
Inferring Fine-grained Control
Flow Inside SGX Enclaves with

Branch Shadowing
Sangho Lee Ming-Wei Shih Prasun Gera

Taesoo Kim Hyesoon Kim Marcus Peinado

26th USENIX Security Symposium

August 17, 2017

Intel Software Guard Extension (SGX)

User process Trusted enclave

System software (OS, hypervisor, …)

Encrypt

Prohibited

ECALL

Decrypt

No cold-boot
attack

OCALL/
Return

C
ac

h
e

2

Sensitive
operations

Normal
operations

Intel Software Guard Extension (SGX)

User process Trusted enclave

System software (OS, hypervisor, …)

Encrypt

Prohibited

ECALL

Decrypt

No cold-boot
attack

OCALL/
Return

C
ac

h
e

Q: What about
side-channel

attacks?
2

Sensitive
operations

Normal
operations

Side-channel attacks against Intel SGX are
getting attention

Monitor page-fault or page-access sequence
(Oakland15, ASIACCS16, Security17)

• Noise-free, but coarse-grained (page address)

Measure cache hit/miss timing
(EuroSec17, DIMVA17, ATC17, WOOT17)

• Fine-grained (cache line), but noisy

3

Page-fault side channel (Oakland15)

Unmap all pages and monitor page fault sequences
• Page 1->Page 2: A member
• Page 1->Page 3: Not a member

if (is_member(person)) {

welcome();

} else {

bye();

}

4

Page1: is_member()

Page2: welcome() Page3: bye()

Page-fault side channel (Oakland15)

Unmap all pages and monitor page fault sequences
• Page 1->Page 2: A member
• Page 1->Page 3: Not a member

if (is_member(person)) {

welcome();

} else {

bye();

}

Does not work when a sensitive control flow change
occurs within the same page (or cache line)

4

Page1: is_member()

Page2: welcome() Page3: bye()

Branch shadowing: A fine-grained side-
channel attack against Intel SGX

•Can attack each branch instruction
• Neither page nor cache-line granularity

•Deterministically identify branch history
• Either taken or not taken
• Not about timing difference

•Achieve high attack success rate
• Recover 66% of a 1024-bit RSA private key from a single run

5

Observation:
SGX does not clear branch history!

CPU caches how each branch instruction has been
executed for later prediction, even for SGX.

• Either taken or not taken, as well as its target address

Does an attacker have a reliable way to extract
branch history from SGX?

6

Performance monitoring unit (PMU) is
prohibited

•PMUs to profile branch history
• Last branch record (LBR) and processor trace (PT)
• Prediction results (success/failure), target address, …

•Anti side channel inference (ASCI)
• SGX doesn’t publish hardware performance events to PMUs.

•Malicious OS cannot directly use PMUs to get
SGX’s branch history.

7

Branch collision timing attack works for SGX
but has limitations

Mispredicted branch takes longer than a correctly
predicted branch.

• But, we cannot directly time a target branch inside SGX.

if (is_member(p)){

…

}

else {

…

}

MispredictionRollback&
Re-execute

8

Branch collision timing attack works for SGX
but has limitations

Colliding branches affect each other’s prediction
(MICRO16).

• e.g., if a branch has been taken, CPU will predict other colliding
branches will also be taken.

ADDR[31:0] taken/not-taken target address
0xff12345678

0xffc12345678

Branch instructions with colliding addresses
(CPU truncates higher bits to reduce storage overhead.)

……

9

Branch collision timing attack works for SGX
but has limitations

Branch execution inside SGX affects colliding
branches outside of SGX (shadow branch).

• We can time a shadow branch instead of the actual target to
know whether it has been mispredicted, but…

This attack has two critical limitations.
• Suffer from high measurement noise
• Difficult to synchronize target and shadow branches

10

Limitation 1:
High measurement noise

Mispredicted branch takes long to do rollback
while suffering from high variance.

0

200

400

600

800

1000

Mean Stdev

C
yc

le

Prediction

Misprediction~25 cycles

~800 cycles (depending on rollbacked
instructions)

* 10,000 times. 120 NOPs at
the fall-through path

11

Limitation 2:
Difficulty in synchronization

We need to time a shadow branch right after a
target has been executed to avoid overwriting.

• e.g., Skylake’s branch target buffer: 4 ways x 1,024 sets
• Worst case: Five branch executions would overwrite the target

branch history.

Synchronization is difficult because SGX does not
allow single-stepping.

12

How does branch shadowing overcome
the two limitations?

Apply LBR to a shadow branch to identify branch
prediction results instead of timing

• No ASCI because a shadow branch is outside of SGX
• Deterministic: Either correctly predicted or mispredicted

Realize near single-stepping by increasing timer
interrupt frequency and disabling the cache

• Can interrupt SGX enclaves for every ~5 cycles

13

Threat model

•Attacker knows the source code or binary of a
target enclave.

•Attacker can frequently interrupt the target
enclave’s execution to execute attack code.

•Attacker prevents or disrupts the target enclave
from accessing a trusted time source.

14

Step 1: Prepare a shadow copy of an SGX
program to monitor it with LBR

cmp …

je L1

…

…

jmpq *rdx

…

SGX enclave

LBRASCI

15

Step 1: Prepare a shadow copy of an SGX
program to monitor it with LBR

cmp …

je L1

…

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code (outside of SGX)

LBR

Colliding branch
instructions

ASCI

15

Step 1: Prepare a shadow copy of an SGX
program to monitor it with LBR

cmp …

je L1

…

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code (outside of SGX)

LBR

Colliding branch
instructions

can monitor all branch
executions

15

Step 2: Interrupt SGX execution and monitor
shadow code with LBR

cmp …

je L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute

16

Step 2: Interrupt SGX execution and monitor
shadow code with LBR

cmp …

je L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute

16

Step 2: Interrupt SGX execution and monitor
shadow code with LBR

cmp …

je L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute execute while
enabling LBR
(predicted or

mispredicted?)

16

Step 2: Interrupt SGX execution and monitor
shadow code with LBR

cmp …

je L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute
resume

execute while
enabling LBR
(predicted or

mispredicted?)

16

Step 2: Interrupt SGX execution and monitor
shadow code with LBR

cmp …

je L1

…

jmpq *rdx

…

SGX enclave
cmp rax,rax

je L1’

… (nop)

mov addr,rdx

jmpq *rdx

… (nop)

Shadow code

execute
resume

execute while
enabling LBR
(predicted or

mispredicted?)

Whether or not shadow branches were correctly
predicted reveals the history of target branches.

16

Shadow conditional branch and
prediction result

cmp rax, rax

0xff*530:je 0xff*5f4

0xff*532:nop

…

0xff*5f4:nop

Shadow code
cmp $0, rax

0x00*530:je 0x005f4

0x00*532:inc rbx

…

0x00*5f4:dec rbx

SGX enclave

LBR does not report not-taken branches, so we
make our shadow branch be always taken.

Always
taken

?

collision

17

Shadow conditional branch and prediction
result

•Our shadow branch should be taken, but how
does CPU predict it with target branch’s history?

• If the target branch has been taken
➢LBR: The shadow branch has been correctly predicted.

• If the target branch has been not taken
➢LBR: The shadow branch has been mispredicted.

18

Shadow conditional branch and prediction
result

•Our shadow branch should be taken, but how
does CPU predict it with target branch’s history?

• If the target branch has been taken
➢LBR: The shadow branch has been correctly predicted.

• If the target branch has been not taken
➢LBR: The shadow branch has been mispredicted.

Deterministically identify whether a target conditional
branch has been taken or not taken

18

Shadow indirect branch and
prediction result

mov 0xff*532,rdx

0xff*530:jmpq *rdx

0xff*532:nop

…

0xff*5f4:nop

Shadow code

0x00*530:jmpq *rdx

0x00*532:inc rbx

…

0x00*5f4:dec rbx

SGX enclave

Next
instruction

For an indirect branch, LBR reports a target
prediction result.
We use its default target: Next instruction.

?
collision

19

Shadow indirect branch and
prediction result

•Our shadow branch will be correctly predicted
unless the target branch updates cached
destination.

• If the target branch has been executed
➢LBR: The shadow branch has been mispredicted.

• If the target branch has been not executed
➢LBR: The shadow branch has been correctly predicted.

20

Shadow indirect branch and
prediction result

•Our shadow branch will be correctly predicted
unless the target branch updates cached
destination.

• If the target branch has been executed
➢LBR: The shadow branch has been mispredicted.

• If the target branch has been not executed
➢LBR: The shadow branch has been correctly predicted.

Deterministically identify whether a target indirect
branch has been executed or not

20

Near single-stepping:
Frequent timer and disabled cache

Increase timer interrupt frequency
• Adjust the timestamp counter value of the local APIC timer

using a model-specific register, MSR_IA32_TSC_DEADLINE

Disable the CPU cache
• CD bit of the CR0 register (code?)

21

Near single-stepping:
Frequent timer and disabled cache

Increase timer interrupt frequency
• Adjust the timestamp counter value of the local APIC timer

using a model-specific register, MSR_IA32_TSC_DEADLINE

Disable the CPU cache
• CD bit of the CR0 register (code?)

~50 cycles

21

Near single-stepping:
Frequent timer and disabled cache

Increase timer interrupt frequency
• Adjust the timestamp counter value of the local APIC timer

using a model-specific register, MSR_IA32_TSC_DEADLINE

Disable the CPU cache
• CD bit of the CR0 register (code?)

~5 cycles

21

Attack evaluation:
Sliding-window exponentiation

/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

…

while (1) {

// i-th bit of exponent

ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0) continue;

if (ei == 0 && state == 1)

mpi_montmul(X, X, N, mm, &T);

…

} …

taken only when ei is one

22

Attack evaluation:
Sliding-window exponentiation

/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

…

while (1) {

// i-th bit of exponent

ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0) continue;

if (ei == 0 && state == 1)

mpi_montmul(X, X, N, mm, &T);

…

} …

taken only when ei is one
We can recover 66% of a 1024-bit RSA private key from

a single run (~10 runs are enough to fully recover it).

22

Attack demo

https://youtu.be/jf9PanlF374

23

https://youtu.be/jf9PanlF374

Hardware countermeasure: Flush
branch history at SGX mode switch

Most effective, but need hardware modification
• It would not be realized by microcode update.

Overhead depends on how frequently SGX mode
switch occurs.

24

Simulation result

0

0.2

0.4

0.6

0.8

1

bzip2 gcc mcf h264ref omnetpp astar gamess namd sphinx3 GMEAN

N
o

rm
al

iz
ed

 IP
C 100

1k

10k

100k

1M

10M

Overhead was ~2% when mode switching occurs
at every 100k cycles.

• Ten times frequent than the timer interrupt of Windows 10
(generated for every 1M cycles @ 4GHz CPU)

25

Software mitigation: Branch obfuscation

Replace a set of branches with a single indirect
branch plus conditional move instructions

• Indirect branch only reveals when and whether it has been
executed, not its target.

• Conditional move is used to conditionally update the indirect
branch’s target.

Modify LLVM for automatic transformation
• Average overhead: Below 1.3x (nbench)

26

Example of branch obfuscation

L0:cmp $0,$a

je L2

L1:…

L2:…

Can identify whether L1 or L2
has been executed

27

Example of branch obfuscation

L0:cmp $0,$a

je L2

L1:…

L2:…

Can identify whether L1 or L2
has been executed

Can identify whether Z1 has been
executed but not its target

transformation

L0: mov $L1,r15

cmp $0,$a

cmov $L2,r15

jmp Z1

L1: …

L2: …

…

Z1: jmpq *r15

27

Conclusion

Branch shadowing: Fine-grained and deterministic
side-channel attack on SGX

• Reveal direction and/or execution of individual branch instrs

Proposed hardware- and software-based
countermeasures

• Branch history flushing and obfuscation

Thanks for listening!
Sangho Lee (sangho@gatech.edu)

28

mailto:sangho@gatech.edu

