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Side-channel attacks against Intel SGX are 
getting attention

Monitor page-fault or page-access sequence 
(Oakland15, ASIACCS16, Security17)

• Noise-free, but coarse-grained (page address)

Measure cache hit/miss timing 
(EuroSec17, DIMVA17, ATC17, WOOT17)

• Fine-grained (cache line), but noisy
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Page-fault side channel (Oakland15)

Unmap all pages and monitor page fault sequences
• Page 1->Page 2: A member
• Page 1->Page 3: Not a member

if (is_member(person)) {         

welcome();                    

} else {

bye();                        

}
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Page-fault side channel (Oakland15)

Unmap all pages and monitor page fault sequences
• Page 1->Page 2: A member
• Page 1->Page 3: Not a member

if (is_member(person)) {         

welcome();                    

} else {

bye();                        

}

Does not work when a sensitive control flow change 
occurs within the same page (or cache line)
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Branch shadowing: A fine-grained side-
channel attack against Intel SGX

•Can attack each branch instruction
• Neither page nor cache-line granularity

•Deterministically identify branch history
• Either taken or not taken
• Not about timing difference

•Achieve high attack success rate
• Recover 66% of a 1024-bit RSA private key from a single run
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Observation: 
SGX does not clear branch history!

CPU caches how each branch instruction has been 
executed for later prediction, even for SGX.

• Either taken or not taken, as well as its target address

Does an attacker have a reliable way to extract 
branch history from SGX?
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Performance monitoring unit (PMU) is 
prohibited

•PMUs to profile branch history
• Last branch record (LBR) and processor trace (PT)
• Prediction results (success/failure), target address, …

•Anti side channel inference (ASCI)
• SGX doesn’t publish hardware performance events to PMUs.

•Malicious OS cannot directly use PMUs to get 
SGX’s branch history.
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Branch collision timing attack works for SGX 
but has limitations

Mispredicted branch takes longer than a correctly 
predicted branch.

• But, we cannot directly time a target branch inside SGX.

if (is_member(p)){

…

}

else {

…

}

MispredictionRollback&
Re-execute
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Branch collision timing attack works for SGX 
but has limitations

Colliding branches affect each other’s prediction 
(MICRO16).

• e.g., if a branch has been taken, CPU will predict other colliding 
branches will also be taken.

ADDR[31:0]  taken/not-taken  target address
0xff12345678

0xffc12345678

Branch instructions with colliding addresses
(CPU truncates higher bits to reduce storage overhead.)

……
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Branch collision timing attack works for SGX 
but has limitations

Branch execution inside SGX affects colliding 
branches outside of SGX (shadow branch).

• We can time a shadow branch instead of the actual target to 
know whether it has been mispredicted, but…

This attack has two critical limitations.
• Suffer from high measurement noise
• Difficult to synchronize target and shadow branches
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Limitation 1: 
High measurement noise

Mispredicted branch takes long to do rollback 
while suffering from high variance.
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Limitation 2: 
Difficulty in synchronization

We need to time a shadow branch right after a 
target has been executed to avoid overwriting.

• e.g., Skylake’s branch target buffer: 4 ways x 1,024 sets
• Worst case: Five branch executions would overwrite the target 

branch history.

Synchronization is difficult because SGX does not 
allow single-stepping.
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How does branch shadowing overcome 
the two limitations?

Apply LBR to a shadow branch to identify branch 
prediction results instead of timing

• No ASCI because a shadow branch is outside of SGX
• Deterministic: Either correctly predicted or mispredicted

Realize near single-stepping by increasing timer 
interrupt frequency and disabling the cache

• Can interrupt SGX enclaves for every ~5 cycles
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Threat model

•Attacker knows the source code or binary of a 
target enclave.

•Attacker can frequently interrupt the target 
enclave’s execution to execute attack code.

•Attacker prevents or disrupts the target enclave 
from accessing a trusted time source.
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Step 1: Prepare a shadow copy of an SGX 
program to monitor it with LBR

cmp …

je  L1

…

…

jmpq *rdx

…

SGX enclave

LBRASCI
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Step 1: Prepare a shadow copy of an SGX 
program to monitor it with LBR

cmp …

je  L1

…

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je  L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code (outside of SGX)

LBR

Colliding branch 
instructions

ASCI
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Step 1: Prepare a shadow copy of an SGX 
program to monitor it with LBR

cmp …

je  L1

…

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je  L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code (outside of SGX)

LBR

Colliding branch 
instructions

can monitor all branch 
executions
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Step 2: Interrupt SGX execution and monitor 
shadow code with LBR

cmp …

je  L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je  L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute
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…
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Step 2: Interrupt SGX execution and monitor 
shadow code with LBR

cmp …

je  L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je  L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute
resume

execute while 
enabling LBR
(predicted or 

mispredicted?)

Whether or not shadow branches were correctly 
predicted reveals the history of target branches.
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Shadow conditional branch and 
prediction result

cmp rax, rax

0xff*530:je 0xff*5f4

0xff*532:nop

…

0xff*5f4:nop

Shadow code
cmp $0, rax

0x00*530:je  0x005f4

0x00*532:inc rbx

…

0x00*5f4:dec rbx

SGX enclave

LBR does not report not-taken branches, so we 
make our shadow branch be always taken.

Always 
taken

?

collision
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Shadow conditional branch and prediction 
result

•Our shadow branch should be taken, but how 
does CPU predict it with target branch’s history?

• If the target branch has been taken
➢LBR: The shadow branch has been correctly predicted.

• If the target branch has been not taken
➢LBR: The shadow branch has been mispredicted.
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Shadow conditional branch and prediction 
result

•Our shadow branch should be taken, but how 
does CPU predict it with target branch’s history?

• If the target branch has been taken
➢LBR: The shadow branch has been correctly predicted.

• If the target branch has been not taken
➢LBR: The shadow branch has been mispredicted.

Deterministically identify whether a target conditional 
branch has been taken or not taken
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Shadow indirect branch and 
prediction result

mov 0xff*532,rdx

0xff*530:jmpq *rdx

0xff*532:nop

…

0xff*5f4:nop

Shadow code

0x00*530:jmpq *rdx

0x00*532:inc rbx

…

0x00*5f4:dec rbx

SGX enclave

Next
instruction

For an indirect branch, LBR reports a target 
prediction result.
We use its default target: Next instruction.

?
collision
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Shadow indirect branch and
prediction result

•Our shadow branch will be correctly predicted 
unless the target branch updates cached 
destination.

• If the target branch has been executed
➢LBR: The shadow branch has been mispredicted.

• If the target branch has been not executed
➢LBR: The shadow branch has been correctly predicted.
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Shadow indirect branch and
prediction result

•Our shadow branch will be correctly predicted 
unless the target branch updates cached 
destination.

• If the target branch has been executed
➢LBR: The shadow branch has been mispredicted.

• If the target branch has been not executed
➢LBR: The shadow branch has been correctly predicted.

Deterministically identify whether a target indirect 
branch has been executed or not
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Near single-stepping: 
Frequent timer and disabled cache

Increase timer interrupt frequency
• Adjust the timestamp counter value of the local APIC timer 

using a model-specific register, MSR_IA32_TSC_DEADLINE

Disable the CPU cache
• CD bit of the CR0 register (code?)
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Near single-stepping: 
Frequent timer and disabled cache

Increase timer interrupt frequency
• Adjust the timestamp counter value of the local APIC timer 

using a model-specific register, MSR_IA32_TSC_DEADLINE

Disable the CPU cache
• CD bit of the CR0 register (code?)

~50 cycles
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Near single-stepping: 
Frequent timer and disabled cache

Increase timer interrupt frequency
• Adjust the timestamp counter value of the local APIC timer 

using a model-specific register, MSR_IA32_TSC_DEADLINE

Disable the CPU cache
• CD bit of the CR0 register (code?)

~5 cycles
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Attack evaluation:
Sliding-window exponentiation

/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

…

while (1) {

// i-th bit of exponent

ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0) continue;

if (ei == 0 && state == 1)

mpi_montmul(X, X, N, mm, &T);

…

} …

taken only when ei is one
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Attack evaluation:
Sliding-window exponentiation

/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

…

while (1) {

// i-th bit of exponent

ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0) continue;

if (ei == 0 && state == 1)

mpi_montmul(X, X, N, mm, &T);

…

} …

taken only when ei is one
We can recover 66% of a 1024-bit RSA private key from 

a single run (~10 runs are enough to fully recover it). 
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Attack demo

https://youtu.be/jf9PanlF374
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Hardware countermeasure: Flush 
branch history at SGX mode switch

Most effective, but need hardware modification
• It would not be realized by microcode update.

Overhead depends on how frequently SGX mode 
switch occurs.
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Simulation result
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Overhead was ~2% when mode switching occurs 
at every 100k cycles.

• Ten times frequent than the timer interrupt of Windows 10 
(generated for every 1M cycles @ 4GHz CPU)
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Software mitigation: Branch obfuscation

Replace a set of branches with a single indirect 
branch plus conditional move instructions

• Indirect branch only reveals when and whether it has been 
executed, not its target.

• Conditional move is used to conditionally update the indirect 
branch’s target.

Modify LLVM for automatic transformation
• Average overhead: Below 1.3x (nbench)
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Example of branch obfuscation

L0:cmp $0,$a

je  L2

L1:…

L2:…

Can identify whether L1 or L2 
has been executed
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Example of branch obfuscation

L0:cmp $0,$a

je  L2

L1:…

L2:…

Can identify whether L1 or L2 
has been executed

Can identify whether Z1 has been 
executed but not its target

transformation

L0: mov $L1,r15

cmp $0,$a

cmov $L2,r15

jmp Z1

L1:   …

L2: …

…

Z1:   jmpq *r15
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Conclusion

Branch shadowing: Fine-grained and deterministic 
side-channel attack on SGX

• Reveal direction and/or execution of individual branch instrs

Proposed hardware- and software-based 
countermeasures

• Branch history flushing and obfuscation

Thanks for listening! 
Sangho Lee (sangho@gatech.edu)
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