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Abstract

Intel has introduced a hardware-based trusted execution
environment, Intel Software Guard Extensions (SGX),
that provides a secure, isolated execution environment,
or enclave, for a user program without trusting any un-
derlying software (e.g., an operating system) or firmware.
Researchers have demonstrated that SGX is vulnerable
to a page-fault-based attack. However, the attack only
reveals page-level memory accesses within an enclave.

In this paper, we explore a new, yet critical, side-
channel attack, branch shadowing, that reveals fine-
grained control flows (branch granularity) in an enclave.
The root cause of this attack is that SGX does not clear
branch history when switching from enclave to non-
enclave mode, leaving fine-grained traces for the outside
world to observe, which gives rise to a branch-prediction
side channel. However, exploiting this channel in practice
is challenging because 1) measuring branch execution
time is too noisy for distinguishing fine-grained control-
flow changes and 2) pausing an enclave right after it has
executed the code block we target requires sophisticated
control. To overcome these challenges, we develop two
novel exploitation techniques: 1) a last branch record
(LBR)-based history-inferring technique and 2) an ad-
vanced programmable interrupt controller (APIC)-based
technique to control the execution of an enclave in a fine-
grained manner. An evaluation against RSA shows that
our attack infers each private key bit with 99.8% accuracy.
Finally, we thoroughly study the feasibility of hardware-
based solutions (i.e., branch history flushing) and propose
a software-based approach that mitigates the attack.

1 Introduction
Establishing a trusted execution environment (TEE) is

one of the most important security requirements, espe-
cially in a hostile computing platform such as a public
cloud or a possibly compromised operating system (OS).
When we want to run security-sensitive applications (e.g.,
processing financial or health data) in the public cloud,

we need either to fully trust the operator, which is prob-
lematic [16], or encrypt all data before uploading them
to the cloud and perform computations directly on the
encrypted data. The latter can be based on fully homomor-
phic encryption, which is still slow [42], or on property-
preserving encryption, which is weak [17, 38, 43]. Even
when we use a private cloud or personal workstation,
similar problems exist because no one can ensure that
the underlying OS is robust against attacks given its huge
code base and high complexity [2,18,23,28,36,54]. Since
the OS, in principle, is a part of the trusted computing
base of a computing platform, by compromising it, an
attacker can fully control any application running on the
platform.

Industry has been actively proposing hardware-based
techniques, such as the Trusted Platform Module
(TPM) [56], ARM TrustZone [4], and Intel Software
Guard Extension (SGX) [24], that support TEEs. Specif-
ically, Intel SGX is receiving significant attention be-
cause of its recent availability and applicability. All Intel
Skylake and Kaby Lake CPUs support Intel SGX, and
processes secured by Intel SGX (i.e., processes running
inside an enclave) can use almost every unprivileged CPU
instruction without restrictions. To the extent that we can
trust the hardware vendors (i.e., if no hardware backdoor
exists [61]), it is believed that hardware-based TEEs are
secure.

Unfortunately, recent studies [50, 60] show that Intel
SGX has a noise-free side channel—a controlled-channel
attack. SGX allows an OS to fully control the page table
of an enclave process; that is, an OS can map or unmap
arbitrary memory pages of the enclave. This ability en-
ables a malicious OS to know exactly which memory
pages a victim enclave attempts to access by monitor-
ing page faults. Unlike previous side channels, such as
cache-timing channels, the page-fault side channel is de-
terministic; that is, it has no measurement noise.

The controlled-channel attack has a limitation: It re-
veals only coarse-grained, page-level access patterns. Fur-
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ther, researchers have recently proposed countermeasures
against the attack such as balanced-execution-based de-
sign [50] and user-space page-fault detection [10, 49, 50].
However, these methods prevent only the page-level at-
tack; hence, a fine-grained side-channel attack, if it exists,
would easily bypass them.

We have thoroughly examined Intel SGX to determine
whether it has a critical side channel that reveals fine-
grained information (i.e., finer than page-level granular-
ity) and is robust against noise. One key observation is
that Intel SGX leaves branch history uncleared during
enclave mode switches. Knowing the branch history (i.e.,
taken or not-taken branches) is critical because it reveals
the fine-grained execution traces of a process in terms of
basic blocks. To avoid such problems, Intel SGX hides
all performance-related events (e.g., branch history and
cache hit/miss) inside an enclave from hardware perfor-
mance counters, including precise event-based sampling
(PEBS), last branch record (LBR), and Intel Processor
Trace (PT), which is known as anti side-channel inter-
ference (ASCI) [24]. Hence, an OS is unable to directly
monitor and manipulate the branch history of enclave
processes. However, since Intel SGX does not clear the
branch history, an attacker who controls the OS can infer
the fine-grained execution traces of the enclave through a
branch-prediction side channel [3, 12, 13].

The branch-prediction side-channel attack aims to rec-
ognize whether the history of a targeted branch instruction
is stored in a CPU-internal branch-prediction buffer, that
is, a branch target buffer (BTB). The BTB is shared be-
tween an enclave and its underlying OS. Taking advantage
of the fact that the BTB uses only the lowest 31 address
bits (§2.2), the attacker can introduce set conflicts by po-
sitioning a shadow branch instruction that maps to the
same BTB entry as a targeted branch instruction (§6.2).
After that, the attacker can probe the shared BTB entry by
executing the shadow branch instruction and determine
whether the targeted branch instruction has been taken
based on the execution time (§3). Several researchers
exploited this side channel to infer cryptographic keys [3],
create a covert channel [12], and break address space
layout randomization (ASLR) [13].

This attack, however, is difficult to conduct in practice
because of the following reasons. First, an attacker cannot
easily guess the address of a branch instruction and manip-
ulate the addresses of its branch targets because of ASLR.
Second, since the capacity of a BTB is limited, entries can
be easily overwritten by other branch instructions before
an attacker probes them. Third, timing measurements of
the branch misprediction penalty suffer from high levels
of noise (§3.3). In summary, an attacker should have 1)
a permission to freely access or manipulate the virtual
address space, 2) access to the BTB anytime before it

is overwritten, and 3) a method that recognizes branch
misprediction with negligible (or no) noise.

In this paper, we present a new branch-prediction side-
channel attack, branch shadowing, that accurately infers
the fine-grained control flows of an enclave without noise
(to identify conditional and indirect branches) or with
negligible noise (to identify unconditional branches). A
malicious OS can easily manipulate the virtual address
space of an enclave process, so that it is easy to create
shadowed branch instructions colliding with target branch
instructions in an enclave. To minimize the measurement
noise, we identify alternative approaches, including In-
tel PT and LBR, that are more precise than using RDTSC
(§3.3). More important, we find that the LBR in a Skylake
CPU allows us to obtain the most accurate information
for branch shadowing because it reports whether each
conditional or indirect branch instruction is correctly pre-
dicted or mispredicted. That is, we can exactly know the
prediction and misprediction of conditional and indirect
branches (§3.3, §3.5). Furthermore, the LBR in a Sky-
lake CPU reports elapsed core cycles between LBR entry
updates, which are very stable according to our measure-
ments (§3.3). By using this information, we can precisely
infer the execution of an unconditional branch (§3.4).

Precise execution control and frequent branch history
probing are other important requirements for branch shad-
owing. To achieve these goals, we manipulate the fre-
quency of the local advanced programmable interrupt
controller (APIC) timer as frequently as possible and
make the timer interrupt code perform branch shadowing.
Further, we selectively disable the CPU cache when a
more precise attack is needed (§3.6).

We evaluated branch shadowing against an RSA im-
plementation in mbed TLS (§4). When attacking sliding-
window RSA-1024 decryption, we successfully inferred
each bit of an RSA private key with 99.8% accuracy. Fur-
ther, the attack recovered 66% of the private key bits by
running the decryption only once, unlike existing cache-
timing attacks, which usually demand several hundreds
to several tens of thousands of iterations [20, 35, 65].

Finally, we suggest hardware- and software-based coun-
termeasures against branch shadowing that flush branch
states during enclave mode switches and utilize indirect
branches with multiple targets, respectively (§5).

The contributions of this paper are as follows:
• Fine-grained attack. We demonstrate that branch

shadowing successfully identifies fine-grained con-
trol flow information inside an enclave in terms of
basic blocks, unlike the state-of-the-art controlled-
channel attack, which reveals only page-level ac-
cesses.

• Precise attack. We make branch shadowing very
precise by 1) exploiting Intel PT and LBR to cor-
rectly identify branch history and 2) adjusting the
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local APIC timer to precisely control the execution
inside an enclave. We can deterministically know
whether a target branch was taken without noise for
conditional and indirect branches and with negligible
noise for unconditional branches.

• Countermeasures. We design proof-of-concept
hardware- and software-based countermeasures
against the attack and evaluate them.

The remainder of this paper is organized as follows. §2
explains SGX and other CPU features our attack exploits.
§3 and §4 describe our attack and evaluate it. §5 proposes
our countermeasures. §6 discusses our attack’s limita-
tions and considers some advanced attacks. §7 introduces
related work and §8 concludes this paper.

2 Background
We explain Intel SGX and two other processor features,

branch prediction and LBR, closely related to our attack.

2.1 Intel SGX
An Intel CPU supports a hardware-based TEE through

a security extension, Intel SGX. SGX provides a set of
instructions to allow an application to instantiate an en-
clave that secures the code and data inside it against privi-
leged software such as an OS or a hypervisor, hardware
firmware, and even hardware units except for the CPU. To
provide such protection, SGX enforces a strict memory
access mechanism: allow only enclave code to access
memory of the same enclave. In addition, SGX leverages
an on-chip memory-encryption engine that encrypts en-
clave content before writing it into physical memory and
decrypts the encrypted content only as it enters the CPU
package during enclave execution or enclave mode.
Enclave context switch. To support context switching
between enclave and non-enclave mode, SGX provides
instructions such as EENTER, which starts enclave exe-
cution, and EEXIT, which terminates enclave execution.
Also, ERESUME resumes enclave execution after an asyn-
chronous enclave exit (AEX) occurs. The causes of an
AEX include exceptions and interrupts. During a context
switch, SGX conducts a series of checks and actions to
ensure security, e.g., flushing the translation lookaside
buffer (TLB). However, we observe that SGX does not
clear all cached system state such as branch history (§3).

2.2 Branch Prediction
Branch prediction is one of the most important features

of modern pipelined processors. At a high level, an in-
struction pipeline consists of four major stages: fetch,
decode, execute, and write-back. At any given time, there
are a number of instructions in-flight in the pipeline. Pro-
cessors exploit instruction-level parallelism and out-of-
order execution to maximize the throughput while still
maintaining in-order retirement of instructions. Branch
instructions can severely reduce instruction throughput
since the processor cannot execute past the branch until

the branch’s target and outcome are determined. Un-
less mitigated, branches would lead to pipeline stalls,
also known as bubbles. Hence, modern processors use a
branch prediction unit (BPU) to predict branch outcomes
and branch targets. While the BPU increases through-
put in general, it is worth noting that in the case of a
misprediction, there is a pretty high penalty because the
processor needs to clear the pipeline and roll back any
speculative execution results. This is why Intel provides
a dedicated hardware feature (the LBR) to profile branch
execution (§2.3).

Branch and branch target prediction. Branch predic-
tion is a procedure to predict the next instruction of a
conditional branch by guessing whether it will be taken.
Branch target prediction is a procedure to predict and
fetch the target instruction of a branch before executing
it. For branch target prediction, modern processors have
the BTB to store the computed target addresses of taken
branch instructions and fetch them when the correspond-
ing branch instructions are predicted as taken.

BTB structure and partial tag hit. The BTB is an
associative structure that resembles a cache. Address
bits are used to compute the set index and tag fields. The
number of bits used for set index is determined by the size
of the BTB. Unlike a cache that uses all the remaining
address bits for the tag, the BTB uses a subset of the
remaining bits for the tag (i.e., a partial tag). For example,
in a 64-bit address space, if ADDR[11:0] is used for index,
instead of using ADDR[63:12] for a tag, only a partial
number of bits such as ADDR[31:12] is used as the tag.
The reasons for this choice are as follows: First, compared
to a data cache, the BTB’s size is very small, and the
overhead of complete tags can be very high. Second, the
higher-order bits typically tend to be the same within a
program. Third, unlike a cache, which needs to maintain
an accurate microarchitectural state, the BTB is just a
predictor. Even if a partial tag hit results in a false BTB
hit, the correct target will be computed at the execution
stage and the pipeline will roll back if the prediction is
wrong (i.e., it affects only performance, not correctness.)

Static and dynamic branch prediction. Static branch
prediction is a default rule for predicting the next in-
struction after a branch instruction when there is no his-
tory [25]. First, the processor predicts that a forward
conditional branch—a conditional branch whose target
address is higher than itself—will not be taken, which
means the next instruction will be directly fetched (i.e.,
a fall-through path). Second, the processor predicts that
a backward conditional branch—a conditional branch
whose target address is lower than itself—will be taken;
that is, the specified target will be fetched. Third, the pro-
cessor predicts that an indirect branch will not be taken,
similar to the forward conditional branch case. Fourth,
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the processor predicts that an unconditional branch will
be taken, similar to the backward conditional branch case.
In contrast, when a branch has a history in the BTB, the
processor will predict the next instruction according to
the history. This procedure is known as dynamic branch
prediction.

In this paper, we exploit these two conditional branch
behaviors to infer the control flow of a victim process
running inside Intel SGX (§3).

2.3 Last Branch Record
The LBR is a new feature in Intel CPUs that logs in-

formation about recently taken branches (i.e., omitting
information about not-taken branches) without any perfor-
mance degradation, as it is separated from the instruction
pipeline [26, 32, 33]. In Skylake CPUs, the LBR stores
the information of up to 32 recent branches, including the
address of a branch instruction (from), the target address
(to), whether the branch direction or branch target was
mispredicted (it does not independently report these two
mispredictions), and the elapsed core cycles between LBR
entry updates (also known as the timed LBR). Without
filtering, the LBR records all kinds of branches, includ-
ing function calls, function returns, indirect branches,
and conditional branches. Also, the LBR can selectively
record branches taken in user space, kernel space, or both.

Since the LBR reveals detailed information of recently
taken branches, an attacker may be able to know the fine-
grained control flows of an enclave process if the attacker
can directly use the LBR against it, though he or she
still needs mechanisms to handle not-taken branches and
the limited capacity of the LBR. Unfortunately for the
attacker and fortunately for the victim, an enclave does
not report its branch executions to the LBR unless it is in
a debug mode [24] to prevent such an attack. However,
in §3, we show how an attacker can indirectly use the
LBR against an enclave process while handling not-taken
branches and overcoming the LBR capacity limitation.

3 Branch Shadowing Attacks
We explain the branch shadowing attack, which can in-

fer the fine-grained control flow information of an enclave.
We first introduce our threat model and depict how we can
attack three types of branches: conditional, unconditional,
and indirect branches. Then, we describe our approach to
synchronizing the victim and the attack code in terms of
execution time and memory address space.

3.1 Threat Model
We explain our threat model, which is based on the

original threat model of Intel SGX and the controlled-
channel attack [60]: an attacker has compromised the
operating system and exploits it to attack a target enclave
program.

First, the attacker knows the possible control flows
of a target enclave program (i.e., a sequence of branch

instructions and their targets) by statically or dynamically
analyzing its source code or binary. This is consistent with
the important use case of running unmodified legacy code
inside enclaves [5,6,51,57]. Unobservable code (e.g., self-
modifying code and code from remote servers) is outside
the scope of our attack. Also, the attacker can map the
target enclave program into specific memory addresses to
designate the locations of each branch instruction and its
target address. Self-paging [22] and live re-randomization
of address-space layout [15] inside an enclave are outside
the scope of our attack.

Second, the attacker infers which portion of code the
target enclave runs via observable events, e.g., calling
functions outside an enclave and page faults. The attacker
uses this information to synchronize the execution of the
target code with the branch shadow code (§3.8).

Third, the attacker interrupts the execution of the target
enclave as frequently as possible to run the branch shadow
code. This can be done by manipulating a local APIC
timer and/or disabling the CPU cache (§3.6).

Fourth, the attacker recognizes the shadow code’s
branch predictions and mispredictions by monitoring
hardware performance counters (e.g., the LBR) or mea-
suring branch misprediction penalty [3, 12, 13].

Last, the attacker prevents the target enclave from ac-
cessing a reliable, high-resolution time source to avoid
the detection of attacks because of slowdown. Probing
the target enclave for every interrupt or page fault slows
the enclave down such that the attacker needs to hide it.
SGX version 1 already satisfies such a requirement, as it
disallows RDTSC. For SGX version 2 (not yet released),
the attacker may need to manipulate model-specific regis-
ters (MSRs) to hook RDTSC. Although the target enclave
could rely on an external time source, it is also unreliable
because of the network delay and overhead. Further, the
attacker can intentionally drop or delay such packets.

3.2 Overview
The branch shadowing attack aims to obtain the fine-

grained control flow of an enclave program by 1) knowing
whether a branch instruction has been taken and 2) infer-
ring the target address of the taken branch. To achieve
this goal, an attacker first needs to analyze the source
code and/or binary of a victim enclave program to find
all branches and their target addresses. Next, the attacker
writes shadow code for a set of branches to probe their
branch history, which is similar to Evtyushkin et al.’s at-
tack using the BTB [13]. Since using the BTB and BPU
alone suffers from significant noise, branch shadowing
exploits the LBR, which allows the attacker to precisely
identify the states of all branch types (§3.3, §3.4, §3.5).
Because of the size limitations of the BTB, BPU, and
LBR, the branch shadowing attack has to synchronize the
execution of the victim code and the shadow code in terms
of execution time and memory address space. We ma-
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1 if (a != 0) {
2 ++b;
3 ...
4 }
5 else {
6 --b;
7 ...
8 }
9 a = b;

10 ...

(a) Victim code executed in-
side an enclave. According to
the value of a, either if-block
or else-block is executed.

1 ⋆ if (c != c) {
2 nop; // never executed
3 ...
4 }
5 ⋆ else {
6 ⋆ nop; // execution
7 ⋆ ...
8 ⋆ }
9 ⋆ nop;

10 ⋆ ...

(b) Shadow code aligned with
(a). The BPU predicts which
block will be executed accord-
ing to the branch history of (a).

Figure 1: Shadow code (b) against a victim’s conditional branch
(a). The execution time (i.e., running [1, 5-10], marked with
⋆ in (b)) of the shadowing instance depends on the branching
result (i.e., taken or not at [1] in (a)) of the victim instance.

nipulate the local APIC timer and the CPU cache (§3.6)
to frequently interrupt an enclave process execution for
synchronization, adjust virtual address space (§3.7), and
run shadow code to find a function the enclave process is
currently running or has just finished running (§3.8).
3.3 Conditional Branch Shadowing

We explain how an attacker can know whether a target
conditional branch inside an enclave has been taken by
shadowing its branch history. For a conditional branch,
we focus on recognizing whether the branch prediction
is correct because it reveals the result of a condition eval-
uation for if statement or loop. Note that, in this and
later sections, we mainly focus on a forward conditional
branch that will be predicted as not taken by a static
branch prediction rule (§2.2). Attacking a backward con-
ditional branch is basically the same such that we skip the
explanation of it in this paper.
Inferring through timing (RDTSC). First, we explain
how we can infer branch mispredictions with RDTSC. Fig-
ure 1 shows an example victim code and its shadow code.
The victim code’s execution depends on the value of a:
if a is not zero, the branch will not be taken such that
the if-block will be executed; otherwise, the branch will
be taken such that the else-block will be executed. In
contrast, we make the shadow code’s branch always be
taken (i.e., the else-block is always executed). Without
the branch history, this branch is always mispredicted be-
cause of the static branch prediction rule (§2.2). To make
a BTB entry collision [13], we align the lower 31 bits of
the shadow code’s address (both the branch instruction
and its target address) with the address of the victim code.

When the victim code has been executed before the
shadow code is executed, the branch prediction or mispre-
diction of the shadow code depends on the execution of
the victim code. If the conditional branch of the victim
code has been taken, i.e., if a was zero, the BPU predicts
that the shadow code will also take the conditional branch,

Correct prediction Misprediction

Mean σ Mean σ

RDTSCP 94.21 13.10 120.61 806.56
Intel PT CYC packets 59.59 14.44 90.64 191.48
LBR elapsed cycle 25.69 9.72 35.04 10.52

Table 1: Measuring branch misprediction penalty with RDTSCP,
Intel PT CYC packet, and LBR elapsed cycle (10,000 times).
We put 120 NOP instructions at the fall-through path. The LBR
elapsed cycle is less noisy than RDTSCP and Intel PT. σ stands
for standard deviation.

which is a correct prediction so that no rollback will oc-
cur. If the conditional branch of the victim code either
has not been taken, i.e., if a was not zero, or has not been
executed, the BPU predicts that the shadow code will not
take the conditional branch. However, this is an incorrect
prediction such that a rollback will occur.

Previous branch-timing attacks try to measure such a
rollback penalty with the RDTSC or RDTSCP instructions.
However, our experiments show (Table 1) that branch
misprediction timings are quite noisy. Thus, it was diffi-
cult to set a clear boundary between correct prediction and
misprediction. This is because the number of instructions
that would be mistakenly executed because of the branch
misprediction is difficult to predict given the highly com-
plicated internal structure of the latest Intel CPUs (e.g.,
out-of-order execution). Therefore, we think that the
RDTSC-based inference is difficult to use in practice and
thus we aim to use the LBR to realize precise attacks,
since it lets us know branch misprediction information,
and its elapsed cycle feature has little noise (Table 1).
Inferring from execution traces (Intel PT). Instead of
using RDTSC, we can use Intel PT to measure a mispre-
diction penalty of a target branch, as it provides precise
elapsed cycles (known as a CYC packet) between each PT
packet. However, CYC packets cannot be used immedi-
ately for our purpose because Intel PT aggregates a series
of conditional and unconditional branches into a single
packet as an optimization. To avoid this problem, we
intentionally insert an indirect branch right after the target
branch, making all branches properly record their elapsed
time in separate CYC packets. Intel PT’s timing infor-
mation about branch misprediction has a much smaller
variance than RDTSCP-based measurements (Table 1).
Precise leakage (LBR). Figure 2 shows a procedure for
conditional branch shadowing with the BTB, BPU, and
LBR. We first explain the case in which a conditional
branch has been taken (Case 1). 1 A conditional branch
of the victim code is taken and the corresponding informa-
tion is stored into the BTB and BPU. This branch taken
occurs inside an enclave such that the LBR does not re-
port this information unless we run the enclave process in
a debug mode. 2 Enclave execution is interrupted and
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...
cmp $0, rax
je 0xc2
inc rbx
...
jmp 0x4c
dec rbx
...
mov rbx, rdx
...

Enclave BTB and BPU
Addr Target

Last Branch Record

❶�Take branch 
and store history

❷ Interrupt

❹�Affect branch prediction 
(will take)...

cmp rax, rax
je 0xc2
nop
...
nop
nop
...

Take
From → To †Predicted

Yes

❺�Disable LBR and
check branch information

Information flow Execution flow Mispredicted flow

Non-enclave

0x004⋯530:

0x004⋯5f4:

0x004⋯620:

0x004⋯5f2:

0xff4⋯530:

0xff4⋯5f4:

0xff4⋯532:

0xff4⋯5f5:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯5f4

↓

...
0x**4⋯530

...

Only for non-enclave

Memory
CPU

(isolated)

0x4⋯5f4

Take?

Yes

incorrect 
target

(a) Case 1: The target conditional branch has been taken.

❺�Disable LBR and
check the branch information

...
cmp $0, rax
je 0xc2
inc rbx
...
jmp 0x4c
dec rbx
...
mov rbx, rdx
...

Enclave BTB and BPU
Addr Target

Last Branch Record

❶�No branch and
delete history

❷�Interrupt

❹�Affect branch prediction 
(will not take)...

cmp rax, rax
je 0xc2
nop
...
nop
nop
...

From → To †Predicted

No
Non-enclave

0x004⋯530:

0x004⋯5f4:

0x004⋯620:

0x004⋯5f2:

0xff4⋯530:

0xff4⋯5f4:

0xff4⋯532:

0xff4⋯5f5:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯5f4

↓

...
n/a0x**4⋯530

...

Only for non-enclave

Memory
CPU

(isolated)

incorrect

Take?

No

Take

(b) Case 2: The target conditional branch has not been taken
(i.e., either not been executed or been executed but not taken).
Figure 2: Branch shadowing attack against a conditional branch
(i.e., Case 1 for taken and Case 2 for non-taken branches) inside
an enclave († LBR records the result of misprediction. For
clarity, we use the result of prediction in this paper.)

the OS takes control. We explain how a malicious OS
can frequently interrupt an enclave process in §3.6. 3
The OS enables the LBR and then executes the shadow
code. 4 The BPU correctly predicts that the shadowed
conditional branch will be taken. At this point, a branch
target prediction will fail because the BTB stores a target
address inside an enclave. However, this target mispre-
diction is orthogonal to the result of a branch prediction
though it will introduce a penalty in CPU cycles (§3.4).
5 Finally, by disabling and retrieving the LBR, we learn
that the shadowed conditional branch has been correctly
predicted—it has been taken as predicted. We think that
this correct prediction is about branch prediction because
the target addresses of the two branch instructions are
different; that is, the target prediction might be failed.
Note that, by default, the LBR reports all the branches
(including function calls) that occurred in user and ker-
nel space. Since our shadow code has no function calls
and is executed in the kernel, we use the LBR’s filtering

mechanism to ignore every function call and all branches
in user space.

Next, we explain the case in which a conditional branch
has not been taken (Case 2). 1 The conditional branch
of the victim code is not taken, so either no information
is stored into the BTB and BPU or the corresponding
old information might be deleted (if there are conflict
missed in the same BTB set.) 2 Enclave execution is
interrupted and the OS takes control. 3 The OS enables
the LBR and then executes the shadow code. 4 The BPU
incorrectly predicts that the shadowed conditional branch
will not been taken, so the execution is rolled back to take
the branch. 5 Finally, by disabling and retrieving the
LBR, we learn that the shadowed conditional branch has
been mispredicted—it has been taken unlike the branch
prediction.

Initializing branch states. When predicting a condi-
tional branch, modern BPUs exploit the branch’s several
previous executions to improve prediction accuracy. For
example, if a branch had been taken several times and then
not taken only once, a BPU would predict that its next
execution would be taken. This would make the shadow
branching infer incorrectly a target branch’s execution
after it has been executed multiple times (e.g., inside a
loop). To solve this problem, after the final step of each
attack iteration, we additionally run the shadow code mul-
tiple times while varying the condition (i.e., interleaving
taken and not-taken branches) to initialize branch states.

3.4 Unconditional Branch Shadowing
We explain how an attacker can know whether a target

unconditional branch inside an enclave has been executed
by shadowing its branch history. This gives us two kinds
of information. First, an attacker can infer where the
instruction pointer (IP) inside an enclave currently points.
Second, an attacker can infer the result of the condition
evaluation of an if-else statement because an if block’s
last instruction is an unconditional branch to skip the
corresponding else block.

Unlike a conditional branch, an unconditional branch
is always taken; i.e., a branch prediction is not needed.
Thus, to recognize its behavior, we need to divert its
target address to observe branch target mispredictions,
not branch mispredictions. Interestingly, we found that
the LBR does not report the branch target misprediction
of an unconditional branch; it always says that each taken
unconditional branch was correctly predicted. Thus, we
use the elapsed cycles of a branch that the LBR reports to
identify the branch target misprediction penalty, which is
less noisy than RDTSC (Table 1).

Attack procedure. Figure 3 shows our procedure for
unconditional branch shadowing. Unlike the conditional
branch shadowing, we make the target of the shadowed
unconditional branch differ from that of the victim uncon-
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(a) Case 3: The target unconditional branch has been taken.
The LBR does not report the misprediction of unconditional
branches, but we can infer it by using the elapsed cycles.
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(b) Case 4: The target unconditional branch has not been taken.
Figure 3: Branch shadowing attack against an unconditional
branch inside an enclave.

ditional branch to recognize a branch target misprediction.
We first explain the case in which an unconditional branch
has been executed (Case 3). 1 An unconditional branch
of the victim code is executed and the corresponding in-
formation is stored into the BTB and BPU. 2 Enclave
execution is interrupted, and the OS takes control. 3 The
OS enables the LBR and then executes the shadow code.
4 The BPU mispredicts the branch target of the shad-
owed unconditional branch because of the mismatched
branch history, so execution is rolled back to jump to the
correct target. 5 The shadow code executes an additional
branch to measure the elapsed cycles of the mispredicted
branch. 6 Finally, by disabling and retrieving the LBR,
we learn that a branch target misprediction occurred be-
cause of the large number of elapsed cycles.

Next, we explain the case in which an unconditional
branch has not been taken (Case 4). 1 The enclave has
not yet executed the unconditional branch in the victim
code, so the BTB has no information about the branch.

2 Enclave execution is interrupted, and the OS takes
control. 3 The OS enables the LBR and then executes
the shadow code. 4 The BPU correctly predicts the
shadowed unconditional branch’s target, because the tar-
get unconditional branch has never been executed. 5
The shadow code executes an additional branch to mea-
sure the elapsed cycles. 6 By disabling and retrieving
the LBR, we learn that no branch target misprediction
occurred because of the small number of elapsed cycles.

No misprediction of unconditional branch. We found
that the LBR always reports that every taken uncondi-
tional branch has been predicted irrespective of whether
it mispredicted the target (undocumented behavior). We
think that this is because the target of an unconditional
branch is fixed such that, typically, target mispredictions
should not occur. Also, the LBR was for facilitating
branch profiling to reduce mispredictions for optimization.
However, programmers have no way to handle mispre-
dicted unconditional branches that result from the execu-
tion of the kernel or another process—i.e., it does not help
programmers improve their program and just reveals side-
channel information. We believe these are the reasons
the LBR treats every unconditional branch as correctly
predicted.

3.5 Indirect Branch Shadowing
We explain how we can infer whether a target indirect

branch inside an enclave has been executed by shadowing
its branch history. Like an unconditional branch, an indi-
rect branch is always taken when it is executed. However,
unlike an unconditional branch, an indirect branch has
no fixed branch target. If there is no history, the BPU
predicts that the instruction following the indirect branch
instruction will be executed; this is the same as the indi-
rect branch not being taken. To recognize its behavior, we
make a shadowed indirect branch jump to the instruction
immediately following it to monitor a branch target mis-
prediction because of the history. The LBR reports the
mispredictions of indirect branches such that we do not
need to rely on elapsed cycles to attack indirect branches.

Attack procedure. Figure 4 shows a procedure of indi-
rect branch shadowing. We make the shadowed indirect
branch jump to its next instruction to observe whether a
branch misprediction occurs because of the branch history.
We first explain the case in which an indirect branch has
been executed (Case 5). 1 An indirect branch of the vic-
tim code is executed and the corresponding information
is stored into the BTB and BPU. 2 Enclave execution is
interrupted, and the OS takes control. 3 The OS enables
the LBR and then executes the shadow code. 4 The
BPU mispredicts that the shadowed indirect branch will
be taken to an incorrect target address, so the execution
is rolled back to not take the branch. 5 Finally, by dis-
abling and retrieving the LBR, we learn that the shadow
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(a) Case 5: The target indirect branch has been taken.
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(b) Case 6: The target indirect branch has not been taken
Figure 4: Branch shadowing attack against an indirect branch
inside an enclave.

code’s indirect branch has been incorrectly predicted—it
has not been taken, unlike the branch prediction.

Next, we explain the case in which an indirect branch
has not been taken (Case 6). 1 The enclave does not
execute the indirect branch of the victim code, so that the
BTB has no information about the branch. 2 Enclave
execution is interrupted, and the OS takes control. 3 The
OS enables the LBR and then executes the shadow code.
4 The BPU correctly predicts that the shadowed indirect
branch will not be taken because there is no branch history.
5 Finally, by disabling and retrieving the LBR, we learn
that the shadow code’s indirect branch has been correctly
predicted—it has not been taken, as predicted.

Inferring branch targets. Unlike conditional and un-
conditional branches, an indirect branch can have multiple
targets such that just knowing whether it has been exe-
cuted would be insufficient to know the victim code’s
execution. Since the indirect branch is mostly used for
representing a switch-case statement, it is also related
to a number of unconditional branches (i.e., break) as an
if-else statement does. This implies that an attacker can
identify which case block has been executed by probing
the corresponding unconditional branch. Also, if an at-
tacker can repeatedly execute a victim enclave program
with the same input, he or she can test the same indirect

Branch State BTB/BPU LBR Inferred
Pred. Elapsed Cycl.

Cond. Taken ✓ ✓ - ✓
Not-taken - ✓ - ✓

Uncond. Exec. ✓ - ✓ ✓
Not-exec. - - ✓ ✓

Indirect Exec. ✓ ✓ - ✓
Not-exec. - ✓ - ✓

Table 2: Branch types and states the branch shadowing attack
can infer by using the information of BTB, BPU, and LBR.

branch multiple times while changing candidate target
addresses to eventually know the real target address by
observing a correct branch target prediction.

Table 2 summarizes the branch types and states our
attack can infer and the necessary information.

3.6 Frequent Interrupting and Probing
The branch shadowing attack needs to consider cases

that change (or even remove) BTB entries because they
make the attack miss some branch histories. First, the
size of the BTB is limited such that a BTB entry could
be overwritten by another branch instruction. We empiri-
cally identified that the Skylake’s BTB has 4,096 entries,
where the number of ways is four and the number of sets is
1,024 (§5.1). Because of its well-designed index-hashing
algorithm, we observed that conflicts between two branch
instructions located at different addresses rarely occurred.
But, no matter how, after more than 4,096 different branch
instructions have been taken, the BTB will overflow and
we will lose some branch histories. Second, a BTB entry
for a conditional or an indirect branch can be removed
or changed because of a loop or re-execution of the same
function. For example, a conditional branch has been
taken at its first run and has not been taken at its sec-
ond run because of the changes of the given condition,
removing the corresponding BTB entry. A target of an
indirect branch can also be changed according to condi-
tions, which change the corresponding BTB entry. If the
branch shadowing attack could not check a BTB entry
before it has been changed, it would lose the information.

To solve this problem, we interrupt the enclave process
as frequently as possible and check the branch history by
manipulating the local APIC timer and the CPU cache.
These two approaches slow the execution of a target en-
clave program a lot such that an attacker needs to carefully
use them (i.e., selectively) to avoid detection.

Manipulating the local APIC timer. We manipulate
the frequency of the local APIC timer in a recent version
of Linux (details are in Appendix A.) We measured the
frequency of our manipulated timer interrupts in terms of
how many ADD instructions can be executed between two
timer interrupts. On average, about 48.76 ADD instructions
were executed between two timer interrupts (standard
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deviation: 2.75)1. ADD takes only one cycle in the Skylake
CPU [25] such that our frequent timer can interrupt a
victim enclave per every ∼50 cycles.
Disabling the cache. If we have to attack a branch in-
struction in a short loop taking < 50 cycles, the frequent
timer interrupt is not enough. To interrupt an enclave
process more frequently, we selectively disable the L1
and L2 cache of a CPU core running the victim enclave
process by setting the cache disable (CD) bit of the CR0
control register. With the frequent timer interrupt and
disabled cache, about 4.71 ADD instructions were executed
between two timer interrupts on average (standard devia-
tion: 1.96 with 10,000 iterations). Thus, the highest attack
frequency we could achieve was around five cycles.

3.7 Virtual Address Manipulation
To perform the branch shadowing attack, an attacker

has to manipulate the virtual addresses of a victim enclave
process. Since the attacker has already compromised
the OS, manipulating the page tables to change virtual
addresses is an easy task. For simplicity, we assume the
attacker disables the user-space ASLR and modifies the
Intel SGX driver for Linux (vm_mmap) to change the base
address of an enclave (Appendix B). Also, the attacker
puts an arbitrary number of NOP instructions before the
shadow code to satisfy the alignment.

3.8 Attack Synchronization
Although the branch shadowing probes multiple

branches in each iteration, it is insufficient when a victim
enclave program is large. An approach to overcome this
limitation is to apply the branch shadowing attack at the
function level. Namely, an attacker first infers functions a
victim enclave program either has executed or is currently
executing and then probes branches belonging to these
functions. If these functions contain entry points that can
be invoked from outside (via EENTER) or that rely on ex-
ternal calls, the attacker can easily identify them because
they are controllable and observable by the OS.

However, the attacker needs another strategy to infer
the execution of non-exported functions. The attacker can
create special shadow code consisting of always reachable
branches of target functions (e.g., branches located at the
function prologue). By periodically executing this code,
the attacker can see which of the monitored functions has
been executed. Also, the attacker can use the page-fault
side channel [60] to synchronize attacks in terms of pages.

3.9 Victim Isolation
To minimize noise, we need to ensure that only a victim

enclave program and shadow code will be executed in an
isolated physical core. Each physical core has the BTB
and BPU shared by multiple processes. Thus, if another

1The number of iterations was 10,000. We disabled Hyper-
Threading, SpeedStep, TurboBoost, and C-States to reduce noise.

1 /* Sliding-window exponentiation: X = A^E mod N */
2 int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
3 const mbedtls_mpi *E, const mbedtls_mpi *N,
4 mbedtls_mpi *_RR) {
5 ...
6 state = 0;
7 while (1) {
8 ...
9 // i-th bit of exponent

10 ei = (E->p[nblimbs] >> bufsize) & 1;
11

12 // cmpq 0x0,-0xc68(%rbp); jne 3f317; ...
13 ⋆ if (ei == 0 && state == 0)
14 continue;
15

16 // cmpq 0x0,-0xc68(%rbp); jne 3f371; ...
17 ⋆ if (ei == 0 && state == 1)
18 + mpi_montmul(X, X, N, mm, &T);
19

20 state = 2; nbits++;
21 wbits |= (ei << (wsize-nbits));
22

23 if (nbits == wsize) {
24 for (i = 0; i < wsize; i++)
25 + mpi_montmul(X, X, N, mm, &T);
26

27 + mpi_montmul(X, &W[wbits], N, mm, &T);
28 state--; nbits = wbits = 0;
29 }
30 }
31 ...
32 }

Figure 5: Sliding-window exponentiation of mbed TLS. Branch
shadowing can infer every bit of the secret exponent.

process runs in the core under the branch shadowing at-
tack, its execution would affect the overall attack results.
To avoid this problem, we use the isolcpus boot parame-
ter to specify an isolated core that will not be scheduled
without certain requests. Then, we use the taskset com-
mand to run a victim enclave with the isolated core.

4 Evaluation
In this section, we demonstrate the branch shadow-

ing attack against an implementation of RSA and also
describe our case studies of various libraries and applica-
tions that are vulnerable to our attack but mostly secure
against the controlled-channel attack [60]. The branch
shadowing attack’s goal is not to overcome countermea-
sures against branch-prediction side-channel attacks, e.g.,
exponent blinding to hide an exponent value, not branch
executions [34]. Thus, we do not try to attack applications
without branch-prediction side channels.

4.1 Attacking RSA Exponentiation
We launch the branch shadowing attack against a pop-

ular TLS library, called mbed TLS (also known as Po-
larSSL). mbed TLS is a popular choice of SGX developers
and researchers because of its lightweight implementation
and portability [47, 49, 62, 63].

Figure 5 shows how mbed TLS implements sliding-
window exponentiation, used by RSA operations. This
function has two conditional branches (jne) marked with
⋆ whose executions depend on each bit (ei) of an expo-
nent. These branches will be taken only when ei is not
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zero (i.e., one). Thus, by shadowing them and checking
their states, we can know the value of ei. Note that the
two branches are always executed no matter how large
the sliding window is. In our system, each loop execution
(Lines 7–30) took about 800 cycles such that a manipu-
lated local APIC timer was enough to interrupt it. Also,
to differentiate each loop execution, we shadow uncondi-
tional branches that jump back to the loop’s beginning.

We evaluated the accuracy of branch shadowing by
attacking RSA-1024 decryption with the default key pair
provided by mbed TLS for testing. By default, mbed
TLS’s RSA implementation uses the Chinese Remainder
Theorem (CRT) technique to speed up computation. Thus,
we observed two executions of mbedtls_mpi_exp_mod
with two different 512-bit CRT exponents in each iter-
ation. The sliding-window size was five.

On average, the branch shadowing attack recovered
approximately 66% of the bits of each of the two CRT
exponents from a single run of the victim (averaged over
1,000 executions). The remaining bits (34%) correspond
to loop iterations in which the two shadowed branches
returned different results (i.e., predicted versus mispre-
dicted). We discarded those measurements, as they were
impacted by platform noise, and marked the correspond-
ing bits as unknown. The remaining 66% of the bits were
inferred correctly with an accuracy of 99.8%, where the
standard deviation was 0.003.

The events that cause the attack to miss about 34% of
the key bits appear to occur at random times. Different
runs reveal different subsets of the key bits. After at
most 10 runs of the victim, the attack recovers virtually
the entire key. This number of runs is small compared
to existing cache-timing attacks, which demand several
hundreds to several tens of thousands of runs to reliably
recover keys [20, 35, 65].
Timing-based branch shadowing. Instead of using
the LBR, we measured how long it takes to execute the
shadow branches using RDTSCP while maintaining other
techniques, including the modified local APIC timer and
victim isolation. When the two target branches were taken,
the shadow branches took 55.51 cycles on average, where
the standard deviation was 48.21 cycles (1,000 iterations).
When the two target branches were not taken, the shadow
branches took 93.89 cycles on average, where the standard
deviation was 188.49 cycles. Because of high variance,
finding a good decision boundary was challenging, so we
built a support vector machine classifier using LIBSVM
(with an RBF kernel and default parameters). Its accuracy
was 0.947 (10-fold cross validation)—i.e., we need to run
this attack at least two times more than the LBR-based
attack to achieve the same level of accuracy.
Controlled-channel attack. We also evaluated the con-
trolled channel attack against Figure 5. We found that
mbedtls_mpi_exp_mod conditionally called mpi_montmul

scan each bit

...

1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul six times (page faults)
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul once
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul once
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul six times : leaked bits

Figure 6: Controlled-channel attack against sliding-window
exponentiation (window size: 5). It only knows the first bit of
each window (always one) and skipped bits (always zero).

(marked with +) according to the value of ei and both
functions were located on different code pages. Thus, by
carefully unmapping these pages, an attacker can monitor
when mpi_montmul is called. However, as Figure 6 shows,
because of the sliding-window technique, the controlled-
channel attack cannot identify every bit unless it knows
W[wbits]—i.e., this attack can only know the first bit of
each window (always one) and skipped bits (always zero).
The number of recognizable bits completely depends on
how the bits of an exponent are distributed. Against the
default RSA-1024 private key of mbed TLS, this attack
identified 334 bits (32.6%). Thus, we conclude that the
branch shadowing attack is better than the controlled-
channel attack for obtaining fine-grained information.

4.2 Case Study
We also studied other sensitive applications that branch

shadowing can attack. Specifically, we focused on ex-
amples in which the controlled-channel attack cannot
extract any information, e.g., control flows within a sin-
gle page. We attacked three more applications: 1) two
libc functions (strtol and vfprintf) in the Linux SGX
SDK, 2) LibSVM, ported to Intel SGX, and 3) some
Apache modules ported to Intel SGX. We achieved in-
teresting results, such as how long an input number
is (strtol), what the input format string looks like
(vfprintf), and what kind of HTTP request an Apache
server gets (lookup_builtin_method), as summarized in
Table 3. Note that the controlled-channel attack cannot
obtain the same information because those functions do
not call outside functions at least in the target basic blocks.
Detailed analysis with source code is in Appendix C.

5 Countermeasures
We introduce our hardware-based and software-based

countermeasures against the branch shadowing attack.

5.1 Flushing Branch State
A fundamental countermeasure against the branch shad-

owing attack is to flush all branch states generated in-
side an enclave by modifying hardware or updating mi-
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Program/Library Function Description Obtainable information

mbed TLS mbedtls_mpi_exp_mod sliding-window exponentiation ✓each bit of an exponent
mpi_montmul Montgomery multiplication ✓whether a dummy subtraction has performed

libc strtol convert a string into an integer ✓the sign of an input number
✓the length of an input number
✓whether each hexadecimal digit is larger than nine

vfprintf print a formatted string ✓the input format string
✓the type of each input argument (e.g., int, double)

LIBSVM k_function evaluate a kernel function ✓the type of a kernel (e.g., linear, polynomial)
✓the length of a feature vector (i.e., # of features)

Apache lookup_builtin_method parse the method of an HTTP request ✓HTTP request method (e.g., GET, POST)

Table 3: Summary of example sensitive applications and their functions attacked by branch shadowing.
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Figure 7: Instructions per cycle of SPEC benchmark in terms of frequency of BTB and BPU flushing.
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Figure 9: Average BTB statistics according to frequency of
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crocode. Whenever an enclave context switch (via the
EENTER, EEXIT, or ERESUME instructions or AEX) occurs,
the processor needs to flush the BTB and BPU states.
Since the BTB and BPU benefit from local and global

Parameter Value

CPU 4 GHz out of order core, 4 issue width, 256 entry ROB
L1 cache 8 way 32 KB I-cache + 8 way 32 KB D-cache
L2 cache 8 way 128 KB
L3 cache 32 way 8 MB
BTB 4 way 1,024 sets
BPU gshare, branch history length 16

Table 4: MacSim simulation parameters.

branch execution history, there would be a performance
penalty if these states were flushed too frequently.

We estimate the performance overhead of our counter-
measure at different enclave context switching frequen-
cies using a cycle-level out-of-order microarchitecture
simulator, MacSim [30]. To simulate branch history flush-
ing for every enclave context switch, we modified Mac-
Sim to flush BTB and BPU for every 100 to 10 million
cycles; this resembles enclave context switching for every
100 to 10 million cycles. The details of our simulation
parameters are listed in Table 4. The BTB is modeled
after the BTB in Intel Skylake processors. We used a
method similar to that in [1, 58] to reverse engineer the
BTB parameters. From our experiments, we found that
the BTB is organized as a 4-way set associative structure
with a total of 4,096 entries. We model a simple branch
predictor, gshare [37], for the simulation. We use traces
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that are 200 million instructions long from the SPEC06
benchmark suite for simulation.

Figure 7 shows the normalized instructions per cycle
(IPC) for different flush frequencies. We found that if
the flush frequency is higher than 100k cycles, it has
negligible performance overhead. At a flush frequency of
100k cycles, the performance degradation is lower than
2% and at 1 million cycles, it is negligible. Figure 8
shows the BTB hit rate, whereas Figure 9 shows the BPU
correct, incorrect (direction prediction is wrong), and
misfetch (target prediction is wrong) percentages. The
BTB and BPU statistics are also barely distinguishable
beyond a flush frequency of 100k cycles.

According to our measurements with a 4GHz CPU,
about 250 and 1,000 timer interrupts are generated per sec-
ond in Linux (version 4.4) and Windows 10, respectively—
i.e., a timer interrupt is generated for every 4M and 1M
cycles, respectively. Therefore, if there is no I/O device
generating many interrupts and an enclave program gener-
ates less frequent system calls, which would be desired to
avoid the Iago attack [9], flushing branch states for every
enclave context switch will introduce negligible overhead.

5.2 Obfuscating Branch
Branch state flushing can effectively prevent the branch

shadowing attack, but we cannot be sure when and
whether such hardware changes will be realized. Espe-
cially, if such changes cannot be done with micro code
updates, we cannot protect the Intel CPUs already de-
ployed in the markets.

Possible software-based countermeasures against the
branch shadowing attack are to remove branches [39] or to
use the state-of-the-art ORAM technique, Raccoon [44].
Data-oblivious machine learning algorithms et al. [39]
eliminate all branches by using a conditional move in-
struction, CMOV. However, their approach is algorithm-
specific, i.e., it is not applicable to general applications.
Raccoon [44] always executes both paths of a conditional
branch, such that no branch history will be leaked. But,
its performance overhead is high (21.8×).

Zigzagger. We propose a practical, compiler-based mit-
igation against branch shadowing, called Zigzagger. It
obfuscates a set of branch instructions into a single indi-
rect branch, as inferring the state of an indirect branch is
more difficult than inferring those of conditional and un-
conditional branches (§3.5). However, it is not straightfor-
ward to compute the target block of each branch without
relying on conditional jumps because conditional expres-
sions could become complex because of nested branches.
In Zigzagger, we solved this problem by using a CMOV
instruction [39, 44] and introducing a sequence of non-
conditional jump instructions in lieu of each branch.

Figure 10 shows how Zigzagger transforms an exam-
ple code snippet having if, else-if, and else blocks. It

cmp $0, $a
je block2
<code1>
jmp block5
cmp $0, $b
je block4
<code2>
jmp block5
<code3>
<code4>

if (a != 0) {
  <code1>
}
else if (b != 0) {
  <code2>
}
else {
  <code3>
}
 <code4>

block3:

block1:

block2:

block5:

block0:

block4:

(a) An example code snippet. It selectively executes a branch
block according to a and b variables.

mov $block1, r15
cmp $0, $a
cmov $block2, r15
jmp zz1
<code1>
mov $block5, r15
jmp zz2
mov $block3, r15
cmp $0, $b
cmov $block4, r15
jmp zz3
<code2>
mov $block5, r15
jmp zz4
<code3>
<code4>

block0:

block0.j:

block1.j:

block1:

block2.j:

block2:

block3.j:

block3:

block5:
block4:

Zigzagger's trampoline

zz1:jmp block1.j

zz2:jmp block2.j

zz3: jmp block3.j

zz4: jmpq *r15

(b) The protected code snippet by Zigzagger. All branch instruc-
tions are executed regardless of a and b variables. An indirect
branch in the trampoline and CMOVs in the translated code are
used to obfuscate the final target address. r15 is reserved to
store the target address.

Figure 10: An example of Zigzagger transformation.

converts all conditional and unconditional branches into
unconditional branches targeting Zigzagger’s trampoline,
which jumps back-and-forth with the converted branches.
The trampoline finally jumps into the real target address
stored in a reserved register r15. Note that reserving a
register is only for improving performance. We can use
the memory to store the target address when an applica-
tion needs to use a large number of registers. To emulate
conditional execution, the CMOV instructions in Figure 10b
update the target address in r15 only when a or b is zero.
Otherwise, they are treated as NOP instructions. Since all
of the unconditional branches are executed almost simul-
taneously in sequence, recognizing the current instruction
pointer is difficult. Further, since the trampoline now
has five different target addresses, inferring real targets
among them is not straightforward.

Zigzagger’s approach has several benefits: 1) security:
it provides the first line of protection on each branch block
in an enclave program; 2) performance: its overhead is at
most 2.19× (Table 5); 3) practicality: its transformation
demands neither complex analysis of code semantics nor
heavy code changes. However, it does not ensure perfect
security such that we still need ORAM-like techniques to
protect very sensitive functions.

Implementation. We implemented Zigzagger in LLVM
4.0 as an LLVM pass that converts branches in each func-
tion and constructs the required trampoline. We also mod-
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Benchmark Baseline Zigzagger
(iter/s) #Branches (overhead)

2 3 4 5 All

numeric sort 967.25 1.05× 1.11× 1.12× 1.13× 1.15×
string sort 682.31 1.08× 1.15× 1.18× 1.15× 1.27×
bitfield 4.5E+08 1.03× 1.10× 1.14× 1.18× 1.31×
fp emulation 96.204 1.10× 1.21× 1.15× 1.27× 1.35×
fourier 54982 0.99× 0.99× 1.01× 1.01× 1.01×
assignment 35.73 1.36× 1.56× 1.50× 1.55× 1.90×
idea 10,378 2.16× 2.16× 2.18× 2.19× 2.19×
huffman 2478.1 1.59× 1.46× 1.61× 1.63× 1.81×
neural net 16.554 0.75× 0.77× 0.85× 0.86× 0.89×
lu decomposition 1,130 1.04× 1.09× 1.08× 1.11× 1.17×

GEOMEAN 1.17× 1.22× 1.24× 1.26× 1.34×

Table 5: Overhead of the Zigzagger approach according to the
number of branches belonging to each Zigzagger.

ified the LLVM backend to reserve a register. The number
of branches a single trampoline manages affects the over-
all performance, so our implementation provides a knob
to configure it to trade the security for performance.

Our proof-of-concept implementation of Zigzagger,
merging every branch in each function, imposed a 1.34×
performance overhead when evaluating it with the nbench
benchmark suite (Table 5). With optimization (i.e., merg-
ing ≤ 3 branches into a single trampoline), the average
overhead became ≤ 1.22×. Note that reserving a register
resulted in a 4%–50% performance improvement.

6 Discussion
In this section, we explain some limitations of the

branch shadowing attack and discuss possible advanced
attacks.

6.1 Limitations
The branch shadowing attack has limitations. First, it

cannot distinguish a not-taken conditional branch from a
not-executed conditional branch because, in both cases,
the BTB stores no information; the static branch pre-
diction rule is applied. Second, it cannot distinguish an
indirect branch to the next instruction from a not-executed
indirect branch because their predicted branch targets are
the same. Therefore, an attacker has to probe a number
of correlated branches (e.g., unconditional branches in
else-if or case blocks) to overcome these limitations.
Third, as with the controlled-channel attack, the branch
shadowing attack needs repetitions to increase attack ac-
curacy, which can be prohibited by a state continuity solu-
tion [55]. However, this requires persistence storage such
as that provided by a trusted platform module (TPM).

6.2 Advanced Attacks
We consider how branch shadowing can be improved:

hyperthreading and blind approaches.
Hyperthreaded branch shadowing. Since two hyper-
threads simultaneously running in the same physical core
share the BTB and BPU, a malicious hyperthread can

attack a victim enclave hyperthread by using BTB entry
conflicts if a malicious OS gives the address information
of the victim to it. We observed that branch instructions
with the same low 16-bit address were mapped into the
same BTB set. Thus, a malicious hyperthread can mon-
itor a BTB set for evictions by filling the BTB set with
four branch instructions (§5.1). The BTB flushing cannot
prevent this attack because it demands no enclave mode
switch, so disabling hyperthreading or preventing the hy-
perthreads from sharing the BTB and BPU is necessary.

Blind branch shadowing. A blind branch shadowing
attack is an attempt to probe the entire or selected memory
region of a victim enclave process to detect any unknown
branch instructions. This attack would be necessary if a
victim enclave process has self-modifying code or uses
remote code loading, though this is outside the scope
of our threat model (§3.1). In the case of unconditional
branches, blind probing is easy and effective because it
does not need to infer target addresses. However, in the
case of conditional and indirect branches, blind probing
needs to consider branch instructions and their targets
simultaneously such that the search space would be huge.
We plan to consider an effective method to minimize the
search space to know whether this attack is practical.

7 Related Work
Intel SGX. The strong security guarantee provided
by SGX has drawn significant attention from the re-
search community. Several security applications of
SGX are proposed, including secure and distributed data
analysis [7, 11, 39, 46, 66] and secure networking ser-
vice [31, 41, 48]. Also, researchers implemented SGX
layers [5, 6, 51, 57] to run existing applications inside an
enclave without any modifications. The security proper-
ties of SGX itself are also being intensively studied. For
example, Sinha et al. [52, 53] develop tools to verify the
confidentiality of enclave programs.

However, researchers find security attacks against Intel
SGX. Xu et al. [60] and Shinde et al. [50] demonstrate the
first side-channel attack on SGX by leveraging the fact
that SGX relies on an OS for memory resource manage-
ment. The attack is done by intentionally manipulating the
page table to trigger a page fault and using a page-fault
sequence to infer the secret inside an enclave. Weich-
brodt et al. [59] also show how a synchronous bug can
be exploited to attack SGX applications. Further, concur-
rently with our work, Hähnel et al. [21] exploit a frequent
timer in Windows to realize a precise cache side-channel
attack against the Intel SGX simulator.

To address the page-fault-based side-channel attack,
Shinde et al. [50] obfuscate the memory access pattern of
an enclave. Shih et al. [49] propose a compiler-based solu-
tion using Intel TSX to detect suspicious page faults inside
an enclave. Also, Costan et al. [10] propose a new en-
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clave design to prevent both page-fault and cache-timing
side-channel attacks. Finally, Seo et al. [47] enforce fine-
grained ASLR on enclave programs, which can raise the
bar of exploiting any vulnerabilities and inferring control
flow with page-fault sequences. However, all of these
solutions heavily use branch instructions and do not clear
branch states, such that they would be vulnerable to our
attack.

Microarchitectural side channel. Researchers con-
sidered the security problems of microarchitectural side
channels. The most popular and well-studied microar-
chitectural side channel is a CPU cache timing channel
first developed by [29, 34, 40] to break cryptosystems.
This attack is further extended to be conducted in the
public cloud setting to recognize co-residency of virtual
machines [45, 64]. Several researchers further improved
this attack to exploit the last level cache [27, 35] and cre-
ate a low-noise cache storage channel [19]. The CPU
cache is not the sole source of the microarchitectural side
channel. For example, to break kernel ASLR, researchers
exploit a TLB timing channel [23], an Intel TSX instruc-
tion [28], a PREFETCH instruction [18], and a BTB timing
channel [13]. Ge et al. [14] conducted a comprehensive
survey of microarchitectural side channels.

8 Conclusion
A hardware-based TEE such as Intel SGX demands

thorough analysis to ensure its security against hostile
environments. In this paper, we presented and evaluated
the branch shadowing attack, which identifies fine-grained
execution flows inside an SGX enclave. We also proposed
hardware-based countermeasure that clears the branch
history during enclave mode switches and software-based
mitigation that makes branch executions oblivious.

Responsible disclosure. We reported our attack to Intel
and discussed with them to find effective solutions against
it. Also, after having a discussion with us, the authors of
Sanctum [10] revised their eprint paper that coped with
our attack.
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A Manipulating Local APIC Timer
The local APIC is a component of Intel CPUs to config-

ure and handle CPU-specific interrupts [26, §10]. An OS
can program it through memory-mapped registers (e.g.,
device configuration register) or model-specific registers
(MSRs) to adjust the frequency of the local APIC timer,
which generates high-resolution timer interrupts, and de-
liver an interrupt to a CPU core (e.g., inter-processor
interrupt (IPI) and I/O interrupt from the I/O APIC).

Intel CPUs support three local APIC timer modes: pe-
riodic, one-shot, and timestamp counter (TSC)-deadline
modes. The periodic mode lets an OS configure the initial-
count register whose value is copied into the current-count
register the local APIC timer uses. The current-count reg-
ister’s value decreases at the rate of the bus frequency,
and when it becomes zero, a timer interrupt is generated
and the register is re-initialized by using the initial-count
register. The one-shot mode lets an OS configure the
initial-count counter value whenever a timer interrupt is
generated. The TSC-deadline mode is the most advanced
and precise timer mode allowing an OS to specify when
the next timer interrupt will occur in terms of a TSC
value. Our target Linux system (kernel version 4.4) uses
the TSC-deadline mode, so we focus on this mode.

Figure 11 shows how we modified the
lapic_next_deadline() function specifying the next
TSC deadline and the local_apic_timer_interrupt()
function called whenever a timer interrupt
is fired. We made and exported two global
variables and function pointers to manipulate
the behaviors of lapic_next_deadline() and
local_apic_timer_interrupt() with a kernel module:
lapic_next_deadline_delta to change the delta;
lapic_target_cpu to specify a virtual CPU running
a victim enclave process (via a CPU affinity); and
timer_interrupt_hook to specify a function to be called
whenever a timer interrupt is generated. In our evaluation
environment having an Intel Core i7 6700K CPU (4GHz),
we were able to have 1,000 as the minimum delta value;
i.e., it fires a timer interrupt about every 1,000 cycles.
Note that, in our environment, a delta value lower than
1,000 made the entire system freeze because a timer
interrupt was generated before an old timer interrupt was
handled by the interrupt handler.

B Modifying SGX Driver
Figure 12 shows how we modified the Intel SGX driver

for Linux to manipulate the base address of an enclave.
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1 /* linux-4.4.23/arch/x86/kernel/apic/apic.c */
2 ...
3 // manipualte the delta of TSC-deadline mode
4 unsigned int lapic_next_deadline_delta = 0U;
5 EXPORT_SYMBOL_GPL(lapic_next_deadline_delta);
6

7 // specify the virtual core under attack
8 int lapic_target_cpu = -1;
9 EXPORT_SYMBOL_GPL(lapic_target_cpu);

10

11 // a hook to launch branch shadowing attack
12 void (*timer_interrupt_hook)(void*) = NULL;
13 EXPORT_SYMBOL_GPL(timer_interrupt_hook);
14 ...
15 // update the next TSC deadline
16 static int lapic_next_deadline(unsigned long delta,
17 struct clock_event_device *evt) {
18 u64 tsc;
19 tsc = rdtsc();
20 ⋆ if (smp_processor_id() != lapic_target_cpu)
21 wrmsrl(MSR_IA32_TSC_DEADLINE,
22 tsc + (((u64) delta) * TSC_DIVISOR));
23 ⋆ else
24 ⋆ wrmsrl(MSR_IA32_TSC_DEADLINE,
25 ⋆ tsc + lapic_next_deadline_delta); // custom deadline
26 return 0;
27 }
28 ...
29 // handle a timer interrupt
30 static void local_apic_timer_interrupt(void) {
31 int cpu = smp_processor_id();
32 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
33

34 ⋆ if (cpu == lapic_target_cpu && timer_interrupt_hook)
35 ⋆ timer_interrupt_hook((void*)&cpu); // call attack code
36 ...
37 }

Figure 11: Modified local APIC timer code. We changed
lapic_next_deadline() to manipulate the next TSC deadline
and local_apic_timer_interrupt() to launch attack code.

1 /* isgx_ioctl.c */
2 ...
3 static long isgx_ioctl_enclave_create(struct file *filep,
4 unsigned int cmd, unsigned long arg) {
5 ...
6 struct isgx_create_param *createp =
7 (struct isgx_create_param *) arg;
8 void *secs_la = createp->secs;
9 struct isgx_secs *secs = NULL;

10 // SGX Enclave Control Structure (SECS)
11 long ret;
12 ...
13 secs = kzalloc(sizeof(*secs), GFP_KERNEL);
14 ret = copy_from_user((void *)secs, secs_la, sizeof (*secs));
15 ...
16 ⋆ secs->base = vm_mmap(file, MANIPULATED_BASE_ADDR, secs->size,
17 ⋆ PROT_READ | PROT_WRITE | PROT_EXEC,
18 ⋆ MAP_SHARED, 0);
19 ...
20 }

Figure 12: Modified Intel SGX driver to manipulate the base
address of an enclave

C Case Study in Detail
We study other sensitive applications the branch shad-

owing can attack. Specifically, we focus on examples in
which the controlled-channel attack cannot extract any
information, e.g., control flows within a single page.
mbed TLS. We checked mbed TLS’s another function:
the Montgomery multiplication (mpi_montmul). As shown

1 /* bignum.c */
2 static int mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
3 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
4 const mbedtls_mpi *T) {
5 size_t i, n, m;
6 mbedtls_mpi_uint u0, u1, *d;
7

8 d = T->p; n = N->n; m = (B->n < n) ? B->n : n;
9

10 for (i = 0; i < n; i++) {
11 u0 = A->p[i];
12 u1 = (d[0] + u0 * B->p[0]) * mm;
13

14 mpi_mul_hlp(m, B->p, d, u0);
15 mpi_mul_hlp(n, N->p, d, u1);
16

17 *d++ = u0; d[n+1] = 0;
18 }
19

20 ⋆ if (mbedtls_mpi_cmp_abs(A, N) >= 0) {
21 ⋆ mpi_sub_hlp(n, N->p, A->p);
22 ⋆ i = 1;
23 ⋆ }
24 ⋆ else { // dummy subtraction to prevent timing attacks
25 ⋆ mpi_sub_hlp(n, N->p, T->p);
26 ⋆ i = 0;
27 ⋆ }
28 return 0;
29 }

Figure 13: Montgomery multiplication (mpi_montmul()) of
mbed TLS. The branch shadowing attack can infer whether
a dummy subtraction has performed or not.

in Figure 13, this function has a dummy subtraction
(Lines 24–27) to prevent the well-known remote timing
attack [8]. The branch shadowing attack was able to de-
tect the execution of this dummy branch. In contrast,
the controlled-channel cannot know whether a dummy
subtraction has happened because both real and dummy
branches execute the same function: mpi_sub_hlp().

Linux SGX SDK. We attacked two libc functions,
strtol() and vfprint(), Linux SGX SDK provides. Fig-
ure 14a shows strtol() converting a string into an inte-
ger. The branch shadowing can infer the sign of an input
number by checking the branches in Lines 7–12. Also,
it infers the length of an input number by checking the
loop branch in Lines 14–24. When an input number was
hexadecimal, we were able to use the branch at Line 16
to know whether each digit was larger than nine.

Figure 14b shows vfprintf() printing a formatted
string. The branch shadowing was able to infer the format
string by checking the switch-case statement in Lines
4–13 and the types of input arguments to this function
according the switch-case statement in Lines 15–23. In
contrast, the controlled-channel attack cannot infer this
information because the functions called by vfprint(),
including ADDSARG() and va_arg(), are inline functions.
No page fault sequence will be observed.

LIBSVM. LIBSVM is a popular library supporting sup-
port vector machine (SVM) classifiers. We ported a classi-
fication logic of LIBSVM to Intel SGX because it would
be a good example of machine learning as a service [39]
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1 /* linux-sgx/sdk/tlibc/stdlib/strtol.c */
2 long strtol(const char *nptr, char **endptr, int base) {
3 ...
4 s = nptr;
5 do { c = (unsigned char) *s++; } while (isspace(c));
6

7 ⋆ if (c == ’-’) {
8 ⋆ neg = 1; c = *s++;
9 ⋆ } else {

10 ⋆ neg = 0;
11 ⋆ if (c == ’+’) c = *s++;
12 ⋆ } // infer the sign of an input number
13

14 ⋆ for (acc = 0, any = 0;; c = (unsigned char) *s++) {
15 ⋆ if(isdigit(c)) c -= ’0’;
16 ⋆ else if (isalpha(c)) c -= isupper(c) ? ’A’-10 : ’a’-10;
17 ⋆ // infer hexademical
18 else break;
19

20 if (!neg) {
21 acc *= base; acc += c;
22 }
23 ...
24 ⋆ } // infer the length of an input number
25 ...
26 }

(a) Simplified strtol(). The branch shadowing attack can infer
the sign and length of an input number.

1 /* linux-sgx/sdk/tlibc/stdio/vfprintf.c */
2 int __vfprintf(FILE *fp, const char *fmt0, __va_list ap) {
3 ...
4 for (;;) {
5 ch = *fmt++;
6 switch (ch) {
7 ...
8 ⋆ case ’d’: case ’i’: ADDSARG(); break;
9 ⋆ case ’p’: ADDTYPE_CHECK(TP_VOID); break;

10 ⋆ case ’X’: case ’x’: ADDUARG(); break;
11 ...
12 }
13 } // infer input format string
14 ...
15 for (n = 1; n <= tablemax; n++) {
16 switch (tyypetable[n]) {
17 ⋆ case T_INT:
18 ⋆ (*argtable)[n].intarg = va_arg(ap, int); break;
19 ⋆ case T_DOUBLE:
20 ⋆ (*argtable)[n].doublearg = va_arg(ap, double); break;
21 ...
22 }
23 ⋆ } // infer the types of input arguments
24 ...
25 }

(b) Simplified vfprintf(). The branch shadowing attack can
infer the format string and variable arguments.

Figure 14: libc functions attacked by the branch shadowing

while hiding the detailed parameters. Figure 15 shows
the LIBSVM’s kernel function code running inside an
enclave. The branch shadowing attack can recognize the
kernel type such as linear, polynomial, and radial basis
function (RBF) because of the switch-case statement in
Lines 4–28. Also, when a victim used an RBF kernel, we
were able to infer the number of features (i.e., the length
of a vector) he or she used (Lines 11–20).

Apache. We ported some modules of Apache to SGX.
Figure 16 shows its lookup function to parse the method
of an HTTP request. Because of its switch-case state-

1 /* svm.cpp */
2 double Kernel::k_function(const svm_node *x,
3 const svm_node *y, const svm_parameter& param) {
4 switch(param.kernel_type) {
5 ⋆ case LINEAR:
6 ⋆ return dot(x,y);
7 ⋆ case POLY:
8 ⋆ return powi(param.gamma*dot(x,y)+param.coef0,
9 param.degree);

10 ⋆ case RBF:
11 double sum = 0;
12 while (x->index != -1 && y->index != -1) {
13 ⋆ if (x->index == y->index) {
14 ⋆ double d = x->value - y->value;
15 ⋆ sum += d*d; ++x; ++y;
16 ⋆ }
17 ⋆ else {
18 ⋆ ...
19 ⋆ }
20 ...
21 ⋆ } // infer the lengths of x and y
22 ⋆ return exp(-param.gamma*sum);
23 ⋆ case SIGMOID:
24 ⋆ return tanh(param.gamma*dot(x,y)+param.coef0);
25 ⋆ case PRECOMPUTED:
26 ⋆ return x[(int)(y->value)].value;
27 default:
28 return 0;
29 ⋆ } // infer the kernel type
30 }

Figure 15: Kernel function of LIBSVM. The branch shadowing
attack can infer the kernel type.

1 /* http_protocol.c */
2 static int lookup_builtin_method(const char *method,
3 apr_size_t len) {
4 ...
5 switch (len) {
6 ⋆ case 3:
7 switch (method[0]) {
8 ⋆ case ’P’: return (method[1] == ’U’ && method[2] == ’T’
9 ⋆ ? M_PUT : UNKNOWN_METHOD);

10 ⋆ case ’G’: return (method[1] == ’E’ && method[2] == ’T’
11 ⋆ ? M_GET : UNKNOWN_METHOD);
12 default: return UNKNOWN_METHOD;
13 }
14 ..
15 ⋆ case 5:
16 switch (method[2]) {
17 ⋆ case ’T’: return (memcmp(method, "PATCH", 5) == 0
18 ⋆ ? M_PATCH : UNKNOWN_METHOD);
19 ⋆ case ’R’: return (memcmp(method, "MERGE", 5) == 0
20 ⋆ ? M_MERGE : UNKNOWN_METHOD);
21 ...
22 }
23 ...
24 ⋆ }
25 }

Figure 16: Apache HTTP method lookup function. The branch
shadowing infers the type of HTTP method sent by clients.

ments, we can easily identify the method of a target HTTP
request, such as GET, POST, DELETE, and PATCH. Since
this function invokes either no function or memcmp(), the
controlled-channel attack has no chance to identify the
method.
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