
FLSCHED: A Lockless and Lightweight Approach to
OS Scheduler for Xeon Phi

Heeseung Jo
Chonbuk National University

567 Baekje-daero
Jeonju, Jeollabuk 54896

heeseung@jbnu.ac.kr

Woonhak Kang
Georgia Institute of Technology

266 Ferst Dr
Atlanta, GA 30313

woonhak.kang@gatech.edu

Changwoo Min
Virginia Tech

302 Whittemore
Blacksburg, VA 24060

changwoo@vt.edu

Taesoo Kim
Georgia Institute of Technology

266 Ferst Dr
Atlanta, GA 30313
taesoo@gatech.edu

ABSTRACT
Processor manufacturers have increased the number of cores
in a chip, and the latest manycore processor has up to 76 phys-
ical cores and 304 hardware threads. On the other hand, the
revolution of OS schedulers to manage processes in systems
is slow to follow up emerging manycore processors.

In this paper, we show how much CFS, the default Linux
scheduler, can break the performance of parallel applications
on manycore processors (e.g., Intel Xeon Phi). Then, we pro-
pose a novel scheduler named FLSCHED, which is designed
for lockless implementation with less context switches and
more efficient scheduling decisions. In our evaluations on
Xeon Phi, FLSCHED shows better performance than CFS up
to 1.73× for HPC applications and 3.12× for micro-benchmarks.

ACM Reference format:
Heeseung Jo, Woonhak Kang, Changwoo Min, and Taesoo Kim.
2017. FLSCHED: A Lockless and Lightweight Approach to OS
Scheduler for Xeon Phi. In Proceedings of APSys ’17, Mumbai,
India, September 2, 2017, 8 pages.
https://doi.org/10.1145/3124680.3124724

1 INTRODUCTION
Manycore processors are now prevalent in all types of comput-
ing devices, including mobile devices, servers, and hardware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’17, September 2, 2017, Mumbai, India
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5197-3/17/09. . . $15.00
https://doi.org/10.1145/3124680.3124724

accelerators. For example, a single Xeon processor has up to
24 physical cores or 48 hardware threads [14], and a Xeon
Phi processor has up to 76 physical cores or 304 hardware
threads [22, 24]. In addition, due to increasingly important
machine learning workloads, which are compute-intensive
and massively parallel, we expect that the core count per
system will increase further.

The prevalence of manycore processors imposes new chal-
lenges in scheduler design. First, schedulers should be able to
handle the unprecedented high degree of parallelism. When
the CFS scheduler was introduced, quad-core servers were
dominant in data centers. Now, 32-core servers are standard
in data centers [18]. Moreover, servers with more than 100
cores are becoming popular [2]. Under such a high degree
of parallelism, a small sequential part in a system can break
the performance and scalability of an application. Amdahl’s
Law says that if a sequential part in an entire system increases
from 1% to 2%, then we end up with significantly decreased
maximum speed up from 50 times to 33 times. In particular,
schedulers in the Linux kernel use various lock primitives,
such as spinlock, mutex, and read-write semaphore, to pro-
tect their data structures (see Table 1). We found that those
sequential parts in schedulers protected by locks significantly
degrade the performance of massively parallel applications.
The performance degradation becomes especially significant
in communication-intensive applications, which need sched-
uler intervention (see Figure 1 and Figure 2).

Second, the cost of context switching keeps increasing
as the amount of context, which needs to be saved and re-
stored, increasing. In Intel architectures, the width of SIMD
register file has increased from 128-bits to 256-bits and now
to 512-bits in XMM, YMM, and AVX, respectively [19].
This problem becomes exaggerated when the limited mem-
ory bandwidth is shared among many CPU cores with small
cache such as Xeon Phi processors. Recent schedulers adopt

https://doi.org/10.1145/3124680.3124724
https://doi.org/10.1145/3124680.3124724

lazy optimization techniques, which do not save unchanged
register files, to reduce the context switching overhead [8, 27].
However, there is no way but paying high cost for compute-
intensive applications, which heavily rely on SIMD operations
for better performance.

In this paper, we present FLSCHED—a new process sched-
uler to address the aforementioned problems. FLSCHED is
designed for manycore accelerators like Xeon Phi. We adopt
a lockless design to keep FLSCHED from becoming a se-
quential bottleneck. This is particularly critical for manycore
accelerators, which have a large number of CPU cores; the
Xeon Phi processor, which we used for experiment in this
paper, has 57 cores or 228 hardware threads. FLSCHED is
also designed for minimizing the number of context switches.
Because a Xeon Phi processor has 2× larger vector registers
than Xeon processors (i.e., 32 512-bit registers for Xeon Phi
and 16 512-bits registers for Xeon processor), and its per-core
memory bandwidth and cache size are smaller than a Xeon
processor, its overhead of context switching is higher than a
Xeon processor [9]. Thus, it is critical to minimize the number
of context switching as many as possible. Finally, FLSCHED
is tailored to throughput-oriented workloads, which are domi-
nant in manycore accelerators.

This paper makes following three contributions:
∙ We evaluate how the widely-used Linux schedulers

(i.e., CFS, FIFO, and RR) perform in a manycore ac-
celerator. We analyze their behavior especially in terms
of spinlock contention, which will increase a sequen-
tial portion in a scheduler, and the number of context
switching.

∙ We design a new processor scheduler, named FLSCHED,
which is tailored for minimizing the number of context
switching in a lockless fashion.

∙ We show the effectiveness of FLSCHED for real-world
OpenMP applications and micro-benchmarks. In partic-
ular, FLSCHED outperforms all other Linux schedulers
for NAS Parallel Benchmark (NPB) by up to 73%.

The rest of this paper is organized as follows: §2 provides
the motivation of our work with a case study, and §3 de-
scribes FLSCHED’s design in detail. §4 evaluates and analy-
ses FLSCHED’s performance. §5 compares FLSCHED with
previous research, and §6 concludes the paper.

2 CASE STUDY ON XEON PHI
In this section, we analyze how existing schedulers in the
Linux kernel perform on manycore processors, especially a
Xeon Phi processor. A lot of research efforts have been made
to make OS scalable to fully utilize manycore processors [3–
7, 12, 23]. Our focus in this paper is to investigate whether
existing schedulers in the Linux kernel are efficient and scal-
able enough to manage manycore processors. To this end, we
evaluated performance of three widely-used schedulers, CFS,

0.0

0.5

1.0

1.5

2.0

bt cg ep ft is mg sp ua

N
o
rm

a
liz

e
d
 O

P
S

Programs in NPB

CFS FIFO RR FL

Figure 1: Performance comparison of NPB benchmarks run-
ning 1,600 threads on a Xeon Phi with different process sched-
ulers. Performance (OPS: operations per second) is normalized
to that of CFS.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

20 40 60 80 100120140160180200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of groups (x40 tasks)

CFS
FIFO
RR
FL

0.0

10.0M

20.0M

30.0M

40.0M

50.0M

60.0M

20 40 60 80 100120140160180200

C
o
n
te

x
t

sw
it

ch
e
s

Number of groups (x40 tasks)

Figure 2: Execution time and number of context switches of
hackbench on a Xeon Phi. We used the thread test mode with
increasing the number of groups. Each group has 20 senders
and 20 receivers communicating via pipe.

FIFO, and RR, with high performance computing (HPC) ap-
plications and a communication-intensive micro-benchmark.

We first measured the performance of NAS Parallel Bench-
mark (NPB) [1], which is written in OpenMP, running on the
Xeon Phi. In particular, we ran eight NPB benchmarks, which
fit in the Xeon Phi memory, and measured the operation per
second (OPS). As Figure 1 shows, there is no clear winner
among CFS, FIFO, and RR: for five benchmarks, FIFO and
RR are better than CFS; for the other three benchmarks, CFS
is better than FIFO and RR. In contrast, FLSCHED shows bet-
ter performance for all benchmarks, except for is. Especially,
four benchmarks (i.e., cg, mg, sp, and ua) show significantly
better performance up to 1.73 times. For the analysis of sched-
uler behavior, we ran the perf profiling tool while running
the benchmarks. We found that spinlock contention in the
schedulers could become a major scalability bottleneck. As
Table 2 shows, for the four benchmarks, which FLSCHED
shows significant higher performance, CFS, FIFO, and RR
spend significantly longer time for spinlock contention in
schedulers (i.e., around 8-15%) than FLSCHED (i.e., around 3-
5%). This shows that the increased sequential portion caused
by lock contention in schedulers can significantly deteriorate
the performance and scalability of applications.

2

To see how the number of context switching affects perfor-
mance, we ran hackbench [11], which is a scheduler bench-
mark. We set the configuration of hackbench to use threads
for parallelism and pipe for communication among threads.
Figure 2 shows the execution time and the number of con-
text switching on the Xeon Phi. It is clear that the number of
context switching becomes a dominant factor of performance
especially in communication-intensive applications such as
hackbench. In particular, CFS shows the worst performance
contrasting to FIFO, RR, and FLSCHED with the largest num-
ber of context switching. In Xeon Phi, the overhead of context
switching is much higher than a Xeon processor due to its
2× larger register set and 1.2× slower memory bandwidth per
core [9].

The above two cases show that all three representative
schedulers fail to scale on manycore processors: all three
have significant lock contentions, and CFS incurs too fre-
quent context switching, which is expensive for manycore
accelerators. This is the right moment to revisit the design
and policy of schedulers, as manycore processors and acceler-
ators are getting rapidly popular, and many applications have
started being stuck by these problems.

3 FLSCHED: FEATHER-LIKE
SCHEDULER

In this section, we describe the overview and major design
principles of FLSCHED, and present its design in detail. To
aim a novel scheduler on manycore processors like Xeon
Phi, FLSCHED focuses on lockless implementation, decision
mechanism for context switch for rescheduling and preemp-
tion, and efficient implementation.

3.1 Overview and design
From the version 2.6.23, the mainline Linux kernel adopted
CFS scheduler as a default scheduler [16]. It is undisputed that
CFS is very useful and one of the commonly-used schedulers,
but CFS can break the performance of applications and still
has chances to perform better as discussed in §2. From the
case study on Xeon Phi, we derived the lessons as below.
Lock contention. It is well known that locking mechanism
is essential for accessing shared data and, in the meanwhile,
can break the scalability of system [17]. Unfortunately, with
a lot of cores and as the number of cores increased, the perfor-
mance breaking effect of a lock in scheduler increases with
an exponential scale.
Context switches. Another lesson is that CFS incurs addi-
tional or too frequent context switches due to its design goal.
From our code analysis of the latest CFS scheduler, CFS per-
forms context switch for responsiveness, fairness, and load
balancing. It is reasonable because CFS was designed for
desktop and server machines from its birth. However, keeping

Lock types CORE CFS FIFO/RR FL

raw_spin_lock 16 1 12 -
raw_spin_lock_irq/irqsave 13 5 2 -
rcu_read_lock 14 5 1 -
spin_lock - - - -
spin_lock_irq/irqsave 12 - - -
read_lock 3 - - -
read_lock_irq/irqsave 1 - - -
mutex_lock 6 - - -

Total 65 11 15 0

Table 1: Number of locks in the scheduler codes of the Linux
kernel for Xeon Phi. FLSCHED is implemented without locks in
itself.

responsiveness and fairness between users and tasks are less
required for co-processors like Xeon Phi, and in that sense
we need to reduce context switches.
Efficiency. CFS updates scheduling information as frequently
as possible because CFS tries to strictly keep the fairness be-
tween tasks, and it is backed up by lots of task running states.
With the small number of cores, it is meaningful to schedule
tasks in a fine-grain manner for better fairness. However, if
we have a lot of cores, making scheduling decision faster is
more important rather than sophisticated decision determined
by a lot of information updates because we can use many
cores for each task.
Limitations and trade-offs. Although the lockless design
and implementation of FLSCHED contributed to the perfor-
mance enhancement, we unfortunately failed to reduce the
locks in the scheduler core of the Linux kernel because the
modification of scheduler core takes effect to all of other
schedulers. Also, by reducing and delaying the context switches,
FLSCHED can lose responsibility. However, FLSCHED achieves
more throughput which is crucial for accelerators like Xeon
Phi.

3.2 Locklessness
The performance degradation due to lock holding in sched-
uler has been pointed out for long time. Fortunately, Linux
removed a global lock mechanism and distributed a central-
ized runqueue lock to per-runqueue locks from 2.6 kernel [20].
However, modern OS schedulers and CFS, which is state of
the art, still embed locks.

Table 1 shows the number of locks in the scheduler codes
of the Linux kernel for Xeon Phi. The core scheduler code
(sched.c) includes the highest number of locks, CFS (sched_-
fair.c) has 11 locks, and FIFO/RR (sched_rt.c) has 15 locks, in
total. Most of these locks are used for runqueue management,
runtime statistics updates, load balancing mechanism, and
scheduler features. On the other hand, FLSCHED is imple-
mented without locks in itself by restructuring and optimizing
of mechanisms.

3

Comparing to RR which has the largest number of locks,
two locks are for the runtime statistics, five locks are to bal-
ance the load of cores, and eight locks are used for bandwidth
control mechanism. First, we removed the runtime statistics
updates of scheduler to reduce these locks. It is possible be-
cause these are not critical for FLSCHED to make scheduling
decisions on Xeon Phi. The Linux scheduler adopts two types
of load balance triggering mechanisms. One is triggered by a
periodic timer, and the other is triggered by scheduler events
such as fork/exec system calls and task wake-up. Five locks
to keep balance the load of cores are used for the periodic
load balance mechanism. FLSCHED is implemented not to
use the periodic load balance to avoid the five locks. CPU
bandwidth control is to support hard CPU bandwidth lim-
its. A scheduler that is work-conserving by nature does not
limit the maximum amount of CPU time. However, there are
computing environments that need the maximum CPU time.
Especially, cloud computing environment in which users pay
per use should guarantee the maximum CPU bandwidth [26].
This feature is less required for co-processor like Xeon Phi,
and therefore FLSCHED removes it with the last eight locks.
The lock elimination of FLSCHED largely contributes to per-
formance improvement as shown §4.1. Note that FLSCHED
itself has no locks, but the scheduler core part has locks.

3.3 Less context switches
Reschedule. The main scheduler function checks a bit flag,
NEED_RESCHED bit, to decide whether to execute a context
switch or not. FLSCHED delays all settings of the reschedule
flag to avoid context switches as many as possible. This ap-
proach has the possibility of decreasing response time and
fairness. However, computation throughput is more impor-
tant than responsiveness and fairness since Xeon Phi will be
mostly used for high performance computing. Especially, the
context switch overhead of Xeon Phi is much larger than that
of general-purpose processors because its core contains more
register sets for vector processing [9].
Preemption. Although the reasons of preemption are various
case by case, most of preemption is incurred by priority. For
most of OS, the priority mechanism is essential to differen-
tiate the runtime or the order to get CPU. However, it is less
required for Xeon Phi to compute data using massive cores be-
cause most of tasks will work using the same priority. When
preemption is needed for any reason, FLSCHED does not
immediately perform preemption. Instead, FLSCHED moves
the location of tasks in runqueues and performs normal task
switches in later term.

3.4 Faster and efficient scheduling decision
To make scheduler faster and more efficient, one of our ap-
proaches is to minimize scheduling information updates. In

the case of CFS, the update_curr_fair function, whose major
role is to renew the runtime statistics of current task, takes
very short time but it is called huge number of times with a
spinlock as shown in Table 3. It can be non-negligible over-
head in manycore processors. FLSCHED works based on a
given time slice with Round-Robin. The amount of time slice
for a task is the only managed scheduling information for
FLSCHED and managed inside of the task_tick function only.

The enqueue_task/dequeue_task functions take role of move
a task from/to the runqueue of a CPU core. As the number
of context switch increases, these function calls are also in-
creased. FLSCHED simplified the total depth and path of
these functions. Consequentially, the average execution time
of these functions are less than 24% compared to those of
CFS, as shown in Table 3.

FLSCHED does not provide three scheduling features that
are supported in CFS: control groups, group scheduling, and
autogroup scheduling. All these are not necessary features
for Xeon Phi co-processor, and therefore FLSCHED does not
implement them for more efficiency.

4 EVALUATION
This section describes the evaluation results and analysis of
FLSCHED. The evaluations of FLSCHED are performed to
address the following questions:

∙ Performance impact on applications: How much do
the locklessness and the efficiency of FLSCHED affect
on the performance of real-world applications? We ran
HPC applications on Xeon Phi, and the results are pre-
sented at §4.1.

∙ Design choices: What does make FLSCHED get better
performance? Using a micro-benchmark, we measured
how much each design choice contributes to perfor-
mance improvement. The results are shown at §4.2 and
§4.3.

∙ Efficiency analysis: How much efficient is FLSCHED?
We show the efficiency of FLSCHED by comparing
with CFS scheduler at function execution level. The
results are summarized at §4.3.

We performed all of the experiments on our 18-core ma-
chine (1-socket, 18 cores per socket, 2 threads per core, Intel
Xeon E5-2699) equipped with 64GB memory. This machine
is equipped with a Xeon Phi processor, 31S1P, that has 57
physical cores (4 threads per core) and 8 GB internal memory.
We used the Linux kernel version 4.1.0-rc8 for host machine
and 2.6.38 for Xeon Phi. The Linux kernel 2.6.38 is the latest
kernel version that Intel officially releases and supports as of
06/2017, and the version of Intel manycore platform software
stack (MPSS) to control Xeon Phi is 3.5.1. We ran all evalua-
tions 10 times and reported their average. The error bars on
each graph represent standard deviations of the 10 executions.

4

0.0

5.0

10.0

15.0

20.0

25.0

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

CFS
FIFO
RR
FL

(a) bt

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(b) cg

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(c) ep

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(d) ft

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(e) is

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(f) mg

0.0

10.0

20.0

30.0

40.0

50.0

60.0

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(g) sp

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0

100 200 400 800 1600 3200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of threads

(h) ua

Figure 3: Performance comparison of NAS Parallel Benchmark (NPB) for the problem size class A with different schedulers.

4.1 Performance impact on applications
To show the performance impact on applications, we used
the NAS Parallel Benchmark (NPB) [1]. NPB is a set of
programs to evaluate the performance of parallel computing.
We used the NPB version 3.3.1 which has ten evaluation
benchmarks. Some of them cannot be run on Xeon Phi due
to insufficient memory. As shown in Figure 3, we ran the
programs with increasing number of OpenMP threads and
measured the execution time of them. All of the applications
show better performance with FLSCHED except the several
cases of ep and is. Especially, FLSCHED shows much better
performance than CFS, FIFO, and RR for cg, mg, sp, and
ua. These four applications perform user-level spinning with
calling yield system call within the OpenMP library waiting
for a certain condition. As the scheduler invocation increases,
the efficiency of scheduler largely affects to the overall exe-
cution time. In these cases, the major cause of performance
gap among the designs of FLSCHED is the lockless design.
As shown in Table 2, the do_raw_spin_lock function ratio
in FLSCHED while executing the application is much lower
than those of others. The small amount of lock contention in
FLSCHED is due to the locks in the core code of the Linux
scheduler (core.c). This evaluation result shows the small
amount of lock elimination results in the large performance
improvement of applications especially on manycore proces-
sors. Also, the lockless design of FLSCHED is highly effective
in such cases.

4.2 Micro-benchmarks analysis
To deeply understand behavior of schedulers, we used hack-
bench [11] which is well known for scheduler performance
evaluation. It creates task groups, and each group sends and

NPB program CFS (%) FIFO (%) RR (%) FLSCHED (%)

bt 7.29 8.53 8.60 3.05
cg 10.73 13.61 12.93 4.11
ep 0.97 0.89 0.91 1.10
ft 5.34 5.25 5.57 4.04
is 0.21 0.17 0.18 0.12
mg 6.84 7.30 7.15 2.85
sp 8.23 9.95 9.98 3.58
ua 14.63 15.79 15.46 5.96

Table 2: Execution time of spinlock (do_raw_spin_lock) while ex-
ecuting NPB with 1,600 threads. We used the perf tool and col-
lected system-wide information on Xeon Phi. The benchmark
programs that FLSCHED shows much better performance are
marked in bold.

receives short messages each other. Tasks can be created ei-
ther of fork or pthread, and message passing can be via either
of socket or pipe. We evaluated all combinations of them
increasing parallelism as shown in Figure 4.

As the number of groups increases, the execution time
of all schedulers increases in a linear scale, and the execu-
tion time of pipe message passing is much better than that
of socket message passing due to socket overhead. In short,
FLSCHED takes much shorter time than CFS and shows sim-
ilar performance comparing with FIFO and RR. Especially,
the performance improvement of FLSCHED is much higher in
pipe message passing compared to CFS, since the scheduling
overhead takes larger part of the total execution time with the
smaller overhead of pipe than that of socket. In the case of
hackbench running in a thread/socket mode, the improvement
of FLSCHED is not large as much as the case of hackbench
process with socket. However, FLSCHED is 3.12 times faster
than CFS at best with pipe message passing.

5

Scheduler functions CFS FLSCHED Normalized ratio

Count Average time (ns) Count Average time (ns) (Average time)

check_preempt 42,184,784 5,058 3,202 917 0.18
dequeue_task 42,476,857 19,008 10,646 3,636 0.19
enqueue_task 42,479,016 17,314 10,792 4,169 0.24
pick_next_task 66,951,729 5,261 5,532,392 1,937 0.37
pre_schedule - - 10,646 718 -
put_prev_task 66,503,232 6,185 10,647 1,138 0.18
select_task_rq 42,426,871 10,837 8,031 2,549 0.24
set_cpus_allowed - - 1 2,997 -
task_tick 906,640 13,131 112 1,042 0.08
task_waking 42,418,867 2,290 10,792 1 0.00
update_curr 342,354,453 2 - - 0.00

Table 3: Execution count and time of major scheduler functions while running hackbench on Xeon Phi. We ran hackbench with 200
groups of process and pipe communication. The total execution time was 28.037 seconds for CFS, and 11.102 seconds for FLSCHED,
respectively. The important decision scheduler functions are marked in bold.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

50 100 150 200 p50 p100p150p200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of groups (x40 tasks)

CFS
FIFO
RR
FL

(a) Process

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

50 100 150 200 p50 p100p150p200

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Number of groups (x40 tasks)

(b) Thread

0

10M

20M

30M

40M

50M

60M

50 100 150 200 p50 p100p150p200

C
o
n
te

x
t

sw
it

ch
e
s

Number of groups (x40 tasks)

(c) Process

0

10M

20M

30M

40M

50M

60M

70M

50 100 150 200 p50 p100p150p200

C
o
n
te

x
t

sw
it

ch
e
s

Number of groups (x40 tasks)

(d) Thread

Figure 4: Execution time and number of context switches
in hackbench. We tested the process/thread modes with
socket/pipe message passing. A group uses 40 tasks, and there-
fore the number of group 200 means concurrent 8,000 tasks.
The pXXX denotes pipe mechanism while the other denotes
socket mechanism.

As performance increases in FLSCHED, the number of
context switching decreases. In the case of p200, the context
switches of CFS is 11 times more than that of FLSCHED. The
context switch on Xeon Phi is more harmful than that on Xeon
processor as described in §3.3. This results confirm that the
design choice of FLSCHED to avoid context switches as many
as possible is highly effective. In addition, the lockless design
of FLSCHED has significant impact on the performance of
hackbench. Note that the spinlock execution time in CFS
takes 14.14% while that in FLSCHED is 8.13%.

4.3 Performance breakdown
To see what make the enhancement of FLSCHED in detail, we
performed a function level analysis on CFS and FLSCHED.
Table 3 shows the function call count and the average execu-
tion time of CFS and FLSCHED. We used the ftrace tool to
collect the data while running hackbench process benchmark
with 200 groups. During their executions, the call count and
average execution time of each major scheduler function were
collected. The "-" mark denotes that the function is not called.
Each function call count is the sum of calls from each core
and from multiple callers.

In Table 3, we can identify the average execution times of
major scheduler functions in FLSCHED are much shorter than
those of CFS. Especially, the update_curr function (update_-
curr_fair in CFS), which is called more than 342M times with
2ns, is completely not used in FLSCHED. Although the total
execution time of update_curr is 684ms (2.4% of application
execution time) with simple math, the effect of update_curr is
exponentially amplified because it is protected by a spinlock,
which increases the sequential portion of an entire system.

Moreover, the important scheduling decision functions
(e.g. enqueue_task, dequeue_task, pick_next_task, and se-
lect_task_rq) take much shorter time. The average execution
times of them are reduced by 63-81% from those of CFS.
These ftrace evaluation results confirm that the design and
implementation of FLSCHED, whose efficient decision and
removal of unnecessary features to make it lightweight, is
highly effective.

The function call counts of FLSCHED are also much lower
than those of CFS. Although the execution time difference is
2.5 times, the call counts of functions are much higher. Es-
pecially, the important scheduling decision functions of CFS
are 12-5,000 times more than those of FLSCHED. The pre_-
schedule and the set_cpus_allowed are added for FLSCHED,

6

but their performance overhead is negligible for the overall
performance.

5 RELATED WORK
OS scheduler. The current state-of-the-art CFS Linux sched-
uler was introduced from the Linux kernel 2.6.23. Its main
idea is that processes should be given a fair amount of proces-
sor by using the concept of virtual runtime [13]. However, the
problem of CFS was addressed several times. Kravetz [17]
showed the lock contention of the Linux runqueue and pre-
sented multiple runqueues. Lozi et al. [21] built a novel tool
which could show scheduler activities and provided several
bug fixes for the Linux kernel scheduler by using their tool.
They are different from FLSCHED in that they tried to im-
prove several faults and shortcomings of CFS, but our ap-
proach is to propose a novel scheduler for manycore proces-
sors like Xeon Phi.
Scheduler for Xeon Phi. Cadambi et al. [9] proposed a
middleware for Xeon Phi, COSMIC, which performs a fair
scheduling of multiple co-processors. Coviello et al. [10]
studied a cluster scheduler for Xeon Phi compute clusters. As
an extension of COSMIC, they implemented their sharing-
aware algorithm onto CONDOR [25] and COSMIC. They are
cluster level job schedulers while FLSCHED is an OS level
scheduler for Xeon Phi itself. Jha et al. [15] analyzed the
performance impact of thread affinity and schedulers which
are supported by OpenMP for their hash join implementation
on Xeon Phi. It is also a job allocation level scheduler, not an
OS scheduler for Xeon Phi like FLSCHED.

6 CONCLUSION
We performed a comprehensive analysis on the Linux sched-
ulers including CFS, the state-of-the-art scheduler of the
Linux kernel, using a manycore processor. We observed per-
formance degradation of the Linux schedulers and found the
two major causes: spinlock contention in scheduler and too
many context switches.

From the lessons learned, we propose a novel scheduler,
FLSCHED, which is designed for lockless implementation and
aims for less context switches. FLSCHED accomplished much
faster and more efficient scheduling decision. FLSCHED shows
better performance than CFS up to 1.73× for HPC applica-
tions and 3.12× for micro-benchmarks on Xeon Phi.

7 ACKNOWLEDGMENT
This work was supported by the ICT R&D program of MSIP/
IITP (B0101-16-0644, The research project on High Perfor-
mance and Scalable Manycore Operating System) and the
MSIP (Ministry of Science, ICT and Future Planning), Korea,
under the ITRC (Information Technology Research Center)
support program (IITP-2017-2015-0-00378) supervised by

the IITP(Institute for Information & communications Tech-
nology Promotion)

REFERENCES
[1] David H Bailey, Eric Barszcz, John T Barton, David S Browning,

Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson,
Thomas A Lasinski, Rob S Schreiber, et al. 1991. The NAS parallel
benchmarks. International Journal of High Performance Computing
Applications 5, 3 (1991), 63–73.

[2] Jeff Barr. 2016. AWS Blog: X1 Instances for
EC2 - Ready for Your Memory-Intensive Work-
loads. (2016). https://aws.amazon.com/blogs/aws/
x1-instances-for-ec2-ready-for-your-memory-intensive-workloads/.

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. ACM, 29–44.

[4] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali
Kamali. 2010. A case for NUMA-aware contention management on
multicore systems. In Proceedings of the 19th international conference
on Parallel architectures and compilation techniques. ACM, 557–558.

[5] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, et al. 2008. Corey: An Operating System for Many Cores.. In
OSDI, Vol. 8. 43–57.

[6] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao, Aleksey
Pesterev, M Frans Kaashoek, Robert Morris, Nickolai Zeldovich, et al.
2010. An Analysis of Linux Scalability to Many Cores.. In OSDI,
Vol. 10. 86–93.

[7] Ray Bryant and John Hawkes. 2003. Linux scalability for large NUMA
systems. In Linux Symposium. 76.

[8] bsdlazyfpu last visit: 09/09/2016. NetBSD Documentation: How lazy
FPU context switch works. http://www.netbsd.org/docs/kernel/lazyfpu.
html.

[9] Srihari Cadambi, Giuseppe Coviello, Cheng-Hong Li, Rajat Phull,
Kunal Rao, Murugan Sankaradass, and Srimat Chakradhar. 2013. COS-
MIC: middleware for high performance and reliable multiprocessing
on xeon phi coprocessors. In Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing.
ACM, 215–226.

[10] Giuseppe Coviello, Srihari Cadambi, and Srimat Chakradhar. 2014. A
Coprocessor Sharing-Aware Scheduler for Xeon Phi-Based Compute
Clusters. In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International. IEEE, 337–346.

[11] hackbench last visit: 09/09/2016. Hackbench. http://people.redhat.com/
mingo/cfs-scheduler/tools/hackbench.c.

[12] Ashif S Harji, Peter A Buhr, and Tim Brecht. 2011. Our troubles
with Linux and why you should care. In Proceedings of the Second
Asia-Pacific Workshop on Systems. ACM, 2.

[13] IBM. last visit: 09/09/2016. Inside the Linux 2.6 Completely
Fair Scheduler. https://www.ibm.com/developerworks/library/
l-completely-fair-scheduler.

[14] Intel. last visit: 09/09/2016. Intel Xeon Processor E7 Fam-
ily. http://www.intel.com/content/www/us/en/processors/xeon/
xeon-processor-e7-family.html.

[15] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung
Huynh. 2015. Improving main memory hash joins on intel xeon phi
processors: An experimental approach. Proceedings of the VLDB
Endowment 8, 6 (2015), 642–653.

[16] kernelcfs last visit: 09/09/2016. CFS scheduler. https://www.kernel.
org/doc/Documentation/scheduler/sched-design-CFS.txt.

7

https://aws.amazon.com/blogs/aws/x1-instances-for-ec2-ready-for-your-memory-intensive-workloads/
https://aws.amazon.com/blogs/aws/x1-instances-for-ec2-ready-for-your-memory-intensive-workloads/
http://www.netbsd.org/docs/kernel/lazyfpu.html
http://www.netbsd.org/docs/kernel/lazyfpu.html
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

[17] Mike Kravetz, Hubertus Franke, Shailabh Nagar, and Rajan Ravindran.
2001. Enhancing Linux scheduler scalability. In Proceedings of the
Ottawa Linux Symposium, Ottawa, CA.

[18] Sanjeev Kumar. 2014. Efficiency at Scale. In First International Work-
shop on Rack-scale Computing.

[19] Daniel Kusswurm. 2014. Advanced Vector Extensions (AVX). In
Modern X86 Assembly Language Programming. Springer, 327–349.

[20] Robert Love. 2005. Linux Kernel Development (Novell Press). Novell
Press.

[21] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux scheduler: a decade
of wasted cores. In Proceedings of the Eleventh European Conference
on Computer Systems. ACM.

[22] Timothy Prickett Morgan. 2016. Intel Knights Landing Yields Big
Bang For The Buck Jump. (2016). http://www.nextplatform.com/2016/
06/20/intel-knights-landing-yields-big-bang-buck-jump/.

[23] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe,
Paul Barham, Tim Harris, and Rebecca Isaacs. 2008. Embracing diver-
sity in the Barrelfish manycore operating system. In Proceedings of the
Workshop on Managed Many-Core Systems. 27.

[24] Agam Shah. 2016. Intel’s secretive Knights Mill mega-
chip will challenge GPUs for AI domination. (2016).
http://www.pcworld.com/article/3108799/components-processors/
intels-knights-mill-mega-chip-to-take-on-gpus-in-ai.html.

[25] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. 2001.
Condor: a distributed job scheduler. In Beowulf cluster computing with
Linux. MIT press, 307–350.

[26] Paul Turner, Bharata B Rao, and Nikhil Rao. 2010. CPU bandwidth
control for CFS. In Linux Symposium 2010. 245–254.

[27] Fenghua Yu. 2014. Ever Growing CPU States: Context Switch with
Less Memory and Better Performance. In LinuxCon North America.
Linux Foundation. http://events.linuxfoundation.org/sites/events/files/
slides/LinuxCon_NA_2014.pdf.

8

http://www.nextplatform.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-jump/
http://www.nextplatform.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-jump/
http://www.pcworld.com/article/3108799/components-processors/intels-knights-mill-mega-chip-to-take-on-gpus-in-ai.html
http://www.pcworld.com/article/3108799/components-processors/intels-knights-mill-mega-chip-to-take-on-gpus-in-ai.html
http://events.linuxfoundation.org/sites/events/files/slides/LinuxCon_NA_2014.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxCon_NA_2014.pdf

	Abstract
	1 Introduction
	2 Case study on Xeon Phi
	3 FLsched: Feather-Like scheduler
	3.1 Overview and design
	3.2 Locklessness
	3.3 Less context switches
	3.4 Faster and efficient scheduling decision

	4 Evaluation
	4.1 Performance impact on applications
	4.2 Micro-benchmarks analysis
	4.3 Performance breakdown

	5 Related work
	6 Conclusion
	7 Acknowledgment
	References

