct
definition

Object
use/init<	/	>

inconsistency



Troublemaker:		Compiler
Data	structure	padding:		A	fundamental	
feature	for	improving	CPU	efficiency

/* both fields (5 bytes) are initialized*/
struct test t = {

.a = 0,

.b = 0
/* 3 uninitialized padding bytes */

};
/* leaking uninitialized 3-byte padding*/
copy_to_user(dest, &t, sizeof(t));

struct test {
unsigned int a;
unsigned char b;

/* 3-bytes padding */
};

24

A	critical	and	prevalent	security	problem:
Programs	are	built	by	compilers!



The	root	cause:	C	specifications	(C11)

Chapter	§6.2.6.1/6

“When	a	value	is	stored	in	an	object	of	
structure	or	union	type,	including	in	a	
member	object,	the	bytes	of	the	object	
representation	that	correspond	to	any	
padding	bytes	take	unspecified	values.”

25



UniSan:	A	compiler-based	solution

Simply	initialize	all	allocated	objects?	Too	expensive!

26

Detecting	
unsafe

allocations

Initializing
unsafe

allocations
LLVM	IR

The	UniSan Approach

Hardened
LLVM	IR

Kernel	
source	code

Secured
kernel	image



Unsafe	allocation	detection

Byte-level	and	flow-,	context-,	and	field-sensitive	
taint	tracking

Sources
(i.e.,	

allocations)

Sinks
(e.g.,	

copy_to_user)
Data	flow

Initialization
analysis

27

Reachability	analysis



Technical	challenges	in	detection

• Global	call-graph	construction
–Conservative	type	analysis	for	indirect	calls

• Byte-level	tracking
–Maintaining	offsets	of	fields

• Eliminating	false	negatives

Be	conservative!	
Assume	it	is	unsafe	for	unhandled	special	cases!

28



Zero-initializing	all	unsafe	allocations

Zero	initialization	is	semantic	preserving
–Robust
–Tolerant	of	false	positives

29

Stack Heap
obj = 0

kmalloc(size,	flags|__GFP_ZERO)
memset(obj,	0,	sizeof(obj))



LLVM-based	implementation

An	analysis	pass	+	an	instrumentation	pass

How	to	use	UniSan: $	unisan @bitcode.list

30



UniSan is	performant	and	effective

31

Accuracy

Performant

Effective

UniSan

10% (2K)	of	allocations	are	detected	as	
unsafe

Negligible	runtime	overhead:
• System	operations:	1.36%
• Web	servers:	<0.1%
• User	programs:	0.54%

Prevented	known	and	new	vulnerabilities
• 19 have	been	confirmed	and	fixed	by	Google	

and	Linux

Applied	to	the	latest	Linux	kernel	and	Android	kernel	



Three	ways	to	prevent	information	leaks

32

Eliminating	information-leak	vulnerabilities

• UniSan:	Eliminating	uninitialized	data	leaks	[CCS’16]
• PointSan:	Eliminating	uninitialized	pointers	[NDSS’17]

Securing	system	designs	against	information	leaks

• Runtime	re-randomization	for	process	forking	
[NDSS'16]

Protecting	sensitive	data	from	information	leaks

• ASLR-Guard:	Preventing	code	pointer	leaks	[CCS’15]
• Buddy:	Detecting	memory	disclosures	for	COTS



Three	ways	to	prevent	information	leaks

33

Eliminating	information-leak	vulnerabilities

• UniSan:	Eliminating	uninitialized	data	leaks	[CCS’16]
• PointSan:	Eliminating	uninitialized	pointers	[NDSS’17]

Securing	system	designs	against	information	leaks

• Runtime	re-randomization	for	process	forking	
[NDSS'16]

Protecting	sensitive	data	from	information	leaks

• ASLR-Guard:	Preventing	code	pointer	leaks	[CCS’15]
• Buddy:	Detecting	memory	disclosures	for	COTS



The	insecure	process	forking	violates	ASLR
A	common	design	of	web	servers:

34

Code/data

Code/data

Code/data

Code/data

fork()

fork()

fork()

HTTP(S)

HTTP(S)

HTTP(S)

Exactly	same	memory	layout.	Re-fork	upon	worker	crashes

Master

Worker

Worker

Worker



The	clone-probing	attack

Attack	goal:	To	guess	sensitive	data	(say	randomized	
return	address)	with	a	simple	buffer	overflow

35

…

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0
AAAAAAA 01 34	56	78	9a	bc ed f0

AAAAAAA 12	34	56	78	9a	bc ed f0
…

Stack	of	a	web	server

Attack	
payload

Crash,	try	another	one
Crash,	try	another	one
Bingo,	continue	to	
guess	next	byte……

AAAAAAA 12 34 56	78	9a	bc ed f0
……

…

AAAAAAA 12	34	56	78	9a	bc ed f0 Finally,		get	all	bytes

…

Brute-forcing	complexity	is	reduced	from	264 to	8*28
Usually	can	be	done	within	twominutes.

Buffer	
overflow



Re-randomizing	the	memory	layout	of	
forked	processes

Main	contributions
– A	new	mechanism	for	automatic	pointer	tracking	
at	runtime	(using	Intel’s	Pin)

– Successfully	applied	it	to	Nginx	web	server	

36

Automatic
pointer	tracking

Memory	layout	
re-randomization

Dangling	pointer	
patching



Three	ways	to	prevent	information	leaks

37

Eliminating	information-leak	vulnerabilities

• UniSan:	Eliminating	uninitialized	data	leaks	[CCS’16]
• PointSan:	Eliminating	uninitialized	pointers	[NDSS’17]

Securing	system	designs	against	information	leaks

• Runtime	re-randomization	for	process	forking	
[NDSS'16]

Protecting	sensitive	data	from	information	leaks

• ASLR-Guard:	Preventing	code	pointer	leaks	[CCS’15]
• Buddy:	Detecting	memory	disclosures	for	COTS



Motivation	of	ASLR-Guard

Code-reuse	attacks	are	rampant	and	critical

Leaking	a	code	pointer	to	first	bypass	ASLR	
has	become	a	prerequisite for	code-reuse	
attacks

38



ASLR-Guard:
To	prevent	code-pointer	leaks	to	

defeat	code-reuse	attacks
(a	user-space	security	mechanism	

against	remote	attackers)

39



Two	main	contributions

A	systematic	way	of	
discovering	code	pointers

Two	techniques	of	preventing	
code	pointer	leaks

40



Empirical	code	pointer	discovery

41

By	relocation

By	program
counter	(%RIP) By	OS

How	are	code	pointers	created?

Lesson:	Code	pointer	discovery	is	practical;	programs	
built	by	modern	compilers	create	code	pointers	regularly



Isolating	or	encoding	code	pointers

Isolation Encoding

42

Return	address Other	code	
pointers

• Function	pointer
• Entry	pointer
• Signal	handler
• …



Isolating	or	encoding	code	pointers

Isolation Encoding

43

Return	address Other	code	
pointers

• Function	pointer
• Entry	pointer
• Signal	handler
• …



Encoding	code	pointers

When	isolation	is	hard

Three	requirements	for	encoding
– Confidentiality:	Cannot	crack
– Integrity:	Cannot	modify
– Efficiency:	Be	performant

44



Fast	code	pointer	encoding
void hello();
void (*fn)() = hello;

Assembly:
lea		0x1234(%rip),	%rax

45



Fast	code	pointer	encoding

Random	Mapping	Table	(in	safe	region)
%gs

Mapping	entries…

void hello();
void (*fn)() = hello;

Assembly:
lea		0x1234(%rip),	%rax

46



New	entry

Fast	code	pointer	encoding

Random	Mapping	Table	(in	safe	region)
%gs

void hello();
void (*fn)() = hello;

Assembly:
lea		0x1234(%rip),	%rax

16-bytes

Random
offset

Step1:	create	an	entry	with	a	random	offset

47



Fast	code	pointer	encoding

Random	Mapping	Table	(in	safe	region)
%gs

void hello();
void (*fn)() = hello;

Assembly:
lea		0x1234(%rip),	%rax

8-byte

Random
offset

Step1:	create	an	entry	with	a	random	offset
Step2:	save	fn in	first	8-byte,	then	4-byte	0	and	4-byte	nonce

fn 0 Nonce

4-byte 4-byte

48



Fast	code	pointer	encoding

Random	Mapping	Table	(in	safe	region)
%gs

void hello();
void (*fn)() = hello;

Assembly:
lea		0x1234(%rip),	%rax

8-byte

Random
offset

Step1:	create	an	entry	with	a	random	offset
Step2:	save	fn in	first	8-byte,	then	4-byte	0	and	4-byte	nonce

fn 0 Nonce

4-byte 4-byte

Rand.	offset Nonce %rax

Step3:	save	the	4-byte	random	offset	and	nonce	into	%rax
49



Extremely	fast	decoding

Source:												Assembly:
fn(); call	*%rax;

xor	%gs:8(%rax),	%rax;
call	%gs:(%rax)

Compile time:

50



Extremely	fast	decoding

Source:												Assembly:
fn(); call	*%rax;

random offset
(little-endian)

Runtime:

xor	%gs:8(%rax),	%rax;
call	%gs:(%rax)

Compile time:

0 Nonce

Rand.	offset Nonce

51

(Saved	in	%rax)



Extremely	fast	decoding

Source:												Assembly:
fn(); call	*%rax;

random offset
(little-endian)

Runtime:

xor	%gs:8(%rax),	%rax;
call	%gs:(%rax)

Compile time:

0 Nonce

Rand.	offset Nonce

%gs:(%rax)	points	to	”fn”	in	random	mapping	table,
so,	call	%gs:(%rax)	à call	fn

52

(Saved	in	%rax)



Extremely	fast	decoding

Extremely	efficient	decoding:	Only	
one	XOR	operation!

53



ASLR-Guard:	A	toolchain	and	a	runtime

54

Compiler
(gcc,	g++)

Assembler
(gas)

Source	
code

Secured
execution

Linker
(ld)

Dynamic
linker	(ld.so)

Secured
libs

GNU	toolchain
(~3,000	LoC	changes)

C/C++	Runtime

ELF



ASLR-Guard	is	performant	and	effective

55

Performant

Effective

ASLR-Guard

Negligible	performance	overhead:
• Runtime	overhead:	<1%
• Binary	size	increase:	6%
• Memory	overhead:	2MB

Attacks	such	as	BlindROP are	defeated!

Applied	to	the	SPEC	Benchmarks	and	the	Nginx	web	server



Three	ways	to	prevent	information	leaks

56

Eliminating	information-leak	vulnerabilities

• UniSan:	Eliminating	uninitialized	data	leaks	[CCS’16]
• PointSan:	Eliminating	uninitialized	pointers	[NDSS’17]

Securing	system	designs	against	information	leaks

• Runtime	re-randomization	for	process	forking	
[NDSS'16]

Protecting	sensitive	data	from	information	leaks

• ASLR-Guard:	Preventing	code	pointer	leaks	[CCS’15]
• Buddy:	Detecting	memory	disclosures	for	COTS



Motivation	of	Buddy
• Memory	disclosures	are	critical
– Data	leaks	
– Defense	mechanism	bypass

• Memory	disclosures	are	common
– Thousands	of	vulnerabilities	each	year,	still	increasing

• Memory	disclosures	are	diverse
– Various	causes	
– Various	memory	data	types

• Memory	disclosure	prevention	is	expensive
– Much	more	expensive	than	preventing	invalid	write

57

How	to	stop	memory	disclosures	in	a	
general and	practicalmanner?



Buddy:	An	replicated	execution-based	
approach

Seamlessly	maintain	two	identical	processes	with	
diversified	data/layout	(same	semantics)

58

Code/data
Code’/data’

Compare	outputs:	disclosures	will	
cause	divergences



A	formal	model	for	Buddy

59

• Detecting	points	such	as	I/O	write
– 0,	1,…i

• States	at	detecting	point	i
– Original	process:	So,i,	
– Buddy	instances:	<Si,	Si’>

• Mapping	buddy	states	to	original	state
– Mapping	function:	Map(Si) = Map(Si’) = So,i  

• Transition	functions	for	all	processes
– Take	a	state	Si and	an	input I, and	produce	next	state
– T(Si,	I)	=	Si+1;	same	for	T’() and	To()



Two	properties	of	Buddy

60

Equivalence property
– Buddy	must	preserve	semantics	for	original	
process	under	normal	execution

Divergence property
– Buddy	must	detect	divergences	when	memory	
disclosures	occur

(1). Map(S0)	=	Map(S0ʹ)	=	So,0
(2). ∀ 0	≤	i	≤	N,	∀ I	∈ Normal	inputs:

Map(T(Si ,	I))	=	Map(Tʹ	(Siʹ	,	I))	=	To (So,i ,	I)

(3). ∀ 0	≤	i	≤	N,	∀ I	∈ Inputs:
T(Si ,	I))	or	Tʹ(Siʹ	,	I))	∈Memory	disclosures	

⇒Map(Si+1)	≠	Map(Si+1)



Assumptions	of	Buddy

• Memory	disclosures	go	through	pre-defined	
detecting	points

• Programs	do	not	intentionally	use	unspecified	
memory

• We	have	the	list	of	non-determinism	sources
• We	have	a	multi-core	CPU

61



Detecting	memory	disclosures	with	
Buddy

A	general	replicated	execution	framework
Two	new	schemes	built	upon	Buddy

62

Spatial

Absolute	addr-
based	read

Relative	addr-
based	read

Partitioned	
ASLR

Random	
padding

Temporal

Use-after-free Uninitialized	
read

Diehard[16] Diehard[16]



Data

Partitioned	ASLR
• Detect	absolute	address-based	over-reads
• Partition	address	space	into	two	sub-spaces
• Enable	randomization	for	each	sub-space
– Apply	PIC	and	modify	loader	(ld.so)

63

Code

Instance1

Data

Code

Instance2

Addr.1

Addr.2



Properties	of	partitioned	ASLR

Equivalence property	– Yes
– PIC	and	ASLR	are	non-interference
– No	change	to	semantics

Divergence property	– Yes
– Sub-spaces	are	non-overlapping:	Addr1	≠	Addr2
– Any	absolute	addr-based	over-read	will	always	
result	in	one	instance	crashing

64



8-byte	rand.	pad

Local	variables

8-byte	rand.	pad

Random	padding
Detect	relative	address-based	over-reads
Paddings	have	different	values	and	sizes

65

Return	addr.

Instance1 Instance2

Over
read

24-byte	
space

Local	variables

8-byte	rand.	pad’

Return	addr.

8-byte	space

Heap	object

24-byte	
space

8-byte	rand.	pad’

Heap	object

8-byte	space

Over
read

Instance1 Instance2

Padding	for	stack	frames Padding	for	heap	objects



Properties	of	random	padding

Equivalence property	– Yes
– Rearrange	memory	layout	of	object
– No	change	to	semantics		(assuming	semantics	do	not	
depend	on	object	memory	layout)

Divergence	property
– Continuous	reads	– Yes

• Paddings	have	different	values
– Offset-based	reads

• If	target	data	is	random	– (2^N-1)/2^N,	where	N	=	read	bits
• If	target	data	has	a	layout	pattern,	e.g.,	repeating	–
Probabilistic

66



Efficient	coordination	of	
Buddy	instances

Virtualizing	points	and	interception
– Most	system	calls	-- syscall table	patching
– All	virtual	system	calls	-- GOTPLT	table	patching
– RDTSC	and	RDRAND	instructions	-- Binary	rewriting

Ring	buffer-based	coordination

67

Leader Follower

Shared	memory

Save	
results

Fetch
results



Single-point	synchronization	and	detection

Detecting	at	only	socket	write	and	file	write
Crashing	is	directly	treated	as	a	divergence

68

Leader Follower

Strict	synchronizing	
&	deep	comparing

I/O	
write

I/O
write

Outgoing
data

Outgoing
data’=?

Divergence	è Disclosure



Extensive	evaluation

• Testing	programs
– SPEC	bench	programs,	Apache	server,	Nginx	
server,	Lighttpd,	PHP,	and	OpenSSL	

• Experimental	setup
– Eight-core	machine	with	64-bit	Linux

• Evaluation	scope
– Robustness
– Security
– Performance

69



Evaluation	of	robustness	and	security

• Robustness:	Extensive	empirical	testing
– No	error/crash	observed
– Outputs	with	and	without	Buddy	are	the	same
– One	false	positive---use	of	uninitialized	memory

• Security:	Real	attacks	detected
– Data-oriented	exploits[82]
– BlindROP[20]
– Loop	timing-based	leaks[156]	(absolute-addr-based	
read)

– Heartbleed	attack[61]

70



Evaluation	of	performance

• SPEC	Benchmarks
– Light-load	CPU:	2.34%
– Heavy-load	(99%	usage)	CPU:	8.3%

• Web	Benchmarks
– Concurrency	1-256,	Worker	1-8
• 0%-10.8%	with	geo-mean	3.6%

– File	size	1KB-16MB	(with	c=16	and	p=4)
• 1.4%-8.7%	with	geo-mean	4.6%

• Partitioned	ASLR:	non-measurable
• Random	padding:	additional	2.8%

71



Thesis	contributions
• New,	general	defense	concept
– Securing	systems	by	preventing	information	leaks

• Study	of	information	leaks
– Providing	insights	into	their	causes	and	prevention

• Discovery	of	new	threats
– Compilers	make	mistakes!	Uninitialized	pointers	can	
be	reliably	exploited

• General	ways	to	prevent	information	leaks
– Three	ways	to	fix	root	causes	and	protect	certain	data

• Novel	defense	mechanisms	
– Automated	and	practical	design,	open	sourced	
implementation

72



Future	work
• Uncovering	and	fixing	classes	of	logic	errors	
and	design	flaws
– No	uniform	pattern	for	logic	errors	or	design	flaws
– Empirical	analysis	and	fuzzing
– Patch	history

• Detecting	probing	(side-channel)	attacks
– Conservative	detection	+	effective	defense
– Transparent	detection	with	hardware	features

73



Conclusions

• Vulnerabilities	and	insecure	designs	are	common	in	
widely	used	systems;	compilers	make	mistakes

• This	thesis	aims	to	secure	widely	used	systems	in	an	
automated and	practicalmanner

• Preventing	information	leaks	can	be	a	general and	
practical	solution	to	defeating	both	data	leaks	and	
control	attacks

74


