
BUILDING TRUST IN THE USER I/O IN COMPUTER SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Yeongjin Jang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2017

Copyright c⃝ 2017 by Yeongjin Jang

BUILDING TRUST IN THE USER I/O IN COMPUTER SYSTEMS

Approved by:

Professor Wenke Lee, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Kang Li
Department of Computer Science
University of Georgia

Professor Taesoo Kim, Co-Advisor
School of Computer Science
Georgia Institute of Technology

Professor Yongdae Kim
Department of Electrical Engineering
KAIST

Professor Mustaque Ahamad
School of Computer Science
Georgia Institute of Technology

Date Approved: 24 July 2017

To my dear wife,

Sejin Keem,

and my parents,

Bongsik Jang and Sook-Kyeong Cho,

for all the love and support.

iii

ACKNOWLEDGEMENTS

First of all, I am deeply grateful to my advisor Professor Wenke Lee for his guidance and

support through the Ph.D. program. Research discussions that he and I had for around seven

years enlighted me a lot, and the experience that I gained through these conversations raised

me as a decent researcher who will now start contributing back to the society. My co-advisor

Professor Taesoo Kim was a great source of research insight and stimulating me a lot with

his technical expertise. He was not only a brilliant mentor but also a great friend.

I would also like to acknowledge my thesis committee members: Professor Mustaque

Ahamad, Professor Kang Li, and Professor Yongdae Kim, for willing to serve on my

dissertation committee. Their insightful comments and suggestions have enlightened me to

make significant improvements to this thesis. I would like to acknowledge Professor Kang

Li, for his help in keeping my focus on both sides of academic research and practice by

working together in the “Disekt” capture-the-flag (CTF) team. Thanks to Professor Yongdae

Kim, for being a sagacious mentor and who greatly inspired me to pursue the academic

career.

Many students and researchers in GTISC collaborated with me on this work including

Simon Chung, Tielei Wang, Billy Lau, Sangho Lee, Bryan Payne, Paul Royal, Long Lu,

Chengyu Song, Byoungyoung Lee, Xinyu Xing, Yizheng Chen, Wei Meng, and Kangjie

Lu, and even more students and researchers in System Software and Security Lab (SSLab)

including Changwoo Min, Insu Yun, Meng Xu, Wen Xu, Ren Ding, and Jinho Jung were

always happy to discuss research challenges and helped me a lot in the day to day battle

of a graduate student’s life. I also thank my research collaborators at KAIST, including

Dongkwan Kim, Hongil Kim, Jaehyuk Lee, and Professor Brent Byunghoon Kang.

In addition to my collaborators, I would especially like to express my sincere gratitude

iv

and great appreciation to the Kwanjeong Educational Foundation for their generous support

of my Ph.D. study, which kept me free from all financial issues.

Alongside the research, my friends Sehoon Ha, Dong-Gu Choi, Hanju Oh, Philip Kwon,

Gee Hoon Hong, Hwajung Hong, and Yusun Lim, and the members of the Post Collier Hills

Tennis Club, Mincheol Chang, Kwangsup Eom, Jaehan Jung, Seongjun Kim, Kwangho

Park, Chanyeop Park, and Pyungwoo Yeon, they all made my life in Atlanta bright even

when I was intimidated by research related stress.

Last but not least, I would like to give special thanks to my family for their continuous

love and support. My dear wife, Sejin Keem, she always supported and encouraged me

while she was also going through a tough journey for her Ph.D. study. Thank you, Dr. Keem.

My parents Bongsik Jang and Sook-kyeong Cho, they always sent their loving heart with

full of warmth to me so I can keep my smiling face even when my paper got harshly rejected.

I also send my thanks to my father-in-law, Changho Keem and my mother-in-law, Kyunghee

Choi, for their support and encouragement at the toughest moment of my Ph.D. study.

Although my seven-year journey for finishing this dissertation was not always filled with

all-happy-moments as all life does, I can sustain myself and complete this journey because

of your support. I always carry all of you in my heart.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xv

I INTRODUCTION . 1

1.1 Motivations and Goals . 1

1.2 Dissertation Overview . 2

1.2.1 The Integrity of User Input . 2

1.2.2 The Confidentiality of User I/O 3

1.2.3 The Authenticity of User I/O . 4

1.2.4 The Assurance of User I/O . 4

II GYRUS: A FRAMEWORK FOR USER-INTENT MONITORING OF TEXT-
BASED NETWORKED APPLICATIONS 6

2.1 Motivation . 6

2.2 Related Work . 10

2.3 Overview . 12

2.3.1 Threat Model . 12

2.3.2 User Intent . 13

2.3.3 What You See Is What You Send 13

2.3.4 Network Traffic Monitoring . 15

2.3.5 Target Applications . 17

2.4 Design and Implementation . 18

2.4.1 Architecture . 18

2.4.2 Implementation . 20

2.5 Application Case Studies . 31

vi

2.5.1 Windows Live Mail . 33

2.5.2 Digsby: Yahoo! Messenger & Twitter 34

2.5.3 Web-App: GMail . 35

2.5.4 Web-App: Facebook . 36

2.5.5 Web-App: Paypal . 36

2.5.6 Discussions . 37

2.6 Evaluation . 40

2.6.1 Security . 40

2.6.2 Usability . 42

2.6.3 Performance . 43

2.7 Summary . 46

III MIMESIS AEGIS: A MIMICRY PRIVACY SHIELD 47

3.1 Motivation . 47

3.2 Related Work . 53

3.3 System Design . 55

3.3.1 Design Goals . 55

3.3.2 Threat Model . 55

3.3.3 M-Aegis Architecture . 57

3.3.4 User Workflow . 63

3.4 Implementation and Deployment . 64

3.4.1 Cryptographic Schemes . 66

3.4.2 UIAM . 67

3.4.3 Layer 7.5 . 67

3.4.4 Per-TCA Logic . 68

3.5 Evaluations . 71

3.5.1 Correctness of Implementation 71

3.5.2 Performance on Android . 71

3.5.3 User Acceptability Study . 73

3.6 Discussions . 74

vii

3.6.1 Generality and Scalability . 74

3.6.2 Limitations . 75

3.7 Summary . 76

IV A11Y ATTACKS: EXPLOITING ACCESSIBILITY IN OPERATING SYS-
TEMS . 78

4.1 Motivation . 78

4.2 Overview of Accessibility . 80

4.2.1 Accessibility Features . 81

4.2.2 Accessibility Libraries . 82

4.2.3 Assistive Technologies . 83

4.3 Security Implications of A11y . 83

4.3.1 New Attack Paths . 83

4.3.2 Required Security Checks . 85

4.4 Security Evaluation of A11y . 87

4.4.1 Evaluation Methodology . 87

4.4.2 Availability of Accessibility Features 88

4.4.3 Vulnerabilities in Input Validation 90

4.4.4 Vulnerabilities in Output Validation 101

4.5 Discussions . 104

4.5.1 Complexity of Accessibility Attacks 104

4.5.2 Limitations of the Attacks . 105

4.5.3 Root Causes, and Design Trade-offs 107

4.5.4 Recommendations and Open Problems 111

4.6 Related Works . 113

4.7 Summary . 114

V SGX-USB: ESTABLISHING SECURE USB I/O PATH IN INTEL SGX . . 115

5.1 Motivation . 115

5.2 Background and Related Work . 117

5.2.1 Intel SGX . 117

viii

5.2.2 Related Work . 119

5.3 Overview . 121

5.3.1 Security Guarantees . 122

5.3.2 Threat Model . 122

5.4 Design of SGX-USB . 123

5.4.1 Architecture . 123

5.4.2 Verifying Authenticity and Sharing Secret through Remote Attes-
tation . 126

5.4.3 Trust Chain and User Verification 129

5.4.4 Integrity and Confidentiality: Encrypted Communication Channel 131

5.5 Use Cases . 133

5.5.1 AuthMgr: Protecting User’s Password using SGX-USB 133

5.5.2 Internet Video Chatting: A Potential Use Case 135

5.6 Implementation . 135

5.7 Evaluations . 137

5.7.1 Security . 137

5.7.2 Performance . 139

5.8 Discussions . 143

VI CONCLUSION . 145

REFERENCES . 147

ix

LIST OF TABLES

1 List of activities where Gyrus can help to protect the corresponding network
transactions, from the survey ‘What Internet Users Do Online [131]’, by
Pew Research Center. 38

2 Latency introduced by Gyrus while processing the input. The data for
user-interaction was collected during the use case evaluation. 44

3 Network latency for HTTP connections. 45

4 Network latency for HTTPS connections (with Man-In-The-Middle proxy). 46

5 A list of available accessibility libraries and natural language user interfaces
on each platform. * indicates the feature requires special setup/privilege. . . 89

6 The status of input validation on each platform. * indicates the check
enforces a security policy that is different from other security mechanisms. . 90

7 The status of output validation on each platform. * means the check enforces
an inconsistent security policy. 101

8 Source code line count for the software components of SGX-USB. 136

9 The measured throughput of the secure I/O channel for various packet size,
in five seconds of transmission. The throughput measured by the amount of
payload data transmitted on the channel without counting any additional data
for encapsulation. W/O encapsulation indicates the channel throuput when
we count the entire amount of data transmitted through the channel including
header information. No encryption indicates the channel throughput when
we applyed payload encapsulation (i.e., adding of the header) but did not
apply encryption. 141

10 The measured average latency of the secure I/O channel for various packet
size, in five seconds of transmission. No encryption indicates the latency
incurred when we applyed payload encapsulation (i.e., adding of the header)
but did not apply encryption. 141

x

LIST OF FIGURES

1 Secure Overlay working with the GMail application in Internet Explorer 10.
Overlaid edit controls are highlighted with green bounding boxes. Gyrus
changes the border color to red if it detects any infringement. 14

2 An example WYSIWYS applicable operation: adding a comment on a
post on Facebook. After typing a message for the comment and pressing
the ENTER key, the application generates network traffic which goes to
the URL: https://www.facebook.com/ajax/ufi/add-comment.php. Be-
tween the on-screen text and the outgoing network traffic, there is a direct
mapping of user-intended content. 16

3 Workflow of Gyrus upon receiving a traffic-triggering event. Grayed and
solid-lined areas are trusted components, while dotted lines indicate un-
trusted components. 20

4 UI structure of Windows Live Mail. Tree structure on the left is from
Inspect.exe. 0 indicates event-receiving object (send button), +2 and +3
indicate the 2nd and the 3rd sibling from the origin (a negative number
indicates the previous sibling). P is a symbol for a parent, and C refers to a
child. 28

5 User Intent Signature for sending e-mail on Windows Live Mail. 29

6 User Intent Signature for posting comments on Facebook Web-app. 30

7 This diagram shows how M-Aegis uses L-7.5 to transparently reverse-
transform the message “deadbeef” into “Hi there”, and also allows a user
to enter their plaintext message “Hello world” into M-Aegis’s text box. To
the user, the GUI looks exactly the same as the original app. When the user
decides to send a message, the “Hello world” message will be transformed
and relayed to the underlying app. 51

8 The figure on the left illustrates how a user perceives the Gmail preview
page when M-Aegis is turned on. The figure on the right illustrates the same
scenario but with M-Aegis turned off. Note that the search button is painted
with a different color when M-Aegis is turned on. 58

9 User still interacts with Gmail app to compose email, with M-Aegis’ mimic
GUIs painted with different colors on L-7.5. 63

10 Password prompt when user sends encrypted mail for a new conversation. . 65

11 The UI Automator Viewer presents an easy to use interface to examine the
UIA tree and determine the resource ID (blue ellipse) associated with a GUI
of interest (red rectangle) . 68

xi

12 A general architecture for implementing accessibility features. Supporting
an accessibility feature creates new paths for I/O on the system (two dotted
lines), while original I/O from/to hardware devices (e.g., keyboard/mouse
and screen) is indicated on the right side. 81

13 A workflow for the traditional mechanism to seek user consent before
performing privileged operations. 84

14 Required security checks for an AT as a new input subsystem. User input
is passed to the AT first, moved to OS through accessibility libraries, then
the synthetic input is delivered to the application. Grayed boxes indicate
security checks required by each entity that receives the input. 85

15 Required security checks for an AT as a new output subsystem. The applica-
tion is required to decide which input can transit through the accessibility
library. Then the AT receives the output to deliver it to the user. Grayed
boxes indicate the checks required by OS and the application. 86

16 The workflow of privilege escalation attack with Windows Speech Recognition. 93

17 A dialog that pops-up when Explorer.exe tries to copy a file to a system
directory. The dialog runs at the same Medium IL as Explorer.exe. Thus,
any application with Medium IL can send a synthetic click to the “Continue”
button and proceed with writing the file. 94

18 Password Eye on the Gmail web application, accessed with Internet Explorer
10. In Windows 8 and 8.1, this Eye is attached to password fields not only
for web applications but also for regular applications. By left-clicking the
Eye, the box reveals its plaintext content. 95

19 Screenshot of passcode and password input in iOS. For passcode (left),
typed numbers can be identified by color differences on the keypad. For
the password (right), iOS always shows the last character to give visual
feedback to the user. 98

20 The workflow of the attack on the Moto X’s Touchless Control. Malware
in the background can record a user’s voice, and replay it to bypass voice
authentication. 100

21 The administrator authentication dialog of GNOME on Ubuntu 13.10. This
dialog asks for the password of the current user to gain root permissions. . . 103

22 Code that handles the real input (above), and code that handles the a11y
input (below) for click, in View.java of Android. The same function
performClick() is used to handle both requests. 107

xii

23 Code that handles copying of text (pressing Ctrl-C) in GTK. Inside the
function, GTK checks the security flag priv->visible to decide whether or
not to provide selected text to the clipboard. If GtkEntry is set as a password
box (if the flag is true), then the text will not be copied. 108

24 Code that handles an accessibility request (ATK) for copying text. ATK
internally calls a function of a module in GTK that supports accessibility.
The module then calls a function that directly interacts with the UI widget
(GTK functions). However, the module GtkEntryAccessible calls a differ-
ent function gtk_editable_get_chars(), which misses required security
checks of the password box. 109

25 A diagram that illustrates the architecture of SGX-USB. An application
that handles I/O runs in the enclave. The enclave will authenticate with
the remote attestation service provider (RASP) through the Intel SGX re-
mote attestation process. Intel Attestation Service (IAS) will provide the
verification of a quote generated for an enclave, to verify the authentic-
ity of an enclave. The USB Proxy Device (UPD) will receive the signed
quote then verifies the signatures of the quote, and then establishes a secure
communication channel with the enclave and forward USB I/O devices. . . 124

26 The remote attestation process of Intel SGX. 126

27 An extended remote attestation process for SGX-USB. Steps from 1 to 5
remain the same as the regular remote attestation of an enclave. Procedures
marked with the bold face (Steps 6, 7, and 8) indicate additional procedures
for attesting an enclave from the USB Forwarding Device. 128

28 The user interface for verifying an enclave and its usage, presented in the
USB Proxy Device. Figure on the left shows how the UPD displays the
request for establishing a secure channel to a keyboard from an enclave.
The information displayed on the LCD screen indicates the name of an
enclave (i.e., AuthMgr), the name of the requested device (i.e., Keyboard),
and application specific information for indicating the usage of the input
(i.e., paypal.com). After clicking the SELECT button (i.e., the user approves),
the screen will show the ’OK’ sign at the end of the second line to indicate
that the secure channel is established. 130

29 The data format for deriving secret key from a shared secret. The key
derivation function uses the SHA-256 message digest algorithm to derive a
16 bytes secret key from a shared secret. 131

30 The header format for delivering encrypted payload on trusted I/O channel
in SGX-USB. Authentication Tag will be used for verifying the integrity
of both the size field and encrypted payload. While the AES-128-GCM
encryption applied only to the payload, the size field is supplied as additional
data for AES-128-GCM data authentication; thus the encryption scheme
protects the integrity of both encrypted payload and the size field. 132

xiii

31 A diagram that illustrates the end-to-end I/O protection use case of SGX-
USB for the Internet video chatting. The USB proxy device on the user’s
machine will forward USB devices required for video chatting such as
camera, microphone, speaker, and display. The video chat application
running in the enclave can securely access these USB devices, and send I/O
data through the secure communication channel over the Internet between
the enclaves. 134

32 The measured throughput of the secure I/O channel for various packet size. 140

33 The measured average latency of the secure I/O channel for various packet
size, in five seconds of transmission. 142

xiv

SUMMARY

User input plays an essential role in computer security because it can control system

behavior and make security decisions in the system. System output to users, or user output, is

also important because it often contains security-critical information that must be protected

regarding its integrity and confidentiality, such as passwords and user’s private data. Despite

the importance of user input and output (I/O), modern computer systems often fail to provide

necessary security guarantees on them, which could result in serious security breaches.

This dissertation aims to build trust in the user I/O in computer systems to keep the

systems secure from attacks on the user I/O. To this end, we analyze the user I/O paths

on popular platforms including desktop operating systems, mobile operating systems, and

trusted execution environments such as Intel SGX, and identified that threats and attacks

on the user I/O can be blocked by guaranteeing three key security properties of user I/O:

integrity, confidentiality, and authenticity.

First, GYRUS addresses the integrity of user input by matching the user’s original

input with the content of outgoing network traffic to authorize user-intended network

transactions. Second, M-AEGIS addresses the confidentiality of user I/O by implementing

an encryption layer on top of user interface layer that provides user-to-user encryption.

Third, the A11Y ATTACK addresses the importance of verifying user I/O authenticity by

demonstrating twelve new attacks, all of which stem from missing proper security checks

that verify input sources and output destinations on alternative user I/O paths in operating

systems. Finally, to establish trust in the user I/O in a commodity computer system, I

built a system called SGX-USB, which combines all three security properties to ensure the

assurance of user I/O. SGX-USB establishes a trusted communication channel between the

USB controller and an enclave instance of Intel SGX. The implemented system supports

xv

common user input devices such as a keyboard and a mouse over the trusted channel, which

guarantees the assurance of user input.

Having assurance in user I/O allows the computer system to securely handle commands

and data from the user by eliminating attack pathways to a system’s I/O paths.

xvi

CHAPTER I

INTRODUCTION

1.1 Motivations and Goals

User input plays an essential role in computer security because it can control system behavior

and make security decisions in the system. System output to users, or user output, is also

important because it often contains security-critical information that must be protected

regarding its integrity and confidentiality, such as passwords and user’s private data. Despite

the importance of user input and output (I/O), modern computer systems often fail to provide

necessary security guarantees on them, which could result in serious security breaches.

Hence the machine infected by malware can send/alter the command that user has never

supplied, and keyloggers can steal passwords from the system; cloud service providers can

easily read user’s messages, and any attackers can take control of the device across the

security domain by injecting a fake user input to a system.

To block a class of attacks that target weaknesses in the user I/O in computer systems,

this dissertation aims to build trust in the system’s I/O path to keep the systems secure by

fundamentally cutting off attack pathways. To this end, we analyzed the user I/O paths

on popular platforms including desktop operating systems, mobile operating systems, and

trusted execution environments such as Intel SGX, and identified that threats and attacks

on the user I/O can be blocked by guaranteeing three key security properties of user I/O:

integrity, confidentiality, and authenticity.

This dissertation includes four projects that address the three essential security properties

of user I/O: integrity (GYRUS [85] in §2), confidentiality (M-AEGIS [101] in §3), and authen-

ticity (A11Y ATTACK [86] in §4), and the SGX-USB project (in §5) guarantees assurance as

a combination of the three key security properties in order to enable secure user I/O to Intel

1

SGX.

1.2 Dissertation Overview
1.2.1 The Integrity of User Input

GYRUS [85] (in Chapter §2) is a security system that protects the integrity of text user input

that can be sent as security sensitive network transactions such as sending an e-mail message

and online banking transactions by allowing only user-intended network transaction to

be sent from a system even if the operating system is compromised by attacks. GYRUS

takes a new approach on inferring the user intent from input because prior attempts on

extracting user intent from keystrokes is a difficult problem by cause of the complexity

of text operations. The key observation on keystroke user interaction is that the user not

only uses the input device but also looks at the screen output to check if his/her typing

is captured correctly. GYRUS exploits this feedback loop to capture the text data and the

user’s intent from the UI layout, such as text boxes on the screen. Then, GYRUS enforces the

policy called “What You See Is What You Send (WYSIWYS)” to match the user’s intent with

the outgoing network traffic. Under this policy, GYRUS preserves the integrity of text that

embodies user intent, and allows the network transaction only if the network traffic matches

the prior intent as shown as the text on the UI. The enforcement of this policy either requires

a direct matching of text or allows a simple transform (e.g., encoding) from the captured

text from UI to the content in the network traffic, which many text-based applications meet

this requirement. GYRUS can be applied to protect several real-world applications, including

e-mail messages in Outlook, postings on Facebook, and the financial transactions in online

banking applications such as Paypal. Evaluation of GYRUS against real-world malware has

shown that GYRUS blocks all malware-generated network traffic while allowing all the user

intended transactions, and incurs negligible performance overhead (only 39 ms of delay on

each keystroke) while adding less than 6% of network latency.

2

1.2.2 The Confidentiality of User I/O

Public messaging services, such as GMail, Outlook, Facebook Messenger, etc., claim to pro-

vide the end-to-end encryption by using Transport Layer Security (TLS/SSL). Unfortunately,

the encryption is only from the user to the server, not from the user all the way through to

the other users, which means that the server can access the plaintext data. Since applying a

user-to-user encryption like PGP is difficult because of the change in user experience and

requirement of protocol reverse-engineering, M-AEGIS [101] (in Chapter §3) took a new

approach. M-AEGIS is a system that not only provides the user-to-user confidentiality of

plaintext data but also preserves the user experience through the creation of a UI overlay

called Layer 7.5, which is interposed between the application (OSI Layer 7) and the user

(Layer 8). This approach allows M-AEGIS to implement a true user-to-user encryption of

data while achieving goals in security, usability, and adaptability. To preserve the exact

application workflow and look-and-feel, M-AEGIS uses Layer 7.5 to put a transparent win-

dow on top of existing application GUIs to both intercept plaintext user input then encrypt

before feeding it to the underlying app, and to decrypt the (encrypted) data from the app

before displaying the (plaintext) data to the user. Moreover, to support the search operations,

which is essential in e-mail services, M-AEGIS implements the easily-deployable efficiently-

searchable symmetric encryption scheme (EDESE) to enable text search operation over the

encrypted text data. This technique allows M-AEGIS to be transparently integrated with the

most of messaging services without hindering usability or requiring reverse engineering.

A prototype of M-AEGIS is implemented on Android and demonstrates that it can support

a number of popular services, e.g., Gmail, Facebook Messenger, WhatsApp, etc. The

performance evaluation and the user study show that M-AEGIS incur minimal overhead and

no compatibility problem when adopted on Android.

3

1.2.3 The Authenticity of User I/O

The A11Y ATTACK [86] (in Chapter §4) is a new class of attacks caused by the failure to

properly verify (i.e. authenticate) the source and the destination of the user I/O on operating

systems. Major operating systems (i.e., Windows, Linux, Android and iOS) provide the

means of programmatically generating user input and programmatically reading UI output to

build assistive technology for supporting accessibility (a11y) for disabled users, in which the

federal law mandates the support. Unfortunately, having such alternative ways of generating

inputs and reading outputs introduces new security vulnerabilities. For example, an audio

speech generated by an unprivileged application can control privileged applications through

the voice commander on the system. The A11Y ATTACK defines assistive technologies as I/O

subsystems that either transform user input into interaction requests for other applications

and the underlying OS, or transform application and OS output for display on alternative

devices. While the user I/O is considered critical for the system’s security, inadequate

security checks on these new I/O paths make it possible to launch attacks from accessibility

interfaces. The A11Y ATTACK evaluated accessibility supports for four popular operating

systems: Microsoft Windows, Ubuntu Linux, iOS, and Android. We identified twelve

new attacks that can bypass state-of-the-art defense mechanisms deployed on these OSes,

including mandatory access control in both Windows and Linux, and bypassing sandbox in

both iOS and Android. Further analysis illustrates that the root cause of the attack is that

the design and implementation of accessibility support involve inevitable trade-offs among

compatibility, usability, security, and (economic) cost. The A11Y ATTACK also proposed

a number of countermeasures to either make the implementation of all necessary security

checks easier and intuitive, or to alleviate the impact of missing/incorrect checks.

1.2.4 The Assurance of User I/O

One promising approach to protecting a system from software based attacks is to implement

the anchor of security in hardware. Processor chips from major manufacturers, such as

4

Intel, have recently embedded several new hardware extensions for the trusted execution

environment (TEE) such as Intel Software Guard Intension (SGX). Although the trsuted

execution environment is available in hardware today, unfortunately, the effect of them does

not come out as expected because Intel SGX cannot support user-facing applications due

to missing trusted user I/O path. In order to harvest the security benefits from the TEE,

We design SGX-USB (in Chapter §5), which establishes a trusted I/O path between a USB

port and the trusted execution environment (TEE). The design of SGX-USB introduces a

new trusted hardware, the USB Proxy Device at a USB port of a system, and this hardware

component establishes a trusted communication channel between the USB port and an

enclave instance through the remote attestation process of Intel SGX and its extension.

After establishing a trusted channel, SGX-USB can support typical user input devices

such as keyboard and mouse as well as more complex user-facing devices such as camera,

microphone, speaker, and display devices by forwarding USB packets over the trusted

channel. Because the trusted channel guarantees all three security properties, such as

integrity, confidentiality, and authenticity, SGX-USB can ensure the assurance of user input

and allows the enclave instance to handle commands and data from the user securely. While

the currently discussed applications of Intel SGX only perform the network and the file I/O

securely, this new design enables secure user I/O in the TEE so that Intel SGX can facilitate

user-facing trusted applications, such as authentication manager and end-to-end encrypted

video chat application.

5

CHAPTER II

GYRUS: A FRAMEWORK FOR USER-INTENT MONITORING OF

TEXT-BASED NETWORKED APPLICATIONS

2.1 Motivation

Host-based security systems have traditionally focused on detecting attacks. Misuse detec-

tion targets attacks that follow predefined malicious patterns, whereas anomaly detection

identifies attacks as anything that cannot be the result of correct executions under any input

or execution environment. Over the time, systems following this approach have shown that

they usually have a too narrow definition of “attacks”, which often necessary to keep their

false positive rate acceptable. Thus misuse detection generally cannot detect new attacks,

while anomaly detection is known to suffer from mimicry attacks.

Instead of perpetuating the cycle of attack analysis, signature creation, and blacklist

updating, we believe a more viable approach is to create an accurate model of what is the

correct, user-intended behavior of an application, and then ensure the application behaves

accordingly. The idea of defining correct behaviors of an application by capturing user

intent is not entirely new, but previous attempts in this space use an overly simplistic model

of the user’s behavior. For example, they might infer a user’s intent based on a single mouse

click without capturing any associated context. While in some cases (e.g. ACG [133]),

the click captures all the semantics of the user’s intent (e.g. access the camera), in other

cases (e.g. BINDER [38] and Not-a-Bot [72]), the user’s intent involves a richer context,

and failure to capture the full semantics will again allow for attacks to disguise as a benign

behavior. For example, imagine a user who intends to send $2 to a friend through PayPal. A

mouse click can identify the user’s intent to transfer money, but not the value or recipient of

the transfer. So this $2 transfer to a friend could become a $2,000 transfer to an unknown

6

person. Without context, it is simply impossible to properly verify a user’s intent, regardless

of if we are protecting a financial transfer, an industrial control system, or a wide range of

other user-driven applications.

In this chapter, we propose a way to capture the richer semantics of the user’s intent. Our

method is based on the observation that for most text-based applications, the user’s intent

will be displayed entirely on screen, as text, and the user will make modifications if what

is on screen is not what she wants. Based on this idea, we have implemented a prototype

called GYRUS1, which enforces correct behavior of applications by capturing user intent.

In other words, GYRUS implements a “What You See Is What You Send” (WYSIWYS)

policy. GYRUS assumes a standard VM environment (where GYRUS lives in the dom-0 and

the monitored applications live in dom-U2). Similar to BINDER and Not-a-Bot, GYRUS

relies on the hypervisor to capture mouse clicks from the user, and use these as an indication

that the user intends the application to perform certain actions. To capture the semantics of

user intent that cannot be inferred from just observing a mouse click, we take the approach

of drawing what we think the user should see in the dom-0. In particular, the dom-0 will

draw a secure overlay on top of the dom-U display window (the VNC viewer in KVM

environment), covering editable text area of targeted applications in dom-U, while leaving

the rest of the dom-U display visible. We stress that this rendering is isolated from dom-U

– software in dom-U cannot overwrite or modify what has been drawn. Since we render

all editable text the user sees, we can easily confirm that what is intended is what we have

drawn. By drawing all the text the user is supposed to see in our overlay, GYRUS can also

handle scrolling properly. Even if only part of the text is displayed at any time, GYRUS

can keep track of what has been displayed over time and derive the full content of the user

intended input.

To determine what text to display in the overlay, we deploy a component called the UI

1 The fusiform gyrus is a part of the human brain that performs face and body recognition.
2 In this chapter, we adopt the terminology from the Xen community. In other settings, the dom-0 is

referred to the Security-VM, while dom-U is referred to the Guest-VM.

7

monitor in dom-U. We stress that the UI monitor is not trusted since incorrect behavior in

this component will be immediately noticed by the user and only result in a denial-of-service

(DoS) in the worst case. The UI monitor is also responsible for telling the dom-0 logic the

location of buttons that signify the user’s intent to commit what is displayed to the network

(e.g. the “send” button in an email client), and when the user finally clicks on such buttons.

Using such information, GYRUS will make sure the outgoing network traffic matches the

text displayed. In short, GYRUS enforces the integrity of user-generated network traffic and

prevents malware from misusing network applications to send malicious traffic even if the

malware mimics legitimate applications by running an application’s protocol correctly or

injects itself into benign applications. Note that GYRUS only checks network traffic under

protocols used by the protected applications, and it does not interfere with traffic from

other applications, such as background services, RSS feed readers, and BitTorrent clients.

Additionally, GYRUS can support asynchronous or scheduled traffic like e-mail queued for

sending in the future. From our evaluation, GYRUS exhibits good performance and usability,

while blocking all tested attacks.

Any attempt to make sure an application behaves according to user intent will have

some application-specific logic, and GYRUS is no exception. This is inherently true for our

approach because: 1) different applications will have a different user interface, and thus

user intent will be interpreted differently and, 2) different applications will have different

logic for turning user input into network traffic or other forms of output. The best we can

do is to make the per-application logic as easy to build as possible. In GYRUS, we simplify

the UI-related part of the per-application logic by making use of an existing library called

UI Automation, which is for supporting assistive technologies and UI testing. As for the

logic to map user intent to the expected behavior of an application, the complexity mostly

depends on the application, and GYRUS and the WYSIWYS policy is not suitable for all

applications. In particular, applications with an arbitrarily complex encoding of their text,

or those using proprietary protocols cannot be easily supported by GYRUS. Nevertheless,

8

we have shown that it can be used on email clients, instant messenger applications, online

social network services and even online financial services. §2.5 discusses what applications

are best protected by GYRUS.

The per-application development cost for GYRUS is justifiable since GYRUS is attack-

agnostic: GYRUS makes assumptions about what the attackers are trying to achieve but

not how. In other words, once one builds the logic for an application, GYRUS will be able

to protect that application against an entire class of attacks, no matter how attacks evolve.

Therefore, over time, the cost of deploying GYRUS will be lower than existing host-based

security systems, which usually need continuous updating to stay current with the latest

attacks.

Finally, we emphasize that GYRUS does not replace existing host-based security systems.

Instead, GYRUS uses a different philosophy to fill a gap in traditional security systems

by defining and monitoring normal behavior. Thus, GYRUS fits best when it is used to

complement other security systems, such as antivirus, firewalls, and intrusion detection

systems (IDS).

The primary contributions of this chapter include: 1) the “What You See Is What You

Send” concept that includes securely capturing what the user sees on the screen at the time

an event triggers outgoing traffic. Using this, we can determine what the user intended

outgoing traffic should be for an important class of applications. Furthermore, our idea

is transparent to the OS and applications, and only requires standard assumptions about

the virtualized environment. 2) The demonstration of how we can use common features

such as accessibility libraries3 for inter-VM monitoring without knowing the internals

of the monitored applications. And 3) the demonstration of the viability of GYRUS by

implementing the framework along with support for real-world applications in Microsoft

Windows 7. The prototype of GYRUS currently supports email, instant messaging, social

3 Similar capabilities should be available on most systems that support screen reader for visually impaired
users.

9

networking applications, and online financial applications, effectively covering the most

common network applications in everyday use.

2.2 Related Work

This section discusses the related work and how GYRUS improves on the current state-of-

the-art. The discussion is also intended to provide some context for our work. We group the

related work into three areas: 1) capturing user intent, 2) trusted execution environment, and

3) verifiable computation.

Capturing Human Intent. Like GYRUS, BINDER [38] and Not-A-Bot (NAB) [72] also

try to determine if outgoing traffic is legitimate based on observed human intent; in particular,

both systems enforce a policy which states that outbound network connections that come

shortly after the user input are user intended. However, as mentioned in §2.1, in some cases

only capturing the timing of user-generated events is not enough. In contrast to BINDER

and Not-A-Bot, GYRUS captures more semantics of the user’s intent, so only traffic with

the correct content can leave the host. Additionally, since BINDER and Not-A-Bot use

timing information to determine if traffic is user intended, they cannot handle asynchronous

network transactions (such as emails queued to be sent later). GYRUS solves this problem

by relying on the semantics, but not the timing of user generated events, and by decoupling

the capturing of user intent from the enforcement of its traffic filtering policy.

User-Driven Access Control [133] captures the user’s intent for security purposes using

an access control model that grants permissions based on a user’s GUI interactions. It

uses access control gadgets (ACGs) to capture a user’s intent. Clicking on an ACG grants

permission on a resource associated with the ACG. GYRUS uses a similar approach on UI

widgets to identify traffic-triggering user input. However, in User-Driven Access Control,

the permission is bound to certain user-owned resources, not to the content the user intends to

send to these resources. In other words, when the user clicks on an ACG that has permission

to use the network device, any outgoing traffic, even with malicious intent, will be allowed.

10

On the contrary, GYRUS captures both the user’s intent to send something and also the

intended content of that outgoing traffic and can stop any unintended network traffic.

Trusted Execution Environment. Virtualization has enjoyed a resurgence in popularity in

recent years. Proponents have argued that by using small, verifiable hypervisor kernels, the

isolation of one virtual machine from another can be assured [108, 76]. Recent research has

aimed to enhance this security by reducing the size of the hypervisor’s code [144, 162], mod-

ularizing its components [35], or verifying its security [96]. These isolation properties make

virtualized environments an attractive way to implement security applications. Virtualization-

based solutions have been used to implement trusted computing architectures [57, 111],

intrusion detection systems [58], malware analysis systems [89], and zero-day intrusion

analysis systems [91]. However, none of these take user intent into account. Thus, we

believe GYRUS can enrich research in each of these areas by showing how to build on the

isolation provided by a virtualized environment to perform simple checks that will improve

the system’s security.

Verifiable Computation. GYRUS has some common goals with the field of verifiable

computation, which has focused on ensuring correct code execution by an untrusted third

party. This work has taken many forms including general-proof protocols [66, 67, 59],

Probabilistically Checkable Proofs (PCPs) [12, 138, 139], or relying on fully-homomorphic

encryption (FHE) [60, 33]. While these systems can prove that a third party has processed a

requested execution correctly, they cannot tell whether the input of this execution is correct.

GYRUS fills this gap by checking that the input used for computation is what was provided

by the system’s user. GYRUS then completes the validation by also checking whether the

outcome (e.g, network packet) of application execution is the correct result for a given input.

Recent work [128] shows that verifiable computation can be used in practical settings, so we

believe that the complementary aspects of GYRUS and verifiable computation could prove to

be a powerful combination in future security systems.

11

2.3 Overview

In this section, we present a high-level overview of GYRUS. First, we describe our threat

model, and then we introduce a policy called “What You See Is What You Send” (WYSI-

WYS), which is integrated and enforced by GYRUS to address the threat model. Then, we

describe the essential elements of GYRUS and discuss suitable applications of GYRUS.

2.3.1 Threat Model

GYRUS is designed to utilize a standard virtualized environment with a hypervisor (VMM),

a trusted dom-0 that executes most parts of GYRUS, and an untrusted dom-U that runs the

applications to be protected as well as with some untrusted components of GYRUS. We

collect data for determining a user’s intent from the hardware input and output devices,

including the keyboard, mouse, and screen. We make the following security assumptions:

• The hypervisor and dom-0 are fully trusted.

• Attackers cannot have physical access to the machine, and we trust the hardware.

• All hardware input events must be interposed by the hypervisor, and they must first be

delivered to dom-0. The hypervisor provides complete isolation of input hardware,

preventing hardware emulation originating from dom-U.

• Dom-U is not trusted; therefore it can be compromised entirely.

We stress that we do not apply any security assumption on dom-U. This implies that

GYRUS could function correctly even if the dom-U is entirely compromised (including

kernel-level attacks). In other words, even though GYRUS extracts information from the

memory of dom-U by running a helper component called UI Monitor inside of it, we do

NOT assume the correctness of such information. Instead, we designed a trusted component

called Secure Overlay to verify the validity of this information. Detailed information for

these components will be described in the next section.

12

2.3.2 User Intent

As mentioned in §2.1, the goal of GYRUS is to capture rich semantics to understand a user’s

intent. This semantics is used to ensure that only user intended traffic can leave the system.

In this context, user intent is limited to what we can infer from the system’s input devices.

In BINDER and Not-a-Bot, user intent is captured by directly observing input hardware

events (mainly from keyboard and mouse). However, this approach is limited due to the

missing contextual information and the challenges of reconstructing user content without

“seeing” the screen. To make a sound security decision, we must capture further details

about the user’s intent. For example, the task of reconstructing a message from a mail

client using only keystrokes and mouse clicks would require us to reconstruct the entire

windowing system and the logic behind text boxes (e.g. how to update the location of the

caret upon receiving keyboard/mouse input), as well as to reproduce the logic to handle

application-specific function keys.

2.3.3 What You See Is What You Send

Instead of capturing and reconstructing user intent strictly from hardware input events, our

solution is to monitor output events from the target applications. The main observation

behind our approach is that in almost all text-based applications, the text that the user types

will be displayed on the screen. This output allows the user to know that she has typed

correctly and made the necessary correction when there is a mistake. Therefore, we can

capture an accurate representation of the user intent if GYRUS can “see” what a user sees.

With this information, we can determine what the user-intended outgoing traffic should look

like and make sure that this is the only traffic that the target application sends. We call this

approach “What You See Is What You Send” (WYSIWYS).

To enforce WYSIWYS, GYRUS is required to correctly and fully capture textual content

that is displayed to the user. Additionally, GYRUS needs information about the UI structure.

In GYRUS, we have two components that implement these features: a dom-U component

13

Figure 1: Secure Overlay working with the GMail application in Internet Explorer 10. Overlaid
edit controls are highlighted with green bounding boxes. Gyrus changes the border color to red if it
detects any infringement.

called UI Monitor, which extracts textual content and a high-level UI structure of the current

screen, and a dom-0 trusted component called Secure Overlay which verifies if the captured

text matches the user’s intent.

The UI Monitor operates on top of the UI Automation [120] library in Microsoft Win-

dows, which is originally intended for building accessibility utilities such as screen readers

for visually impaired users (i.e., this library is designed to capture text displayed on the

screen and fits our purpose very well). Not only does the UI monitor capture the displayed

text, but it also allows us to determine if the mouse click event observed by dom-0 signifies

the user’s intent to commit what is displayed on the screen to the network.

Since the UI monitor relies on the code in dom-U, we stress that we cannot and do not

trust the output of this component. Instead, we use the Secure Overlay to show the data

captured by the UI monitor to the user. As a result, the user can either validate what the

secure overlay displays by not modifying it, or disagree by correcting what she sees (and

14

this will be captured by the UI monitor again). We call this idea reflective verification.

Figure 1 illustrates how WYSIWYS works with the UI Monitor and the Secure Overlay.

The UI Monitor grabs the UI structure information from the current screen, including the

location of windows, text boxes, and buttons, along with textual content from the text boxes.

Then the Secure Overlay positions a transparent overlay screen, and for each text box on

the current dom-U screen, it will dynamically draw a matching text box with the same text

content at the exact same location. This Secure Overlay component is always drawn on top

of the whole dom-U screen, so it always hides any text boxes of applications running in

dom-U. While input interaction stays the same from the user’s perspective, the output that

user sees is actually the text that is captured by the Secure Overlay. And the text shown on

the screen will be updated as the user interacts with the application, so the user will naturally

verify that this captured content matches her intent.

GYRUS needs to ensure that for all cases, the text shown on the Secure Overlay is

exactly matched with the text that the underlying application is presenting. However, in

our reflective verification scenario, the user can only verify changes in the currently visible

part of the text. If some lines of text scroll out of view and then get updated while they

are hidden, this verification process is no longer valid. To handle hidden updates, GYRUS

keeps track of the text and its changes. To indicate the status of verification, we place a

border around the text box. When everything is as expected, the border is green. When

the hidden text changes, the border turns red, indicating that the user needs to manually

verify the content. In our experience, GYRUS works well with most text boxes for default

text typing. Additionally, GYRUS can support text-editing features such as cut/copy/paste,

automatic spell correction, selection of text from a combo box, etc.

2.3.4 Network Traffic Monitoring

After GYRUS captures the user’s intent using the UI Monitor and the Secure Overlay, the

second part of implementing WYSIWYS is to ensure that the traffic generated by the

15

Figure 2: An example WYSIWYS applicable operation: adding a comment on a post on Facebook.
After typing a message for the comment and pressing the ENTER key, the application generates
network traffic which goes to the URL: https://www.facebook.com/ajax/ufi/add-comment.php.
Between the on-screen text and the outgoing network traffic, there is a direct mapping of user-intended
content.

monitored application matches what GYRUS expects based on the captured user intent.

GYRUS assumes that there is a simple mapping between the captured user intent and the

outgoing traffic. In other words, the network protocol used in the application must transmit

the information displayed to the user directly or with simple modifications (e.g., text

represented in XML, or a standard encoding such as Base64 and URL encoding). Even

though this assumption does not hold for all applications, we argue that many everyday

applications are mostly text-based and have very simple processing to generate outgoing

network traffic based on the text input from users. Figure 2 shows an example of a simple

mapping between user input and network traffic content.

Finally, note that GYRUS only inspects specific types of messages under the protocol

used by the protected application(s). GYRUS will not interfere with any traffic outside of

this scope. Even for traffic originating from target applications, GYRUS will only check (and

potentially block) traffic that contains user-generated content. For example, for SMTP and

16

instant messenger protocols, we only check commands for sending messages. For HTTP(S)

traffic, we only inspect individual URLs that submit user-intended contents, such as posting

Twitter messages, adding comments on Facebook, or sending money on Paypal. In §2.4, we

will describe how to identify such traffic using the User Intent Signature.

2.3.5 Target Applications

Not all traffic that is observed by GYRUS can be traced back to some user action that

explicitly expresses her intent to create such traffic. For example, when the user tries to

load a web page in the browser, she probably has no knowledge about what further HTTP

requests will automatically be generated to download all the images on the loaded pages.

In addition to these automatic requests, if the text content of the application is represented

using a complex encoding on the network protocol, (e.g., evaluating some functions or

encryption), GYRUS cannot infer expected output of network traffic. As such, in this work,

our focus is on traffic that contains rich semantics about the user’s intent, and we consider

cases where the user does not have a clear understanding of what traffic their action will

create to be out of scope. Furthermore, we are particularly interested in traffic that is related

to transactions that could create long lasting harmful effects to the user (e.g., financial loss).

Examples of such transactions include:

• Transferring money through an online financial service.

• Modifying text-value fields (e.g., the speed of a turbine, or the water level in a nuclear

power plant) of the SCADA (Supervisory Control And Data Acquisition) systems.

• Sending a message through an e-mail client, or an internet messaging (IM) application.

• Posting a status update or comment message through an online social network.

Examples of applications suitable for GYRUS include email clients, instant messaging

applications, various online social networks, and online financial services. We will further

illustrate how GYRUS can protect critical actions of these applications in §2.5. Our results

indicate that the proposed idea of WYSIWYS is very effective in stopping these applications

17

from being used to send manipulated traffic by the malware, thus blocking many traditional

venues to profit from compromising hosts. In other words, GYRUS can protect sensitive

transactions with rich user-generated semantics from malware on the host. For example,

GYRUS can prevent botnet malware from sending spam e-mails and instant messaging

spam, launching impersonating attacks such as spear phishing, and preventing malware that

transfers money from an online banking account.

2.4 Design and Implementation
2.4.1 Architecture

GYRUS employs a virtual machine based isolation mechanism; therefore, its architecture is

separated into two parts. GYRUS puts all trusted monitoring modules in either dom-0 or the

hypervisor, while dom-U remains untrusted. The architecture of GYRUS is summarized in

Figure 3. GYRUS is composed of several key components:

Authorization Database. The Authorization DB stores authorization vectors, which

contain sufficient information to validate outgoing traffic based on a user’s intent. An

authorization vector is generated by the Central Control and allows us to temporally decouple

capturing user intent from the actual enforcement of the WYSIWYS policy at the network

interface. At this level, our monitoring is independent of the internal logic of the application.

Input events that trigger network traffic (e.g., clicking SEND in an e-mail client or pressing

the ENTER key in the text box of an instant messenger application) will invoke the Central

Control to create an authorization vector based on the captured intended content and save

it to the authorization database. Later, when the outgoing traffic is generated from the

application after processing user input, the traffic will be analyzed in the Network Monitor,

which will look up the database for evidence of user intent. Our Network Monitor will

authorize the traffic only if there exists a matching authorization vector. Otherwise, it will

drop the packet. Moreover, this decoupling enables GYRUS to handle asynchronous, or

scheduled traffic like e-mail queued to be sent at a later time.

18

Network Monitor. The Network Monitor is a transparent proxy with a built-in monitoring

capability. This component inspects all traffic under the monitored protocol. If outgoing

traffic is using a protocol corresponding to any of the applications protected by GYRUS, the

traffic is inspected by querying the Authorization DB to see if the traffic is intended by the

user. Unintended traffic is blocked. We also note that the Network Monitor will allow all

traffic from other protocols (i.e., not being monitored) to pass through without inspection.

User-Intent Signature. The User-Intent Signature captures all the application-specific

logic in GYRUS. The signatures are expressed in a language that we designed specifically for

Gyrus. It covers three categories of information: the condition that triggers network traffic,

the required UI structure data for capturing content-intent, and the content of the monitored

traffic, which will be matched with UI data.. This user-intent signature language represents

our effort to simplify and provide structures to the development of per-application logic

under GYRUS.

Central Control. The Central Control contains the logic that runs the other elements. Its

main task is to process intercepted hardware input events. Upon arrival of these events, the

Central Control will query the UI monitor to see if the event signifies a user intent to send

the currently displayed content out to the network. If so, the Central Control will query

the Secure Overlay and the list of active User-Intent Signature to generate an authorization

vector for the expected traffic and save it in the Authorization DB. The hardware input event

will then be delivered to dom-U, finally reaching its intended destination: a user-driven

application. Since the Central Control does not modify any inputs, it does not change the

user experience beyond adding an imperceptible delay (see Table 2).

In summary, the workflow of GYRUS can be described as follows (Figure 3): The UI

Monitor communicates with the Secure Overlay to keep the information displayed in the

overlay up-to-date (0). A hardware input event reaches the Central Control (1). Then, the

Central Control queries the UI Monitor to see if this input triggers network traffic or not

(2). If it does, the Central Control queries the Secure Overlay (3) to create an authorization

19

Figure 3: Workflow of Gyrus upon receiving a traffic-triggering event. Grayed and solid-lined areas
are trusted components, while dotted lines indicate untrusted components.

vector that describes the user-intended outgoing traffic and save it to the Authorization

DB (4). At the same time, the intercepted input event is passed to dom-U (4’). After the

application inside dom-U gets the input, it generates the outgoing network traffic (5). The

traffic is intercepted and inspected by the Network Monitor. The network monitor then

queries the Authorization DB to determine if the intercepted traffic matches user intent (6).

The traffic will be allowed to be sent if it matches an authorization vector. Otherwise, traffic

is blocked, and GYRUS raises the alarm to notify the user of a likely attack attempt (7).

2.4.2 Implementation

We implemented our prototype of the GYRUS framework using a Linux/KVM host running

Ubuntu 12.04.2 LTS and a dom-U guest virtual machine running Windows 7 SP1. We

note that the GYRUS architecture is not limited to this particular software stack. We chose

KVM and Windows to demonstrate GYRUS in a traditional desktop environment. In gen-

eral, GYRUS only requires three platform capabilities: intercepting input & network events,

20

accessing UI objects, and drawing a secure overlay UI. Therefore, GYRUS could be imple-

mented on a variety of different platforms. For example, GYRUS could use BitVisor [144]

as a lightweight secure hypervisor or could use the Dalvik VM [8] on Android as isolation

and hardware event-capturing instrument. Similarly, the UI Monitor is not limited to the UI

Automation on the Microsoft platforms. Other accessibility frameworks – such as ATK [62]

and XAutomation [147] on Linux, and NSAccessiblity [107] on Mac OS X – could replace

it. Finally, GYRUS could be implemented using a thin-client model with the trusted client

terminal [109] and a network monitor on the remote host.

In-Guest UI Monitor. Since our implementation of the UI monitor is primarily based on

the UIAutomation library from Microsoft, we begin with a brief description of this library

before presenting details about the UI monitor.

UI Automation. The UIAutomation library represents the UI structure of every window

in the system as a tree of UI objects. The root of the tree is the desktop, lower level nodes

correspond to individual windows, and further down nodes correspond to components

of a window (e.g., buttons, edit boxes, etc.). This tree is similar to the document object

model (DOM) tree in a web browser. Each UI object contains data that describe the

visual aspects of the corresponding components (e.g., size, visibility, textual content). The

UIAutomation library exposes this tree to calling programs through a set of functions that

facilitate traversing and querying the tree (e.g., we can search for nodes in the tree with

certain properties, or at a particular location on screen), and allows us to access all properties

of the nodes. Furthermore, the UIAutomation library also allows calling programs to listen

for changes in both the structure of the tree as well as properties of individual nodes.

As mentioned in §2.3, the UI monitor is a component that runs in dom-U, and it serves

two purposes: one is to determine if a keyboard/mouse input event 4 signifies the user’s

intent to send something over the network. And the other is to provide information to the

4Input event here is not the real hardware input event. All of the hardware input is handled by Central
Control, and the UI Monitor receives a signal from the Central Control when an event arrives.

21

secure overlay to display up-to-date user generated text in target applications. In other words,

implementation of this component needs to provide two primitive operations: identifying

the object targeted by an input event and extracting UI properties from text boxes of interest.

Identifying UI Objects. To check if the current input generates network traffic, the

UI Monitor first looks for the UI object that receives the current input. For a mouse click

event, the UI Monitor calls a Windows API named ElementFromPoint to get the object that

is currently located under the cursor to determine if the click signifies a user’s intent to

generate outgoing traffic. For the keystroke events, we use the GetFocusedElement API to

retrieve the currently focused object (which is also the target of the current input). Upon

retrieving the target object for the input event, we can determine if it is a button or a text

box of interest by querying the UIAutomation library for the properties of this object. The

application-specific logic required for determining the traffic-triggering event is configured

in a User Intent Signature (e.g. checking if it is a button with its name being Send on an

e-mail client). Upon receiving an event that generates traffic, the UI Monitor collects UI

structure information specified in the User Intent Signature then uses this to inform the

Secure Overlay that the traffic-triggering event has occurred. The Secure Overlay also

receives the details about what operation and which application triggered the event, and the

content from UI data required to generate an authorization vector. A point worth noting

here is that we block all updates to the Secure Overlay when we query the UI monitor.

This prevents any malicious updates on visible data right before the event, even with the

prediction of user’s behavior on traffic-triggering event. Additionally, we ensure that the

query to the UI monitor completes before the actual input is delivered to the application

inside the dom-U, so it will not interfere the application’s behavior §2.6.1 presents a more

detailed security analysis of GYRUS.

Extracting Text and UI Structure Data. To support the Secure Overlay, the UI Moni-

tor needs to extract the user-intended text and associated UI properties. First of all, before

extracting the currently displayed text, the UI Monitor registers the text box to the Secure

22

Overlay to track its properties. Whenever a text box is in focus, the UI Monitor will assign it

a unique ID based on the AutomationID, an identifier from UIAutomation, of the UI object.

This identifier will be used for updating properties of the overlaid text boxes, and indicating

which text boxes are needed for generating an authorization vector. At the same time, it

extracts the required properties from the text box to support overlaying. To get the screen

location of the text box, we query its BoundingRectangle property. For text boxes that

support properties such as rich text, formatting, text selection, and scrolling, we extract them

from the TextPattern object. Finally, the UI Monitor captures user-intended text from the

Value property of a target text box. For text boxes with hidden content (e.g., scrolled-out

text), the Value and TextPattern properties together provide the complete content and

useful position information. The Secure Overlay will be notified of all extracted data, along

with its identifier, to enable displaying this information back to the user.

To handle updates to the target text box, once we register a text box, we add an event

handler to subscribe the PropertyChangedEvent of the target object for its Value property

once we register a text box to the Secure Overlay. In the event handler, we send the updated

content to the overlay. This method will update the Secure Overlay whenever the user edits

the text. Finally, we register to listen for the change in position of the caret object and

forward this information to the overlay so that we can display the caret correctly.

In addition to getting properties for the target text box object, the UI Monitor tracks

windowing events when multiple target applications are involved. In particular, we adopted

the policy of only displaying the text content of the currently focused window on the overlay;

this policy significantly simplifies our implementation and only has a small impact on the

usability of our system 5. Although overlaid text boxes for background applications are

not displayed, the Secure Overlay maintains previously captured user-intended text while

5Alternatively, we could keep track of the visible region of each target application by implementing a
mirror display device driver. We have successfully implemented this functionality, but have not yet integrated
it with the rest of our system.

23

it is visible, and disables its update while it is hidden 6. Therefore, GYRUS can protect the

integrity of the content of text boxes in background applications even if it is not shown on

the screen. To handle window focus change, we listen for the system-wide FocusChanged

and WindowClosed events from the UIAutomation library. In the handler of these events,

we signal the Secure Overlay to hide the content of the window that is closed or has lost

focus and to display the content of the newly focused window. We also listen for the

EVENT_SYSTEM_MOVESIZEEND event and send the Secure Overlay the updated location of the

textual content of the target application whenever it is moved or resized. Finally, we choose

not to listen for events related to window creation but only handle newly opened applications

when the text boxes of interest in these applications first receive focus.

Secure Overlay and Central Control. We implemented both the Secure Overlay and the

Central control components as Java programs that run in dom-0. Since the implementation

of the Central Control is quite simple, we will not present the details here. However, some

implementation details of the Secure Overlay warrant further discussion.

The Secure Overlay has two primary tasks. First, it is responsible for securely displaying

the user-generated text, as captured by the UI monitor in dom-U. This part mainly involves

some UI/graphics programming and some bookkeeping to group captured text in the same

window together for proper handling of windowing events (in particular, when a window

gains or loses focus, we need to show or hide all captured text for this window). Our

experiments show that the UI monitor provides us with sufficiently rich information to

provide a seamless user experience; captured text is rendered without noticeable a difference

in terms of location, size, font and color (including background color for highlighting text).

The second task for the secure overlay is to capture and reconstruct the user’s intent

based on all the textual content that is displayed in the overlay window. By doing this, we

can determine what the user-intended outgoing traffic should look like when the user finally

6 Allowing updates while invisible would prevent reflective verification. If an update is made, the text box
will be marked as being “dirty” and will not be used for creating an authorization vector until the user sees the
updated content by moving focus into corresponding application

24

decides to commit what she has typed to the network. Upon receipt of a traffic-triggering

event, the UI Monitor will send the tag name of the User Intent Signature, along with

identifiers for the text boxes that are required to reconstruct a user’s intent to the Central

Control. Based on the tag-matching with a User Intent Signature, the Central Control

extracts text content for each corresponding text box from the Secure Overlay, builds an

authorization vector with them, and saves it to the Authorization DB.

For creating an authorization vector, the Secure Overlay should maintain the user-

intended text. In the case where all the user-generated text is displayed on the screen,

the Secure Overlay can easily maintain the user-intended text. However, the task is more

complicated if the text is displayed in a text box with a scrollbar. In this case, the UI Monitor

is still able to capture all the text in the text box; however, reflective verification will not

work for the text that has been scrolled out of view. As such, malware in dom-U can modify

the invisible parts of the text without the user noticing. To solve this problem, the Secure

Overlay keeps track of changes in the content captured by the UI monitor and only considers

updates to the target text box that satisfy the following criteria as valid:

• Updates cannot occur at multiple non-consecutive locations (i.e., the difference be-

tween the old version and the new version of some captured text can only be the result

of inserting or deleting a single character/chunk of text).

• Updates can only occur in the visible part of the text (i.e., the point where the character

or chunk of text is inserted or deleted must be visible before the update occurs).

• If a chunk of text is inserted, the end of the chunk must be visible after the update.

Similarly, if a character is inserted, the character must be visible after the update.

• If a chunk of text is deleted, the text following the deleted chunk must be visible after

the update. Similarly, if one character is deleted, the character that follows must be

visible after the update.

If the UI Monitor reports updates that violate the above condition, the Secure Overlay

will draw a red border over the corresponding text box to let the user know of the violation.

25

In this case, the user should check the text displayed by the overlay to determine if GYRUS

correctly captured her intent. If it was, she then commit the input to the network. The above

design allows us to correctly and securely handle typical operations like typing, deleting

text using “backspace”, copy-and-paste, deleting/replacing a chunk of highlighted text, even

autocomplete and auto-spell-correction. The only caveats we know of are: 1) “Find and

replace all”, and 2) if the user pastes a chunk of text that is too long to be displayed all

at once, some of the pasted text will not be visible in the entire process, and is subject to

illegitimate modifications by malware. In these cases, the best practice will be for the user to

scroll through the pasted text to ascertain the correctness (and we believe this is a reasonable

practice, even if not for security reasons).

Authorization DB. The Authorization DB saves the user intent captured by the Secure

Overlay at the time when we capture an input event that signifies the user wants to send

something out to the network, and is queried by the Network Monitor when the monitor

observes actual outgoing traffic of the corresponding protocol. To allow an efficient lookup,

we implement the Authorization DB as a hashtable stored in Ruby, indexed by a data

structure called authorization vector, which captures both the exact content of the expected

outgoing traffic as well as the expected protocol used to send the content. We also associate

each key in the hashtable with a numeric value which indicates how many messages matching

that key can be sent, so we can handle scenarios where the user intends to send the same

message for multiple times.

Network Monitor. The Network Monitor is implemented as a set of transparent proxies,

one for each protocol of interest. Each of these proxies has deep packet inspection capability,

and we used iptables to redirect all of the traffic of each monitored protocols’ port to the

corresponding proxy for inspection. For SMTP and YMSG, we used stand-alone proxy

software proxsmtp [156] and IMSpector [78], respectively. For HTTP, even though there

exists a transparent proxy with the capability of ICAP [48] handling such as Squid [158], we

26

wrote our own implementation because of performance issues 7. For SSL/TLS encapsulated

protocols (e.g., HTTPS, and SMTP TLS), we use the Man-In-The-Middle (MITM) approach

to decrypt the traffic to be analyzed, and re-encrypt it afterward. In particular, we created a

self-signed CA certificate and CA-signed wild-card certificate, and inject the CA certificate

to dom-U as a trusted CA. With these certificates, GYRUS can impose itself as the server

at the setup phase for SSL connections, and be able to decrypt any subsequent traffic from

dom-U to the actual server. Finally, we note that this MITM approach is not an invention

of our own, but is widely used approach for deep packet inspection (DPI) with various

intrusion detection/prevension systems (IDSs/IPSs) [140].

User-Intent Signature. As we have mentioned in §2.1, an approach that tries to model

and enforce correct behavior of applications will inevitably have some per-application logic.

To make this development process as painless as possible, we created our own language for

specifying the per-application logic as well as the programs to interpret the specifications.

We call specifications under our language User-Intent Signatures, and we express these

signatures in the JSON (JavaScript Object Notation) format. Each user intent signature

contains eight JSON object fields, and the names of the fields are: TAG, WINDOW, DOMAIN,

EVENT, COND, CAPTURE, TYPE, and BIND. In the following, we will give a brief description of

each with its intended purpose. Please refer to Figure 5, and Figure 6 for examples of user

intent signature as well as more specifics of the signature language. Before starting, we first

note that the TAG field in this signature is for assigning a unique signature name.

Identifying Traffic Event and Focused Application. Our monitor component, the

UI Monitor, uses this signature to identify traffic-triggering input events. To specifying a

traffic-generating event in a User Intent Signature, the signature writer can set the EVENT

field. This field will contain the value of required hardware input event. For example, it

could be LCLICK to indicate a left mouse click on the send button of an e-mail client or

7 Because Squid does not support multi-threading for traffic relaying, it can cause severe delays when a
web browser loads a web page.

27

Figure 4: UI structure of Windows Live Mail. Tree structure on the left is from Inspect.exe. 0
indicates event-receiving object (send button), +2 and +3 indicate the 2nd and the 3rd sibling from
the origin (a negative number indicates the previous sibling). P is a symbol for a parent, and C refers
to a child.

ENTER for reacting on pressing the return key on the message dialog of an instant messenger

application. This field only partially defines the traffic-triggering event. It should be linked

with application-specific, operation-specific information to correctly identify if the input

will be delivered to the specified application. For correctly figuring out the details from an

input receiving application, we use the tree-structure information of UI from UI Automation,

in addition to a simple indicator such as the name of the window for stand-alone apps

or domain name of currently visiting page URL in web-apps. Figure 5 shows how the

signature is constructed to detect a Windows Live Mail application. In the compose view

of the application, its window name is always ATH_Note, so the WINDOW field indicates this

information. The sub-components in the UI tree-structure are – starting from the event

receiving object – a button named “Send this message now”, text edit boxes for the To

and Subject fields, and a content pane for the e-mail message text. Figure 4 illustrates

how UI Automation manages this tree-structure. Note that the COND section lists all of the

conditions of the tree-structure. For internal fields, the number indicates the relative distance

from an event receiving object as a sibling on the tree. So 0 means the object specified

triggered the event, and +2 or +3 indicates the next siblings at the specified distance (a

28

1 {

2 "TAG" : "LIVEMAILCOMPOSE",
3 "EVENT" : "LCLICK",
4 "WINDOW" : "ATH_Note",
5 "COND" : {
6 "0" : {
7 "CONT" : "BUTTON",
8 "NAME" : "Send this message now"
9 },

10 "+2" : {
11 "CONT" : "EDIT",
12 "NAME" : "To:"
13 },

14 "+3" : {
15 "CONT" : "EDIT",
16 "NAME" : "Subject:"
17 },

18 "P-1CCCCCCCCC" : {
19 "CONT" : "PANE"
20 }

21 },

22 "CAPTURE" : {
23 "A" : "+2.value",
24 "B" : "+3.value",
25 "C" : "P-1CCCCCCCCC.value"
26 },

27 "TYPE" : "SMTP",
28 "BIND" : {
29 "METHOD" : "SEND",
30 "PARAMS" : {
31 "to" : "A",
32 "subject" : "B",
33 "body" : "C"
34 }

35 }

36 }

Figure 5: User Intent Signature for sending e-mail on Windows Live Mail.

29

1 {

2 "TAG" : "FBCOMMENT",
3 "EVENT" : "ENTER",
4 "DOMAIN" : "www.facebook.com",
5 "COND" : {
6 "0" : {
7 "NAME" : "Write a comment...",
8 "CONT" : "EDIT"
9 },

10 "P-1" : {
11 "CONT" : "IMG"
12 }

13 },

14 "CAPTURE" : {
15 "A" : "0.value"
16 },

17 "TYPE" : "WEB",
18 "BIND" : {
19 "URL" : "www.facebook.com/ajax/ufi/add_comment.php",
20 "METHOD" : "POST",
21 "PARAMS" : {
22 "comment_text" : "A"
23 }

24 }

25 }

Figure 6: User Intent Signature for posting comments on Facebook Web-app.

negative number indicates the previous sibling at the distance). P and C refers to a parent

and a child, respectively.

For the UI Monitor, when an input comes, we iterate over all signatures that have an

EVENT field with the current input, and check the UI tree-structure conditions to determine

whether current input triggers traffic or not. If it does, as our workflow goes, the required

data will be sent to Central Control to generate an authorization vector.

The Network Monitor also uses this signature for determining whether the current packet

is monitored or not. The TYPE field specifies the monitored protocol. Its value can be a

protocol name (e.g., SMTP for e-mail client and WEB for web-apps). Since network monitor

only traps some transactions for each protocol, to bind a signature to a certain transaction, we

use the METHOD field under BIND to specify the desired transaction for non-web protocols 8,

and both the METHOD and the URL 9 fields are used for web-apps (METHOD is for distinguishing

8 We assigned natural names for each operation. The line "METHOD" : "SEND" in Figure 5 means that the
signature should only monitor the sending operation in the SMTP protocol.

9 Similar to the remote procedure call, a URL in a web-app is analogous to invoking a function on the host,
so a URL can indicate a particular transaction.

30

GET and POST messaging in web-apps).

Specifying User-Intended Text. The User Intent Signature is also responsible for

indicating which text boxes correspond to the user’s intent, for generating authorization

vectors. With the UI Monitor, it uses the CAPTURE field to indicate text boxes that contain

user-intended text. In this field, the left-side key value is assigned alphabetically to simplify

text matching in for network packets, and the right-side indicates the location of the target

text box on the UI tree-structure and any required properties for it. According to this

information, the UI Monitor transmits a unique identifier of target text boxes to the Central

Control, and then the Central Control extracts a user verified text from the Secure Overlay,

and then the Central Control finally creates an authorization vector. The vector will be in a

form that can be reconstructed within the Network Monitor.

For the Network Monitor, it refers to the PARAMS field to extract content from the packet.

The left-side key value for this is a natural name for the stand-alone protocol or the URL

parameter for web-apps. The right-side value has an alphabet value that is previously

assigned in the CAPTURE field, which is used to link captured text boxes to each parameter

within the current packet. Since an authorization vector is created with the knowledge of the

PARAMS field, the Network Monitor can reconstruct the correct vector using only this packet

and signature data. After reconstructing the vector, we query the authorization DB to check

for proof of previously established user intent.

2.5 Application Case Studies

In this section, we will present our experience in using GYRUS to protect existing applications.

Our experiments cover traditional, stand-alone applications as well as web applications.

For stand-alone applications, we studied how to apply GYRUS to Windows Live Mail and

Digsby (an instant messaging client). For web applications, we picked the following from

the top 25 sites according to Alexa [3]: GMail, Facebook and Paypal, and for our studies,

we assume these web applications are accessed using Microsoft Internet Explorer 10. We

31

argue that these applications represent some of the most important ones in daily life. We

base this argument on the Pew Internet survey called “What Internet Users Do On A Typical

Day” [130], which lists sending/reading emails, using online social networking, doing online

banking, and sending instant messages among the 20 things most people do on a daily basis.

We also observe that the remaining of the listed popular activities mostly involve users

getting information from the Internet, and does not require the transmission of any user

generated content, and thus are not the target for GYRUS protection.

The focus of the following discussion is on how we can specify the per-application

logic necessary for GYRUS protection for each of the target applications using a User Intent

Signature. We believe our experience shows that the User Intent Signature language makes

this task very manageable.

Constructing User Intent Signature. Construction of a User Intent Signature is two

folded as GYRUS decouples capturing of the user intent and monitoring of the network

traffic. The UI part of the signature can be constructed intuitively. First, we arrange the UI

as it would be used for composing user-generated content. Then we identify an input event

that triggers traffic and the associated text boxes that contain user-intended text through a

visual inspection of the UI. Next, with the help of a tool called inspect.exe from the UI

Automation library, we can identify the tree-structure and other details of the UI. Finally, this

information is used to construct the definition distinguishing the application that receives

input events.

The second part, the network side, requires an understanding of the underlying protocol

that the application uses for network communication. In particular, we need to identify

which traffic we should intercept for monitoring, and discover how the user-intended text is

formatted within the packet. In this section, we provide examples of applications that can

be protected by GYRUS, and we demonstrate how the User Intent Signature simplifies the

process for supporting a new application.

32

2.5.1 Windows Live Mail

Application Specification. Windows Live Mail is a stand-alone email client, and the focus

of our experiment is to use GYRUS to make sure that any outgoing e-mail messages (i.e.,

through SMTP) are intended by the user. The user interacts with a compose window to write

a message. The window has a Send button that user will click when the user decides to send

the message. And there are several text boxes reserved for a list of recipients (e.g., To, Cc,

etc.), and the message Subject. Finally, the window has a rich text pane at the bottom, to

compose the content of the message.

Event and Intended Text. The traffic will be generated after the user clicks the Send

button. On the event, GYRUS will extract user-intended texts from the To, Subject, and the

message body text pane.

Network Traffic Specification. Outgoing traffic will be sent through the SMTP protocol,

and we are specifically interested in the portion of the SMTP exchange responsible for

sending a message. All user-generated text will directly be shown as the same text in the

traffic, and GYRUS will extract each field to query to the Authorization DB.

Constructing Signature. We show the signature for this application in Figure 5. The

input event that triggers traffic creation is pressing the Send button. So we set the EVENT

field to LCLICK. To distinguish the application window, we set WINDOW field to the classname

of the e-mail composing window, which is ATH_Note in this case. To improve the event

condition that detects the application, we list all UI objects that are required to capture user

intent in COND section. Starting from the event receiving object, the Send button, the text

box for recipients is the second sibling, and the text box for the subject is the third sibling.

So we mark them as +2, +3, respectively. Locating the rich text pane used for the message

also requires tree-traversal. In our scheme, it is located at P-1CCCCCCCCC. Since we need to

capture the contents of all text boxes and the pane, in the CAPTURE field, we assign temporary

variables to each UI object as A, B, and C.

33

For the network monitor, we set the protocol by assigning SMTP in the TYPE field, and

SEND in the METHOD field, and bind each of the variables assigned during the CAPTURE stage

to protocol specific variables.

2.5.2 Digsby: Yahoo! Messenger & Twitter

Application Specification. Digsby is a stand-alone client for accessing multiple instant

messengers and online social network services within one application. In our experiments,

we focus on using GYRUS to protect the outgoing communication to Yahoo Messenger and

Twitter. Communications to other messengers/online social network services can easily be

covered as long as we have the corresponding proxy for handling the network traffic. We

would simply require one user intent signature for each supported protocol. For both Yahoo

Messenger and Twitter, Digsby provides a simple GUI. The user interacts with a messaging

dialog window, which has a text box for the message at the bottom. After typing a text

message, the user can send the message by pressing the ENTER key while still focused in the

message text box.

Event and Intended Text. The traffic will be generated after pressing the ENTER key. At

this time, GYRUS will extract user-intended text from the message text box at the bottom of

the dialog.

Network Traffic Specification. For Yahoo Messenger, outgoing traffic will be sent

through the Yahoo! Messenger (YMSG) protocol. Similar to the e-mail case, we are only

interested in the portion of the protocol that contains the message. The user-intended text

will be encapsulated with HTML tags for formatting, so GYRUS will extract the text and

then query the authorization DB. For Twitter, Digsby will communicate with its server

through an HTTP REST API. The network monitor needs to watch for POST requests to

https://api.twitter.com/1/statuses/update.json. In this case, the user-intended

text will be encoded with URL encoding, so the extracted text will be queried to the

authorization DB after proper decoding.

34

https://api.twitter.com/1/statuses/update.json

Constructing Signature. Pressing the ENTER key after typing a message triggers out-

going network traffic. Looking up the class name of the dialog window, Digsby uses

wxWindowClass for Yahoo Messenger and wxWindowClassNR for Twitter. To improve the

event conditions of the UI structure, in addition to checking whether current input is deliv-

ered to the text box for a message, we also check if it has a pane object as its siblings. Since

we need to capture user-intended text from the message text box, we assign the variable A

to it for the CAPTURE field. On the network side, we set the protocol type as YMSG and WEB

respectively. We set the METHOD field as SEND for YMSG, and POST for Twitter. Variable A

for the intended text will be bound to a variable called message in YMSG, and status for

Twitter.

2.5.3 Web-App: GMail

Application Specification. The workflow of GMail is very similar to that of Windows

Live Mail. It has a Send button on top of the compose screen10, along with To, Subject, and

the message pane.

Network Traffic Specification. On clicking the Send button, an e-mail message will

be sent through a POST method URL https://mail.google.com/mail. The GMail

application accesses the URL for multiple purposes, however, the URL only serves for

sending an e-mail message when the URL set with a URL parameter act=sm. The user-

intended text is transmitted in the to, subject, and body parameters of the POST request.

Constructing Signature. Because the left-click on the mouse is the traffic-triggering

event, we set the EVENT field as LCLICK. For the application UI condition, we use the

domain name mail.google.com as a window identifier, along with the relative positions

of text boxes to the Send button. For the network traffic, the trap condition is the URL

https://mail.google.com/mail with parameter condition act=sm. At the Network

Monitor, UI variables in the CAPTURE field will be matched with POST parameters named

10 We ran GYRUS with the old version of GMail composing UI, which was available until July 2013.

35

https://mail.google.com/mail
https://mail.google.com/mail

to, subject and body.

2.5.4 Web-App: Facebook

Application Specification. We focus on three transactions in the Facebook application:

posting a status update, posting a comment, and sending a message. For the status update,

the user types a message in the text box and clicks the Post button. This is similar to the

e-mail applications. For adding a comment and sending a message, the user presses the

ENTER key after composing her message, which is analogous to the Digsby example.

Network Traffic Specification. For the status updates, traffic goes to https://www.

facebook.com/ajax/updatestatus.php, and the user-intended text is transmitted in the

POST variable xhpc_message_text. Adding a comment goes to https://www.facebook.

com/ajax/ufi/add_comment.php, and the user-intended text is transmitted in the POST

variable comment_text. Finally, sending a message goes to https://www.facebook.

com/ajax/mercury/send_messages.php, and the user-intended text is transmitted in

the POST variable message_batch[0][body].

Constructing Signature. The traffic-triggering event is LCLICK for status updates, and

ENTER for the others. Identifying the application and expected transaction for each event

is challenging because all three transactions are done in the same window so we cannot

distinguish each transaction using only the domain name. Therefore we can distinguish each

transaction using additional UI structure checks. We link camera, location, and emoticon

menu icons as siblings for distinguishing status update, link profile image and the shadow

text “Write a comment” for adding a comment, and link an icon name with “Add more

friends to chat” and conversation history objects as siblings for sending a chat message.

2.5.5 Web-App: Paypal

Application Specification. Using GYRUS with Paypal enables a validation of the integrity

of the amount of money sent to someone. On the “transferring money” page, after he types

36

https://www.facebook.com/ajax/updatestatus.php
https://www.facebook.com/ajax/updatestatus.php
https://www.facebook.com/ajax/ufi/add_comment.php
https://www.facebook.com/ajax/ufi/add_comment.php
https://www.facebook.com/ajax/mercury/send_messages.php
https://www.facebook.com/ajax/mercury/send_messages.php

the username or e-mail address of the recipient and the amount of money to transfer in

the text boxes, the user clicks the Continue button to send the money. The workflow is

analogous to our e-mail examples, with the primary difference being that the message is the

amount of money to be transferred in this case.

Network Traffic Specification. After clicking the Continue button, the traffic will be

sent to https://www.paypal.com/us/cgi-bin/webscr if its POST parameter has the

following value: cmd=_flow. The user-intended text will be placed in the POST parameters,

email and amount.

Constructing Signature. The event is set to LCLICK, and the application condition will

check domain www.paypal.com and whether the UI tree-structure has all participating

text boxes as siblings. The traffic trap condition for the Network Monitor should be set

as https://www.paypal.com/us/cgi-bin/webscr, and its POST parameter named

cmd=_flow. Finally, variables for captured text for the amount of money and the recipient

will be linked to the POST parameters amount and email, respectively.

2.5.6 Discussions

In cases where multiple applications use the same protocol, we need one User-Intent

Signature for each application using that protocol. While this may seem a lot of work,

defining the correct behavior of applications of interest is still much more scalable than

endlessly (re)modeling (new) attack/malware behavior.

As we’ve shown in the examples above, the language we have devised not only allows

us to support new applications easily but it also cleanly separates the per-application logic

from the core GYRUS framework. With this language, the process of specifying the User

Intent Signature for an application only requires knowledge about the UI (and the structure

of the UI object tree exposed by the UI Automation library for that application, which can

be obtained using standard tools like Inspect [119] from Microsoft) and some knowledge

about the network protocol used by the application, but no further details about the internals

37

https://www.paypal.com/us/cgi-bin/webscr
https://www.paypal.com/us/cgi-bin/webscr

Table 1: List of activities where Gyrus can help to protect the corresponding network transactions,
from the survey ‘What Internet Users Do Online [131]’, by Pew Research Center.

Activity % of Users

Send or read e-mail 88
Buy a product 71
Use a social networking site 67
Buy or make a reservation for travel 65
Do any banking online 61
Send instant messages 46
Pay to access or download digital content 43
Post a comment to online news groups 32
Use Twitter 16
Buy or sell stocks, bonds, or mutual funds 11

of the application (as compared to if we used VM introspection techniques to extract user

intent).

Although it is easy to construct a signature for supporting a new application, managing a

large collection of signatures could cause overhead. However, we argue that its overhead is

far less than that of traditional IDS and anti-virus software. While traditional approaches

require following up all newly discovered attacks, GYRUS defines user-intended, correct

system behaviors and is therefore attack-agnostic.

The term attack-agnostic here does not mean that GYRUS is immune to all kinds of

attacks. GYRUS only makes assumptions about the attacker’s goal, but not how they achieve

this goal. That is, once a user intent signature is defined, no matter how the attack evolves,

the protection mechanism of GYRUS still works. In this work, we focus on protecting

the integrity of text content that is typed by the user, while other kinds of attacks such as

confidentiality of data are out of scope.

Regarding application support, GYRUS can generally support any application that sends

user-generated text content from the monitored host, if its network traffic has a direct or

simple mapping with on-screen text content. Table 1 shows the result of a survey that

indicates what typical users are doing on the Internet, done by Pew Internet. According to

38

the survey results, 88% of users send e-mail, 67% of them send their text content to online

social network (OSN) sites, and 61% of users use online banking. Moreover, all activities

listed in Table 1 can be supported by GYRUS. Clearly, GYRUS can protect a significant

portion of day-to-day user activities on the Internet and can have a large impact on security.

While the focus of GYRUS is text-based applications, it can be easily extended to handle

image/video attachments. In particular, GYRUS can adopt Access Control Gadgets [133]

to capture the user’s intent to attach a particular file, compute a checksum of that file and

have our network proxy match any attached file against the checksum. The only way this

mechanism would fail is when an attacker/malware knows a priori which file the user will

attach and changes it in advance, which we consider being unrealistic.

One limitation of GYRUS is that it cannot protect an application where the user-intended

text is represented in a proprietary format or in some complicated encoding on the traffic.

At least, not without significantly more effort to reverse engineer the format. This can be a

problem when extending GYRUS to more general transactions such as writing data on the

filesystem. There have been recent and promising advances in verifiable computation and

tools such as probabilistically checkable proofs (PCP) and fully-homomorphic encryption

(FHE) are becoming practical. When these technologies come to practice, GYRUS can verify

if the result of the traffic is actually from the user-intended input, by running application

logic along with these computation proof mechanisms.

Additionally, for applications with complex encodings mentioned above, we believe that

it would be possible to have GYRUS perform the slightly more complicated transformation

on the captured user intent and match the result with the outgoing traffic. Though we

should be careful not to expand the TCB too significantly, adding the support of the specific

transformations of some of the most popular applications should be quite doable.

In our threat model, GYRUS only protects the integrity of the text based on a user’s

intent, and it does not protect confidentiality. An attacker could steal a user’s credentials

(e.g., Cookie and ID/Password), and then perform protected transactions on a different

39

host without GYRUS protections. Thus, GYRUS works better when the host is equipped

with Hardware Security Module (HSM) such as Trusted Platform Module (TPM) and a

Smartcard, and the server-side of the application supports mutual authentication. However,

while we consider the defense against stealing credential to be out of scope, we would point

out that this problem can be solved by using GYRUS. The way is, in the dom-0, GYRUS can

intercept and modify the password that the user has just entered (and so malware in dom-U

can only get the incorrect password), and correct the subsequent outgoing traffic for the

actual login to use the unmodified, correct password.

Finally, like any other system that tries to model benign behavior, GYRUS is vulnerable to

false positives caused by errors in the user intent signatures (false negatives are also possible,

but should be a lesser concern, as we will argue in the next section). However, false positives

only happen when we fail to specify in our signatures some of the user actions that signifies

the intent to generate outgoing traffic, or if our signatures specify a wrong way for capturing

user intent. We believe both scenarios should be rare because an application should not have

too much variance in its UI nor should it provide too many ways for performing the same

operation for the sake of application’s usability. Similarly, the correctness of the way we

capture user intent for an application should be easy to establish with simple testing, and

this should suffice to guarantee that we will continue to capture user intent correctly unless

the application changes its UI (which, again, for usability reasons, is less likely to happen).

2.6 Evaluation

In this section, we present the results of our evaluation of the security, usability, and

performance of GYRUS when using it to protect the applications studied in §2.5.

2.6.1 Security

New security frameworks should be secure against both current and future attacks. Here, we

consider both scenarios for GYRUS by running existing attack samples and by analyzing the

framework’s security properties.

40

Resilience Against Existing Attacks. GYRUS is attack-agnostic by design, however,

to demonstrate that we implemented the system correctly, we tested GYRUS’ ability to

stop attacks against the specific applications discussed in §2.5. For Windows Live Mail,

we executed Win32:MassMail-A, a mail spammer malware, while the mail client is under

GYRUS’ protection. The dom-0 network monitor successfully catches and blocks all out-

going SMTP traffic generated by the malware. For Yahoo! Messenger protocol, we ran

ApplicUnwnt.Win32.SpamTool.Agent. BAAE, a messenger spamming malware. GYRUS

blocks all of the messages generated by this malware. For Facebook, we executed a com-

ment spamming malware, TROJ_GEN.RFFH1G1, and it has no success in sending out attack

traffic. We have also tested the effectiveness of GYRUS against Javascript-based attacks (like

XSS, CSRF) targeting web applications. In particular, we injected forged Javascript code

that automatically submits malicious content into the GMail, Facebook and Paypal pages.

In all cases, GYRUS successfully blocked all malicious traffic from these attacks. Finally,

for each tested application, we tried to perform the normal operations protected by GYRUS

with the corresponding attacks running in the background. In each case, Gyrus allows the

legitimate, user generated traffic to go through while stopping all attacks.

Resilience Against Future Attacks. Next, we will evaluate how well GYRUS can handle

future attacks designed against it. All security guarantees will be void if assumptions in

our threat model are violated. However, we believe those are standard assumptions widely

accepted by the security community. Thus we will not discuss violations of the assumptions.

However, we do note that even though existing hypervisors are becoming more complicated,

it is possible – and, in fact, encouraged – to build custom hypervisors or security operating

systems for use with GYRUS to achieve higher assurance [96, 35, 162].

The next avenue for attack is the UI monitor that runs in the untrusted dom-U. However,

we believe GYRUS is quite robust against errors in the UI monitor. First of all, because

of the protections provided by the Secure Overlay, attackers are limited to misplace user-

generated, albeit unintended content in traffic allowed by GYRUS (e.g., switching the subject

41

and content of an email message, take user’s comment to one story on Facebook as his/her

outgoing comment on another story, etc.). Secondly, our policy of only displaying (on

the overlay) the content of the window which currently has focus, the mistakenly sent

out content must be from the “correct” application. Additionally, we believe that we can

further harden GYRUS against such attacks by specifying a restriction on the position of the

content to be sent out in relation to the event that triggers the outgoing traffic (e.g., the text

displayed on the overlay cannot be too far away from the coordinate of the mouse click).

A compromised UI monitor can also mislead GYRUS to believe a mouse click signifies the

user’s intent to send out something (i.e. stealing a click). However, once again thanks to

the Secure Overlay, the unintended outgoing traffic will have its content entirely entered by

the user (i.e., this could cause a premature output of the content). Therefore, the attacker

will have very little control over what is sent. Finally, we believe that our policy concerning

what kind of update to text boxes the UI monitor can report provides very good protection

to data that are currently off-screen.

Similarly, poorly written user intent signatures can be problematic. However, thanks

to the use of the Secure Overlay, we believe problems with a user intent signature are

limited to mistaking hardware events as user intent to send something and will have the

same adverse effect as a misbehaving UI monitor stealing a click. In conclusion, we believe

the Secure Overlay (and the WYSIWYS policy) leaves an attacker with very limited options

for attacking GYRUS. Anything sent out by a protected application using a targeted protocol

must be typed, and seen by the user. All the attacker can do is to use content intended for

one purpose (under the same application) for another, and the cases where this can cause a

user any real harm should be very rare.

2.6.2 Usability

From our experience of protecting the applications studied in §2.5, GYRUS has no noticeable

effect on their usability. In GYRUS, user-interaction is mediated by the internal components

42

of GYRUS: Input handler and Secure Overlay. For interposing user input before delivering it

to the application, GYRUS does not incur noticeable delay (see Table 2.6.3 for the evaluation

results).

Since GYRUS only overlays text boxes in our target applications, it will not change the

user’s workflow or the look-and-feel of the other parts of the application. Furthermore,

GYRUS displays (on the secure overlay) text with the same font face, size, and color as

the underlying application. Finally, we have confirmed that the edit box drawn by GYRUS

supports not only simple text editing like typing, selection, and copy & paste, but also

application-specific text editing features like auto-completion and spelling correction. So

we are confident that GYRUS will not affect the user’s experience with the application

being monitored. Furthermore, since GYRUS only checks (and potentially blocks) traffic

that perform specific actions under specific protocols of interest 11, our experience shows

that GYRUS does not interfere with background networking programs such as BitTorrent

and RSS feeds. GYRUS can also handle scheduled jobs that have a time gap between a

user’s interaction and the resulting generation of network traffic, thanks to our use of the

Authorization DB for the capturing of user intent from the actual inspection of traffic. For

example, in the case of an e-mail application, if the system has no connectivity to the

Internet, the mail will be queued on the scheduler, and later this scheduler will generate

network traffic when connectivity is re-established. Our experiments show that GYRUS can

handle this situation correctly and allow the delayed email as a user would expect.

2.6.3 Performance

In this section, we present our results of measuring the two kinds of delay that GYRUS can

cause: delay in processing user input through the keyboard/mouse and delay in sending out

network traffic. We performed all the experiments presented in this section on a commodity

laptop: a Lenovo Thinkpad-T520, equipped with a dual-core Intel Core i5 2520m and 8GB

11 For example, GYRUS only checks HTTP traffic for sending emails under GMail, but not that for reading
emails.

43

Table 2: Latency introduced by Gyrus while processing the input. The data for user-interaction was
collected during the use case evaluation.

Actions Average STDV Median Max

Typing 39ms 21ms 34ms 128ms
ENTER 19ms 6ms 17ms 43ms
LCLICK 43ms 15ms 41ms 79ms
Focus Change 21ms 19ms 17ms 158ms
Move & Resize 21ms 16ms 16ms 85ms

of RAM. The dom-U runs 3 logical cores with 7GB of RAM, while dom-0 has 1 logical

core and 1GB of RAM.

Interaction Overhead. In the worst case, the user will experience the following delay for

every keyboard/mouse input:

• The Central Control will need to query the UI monitor in dom-U to see if this event

signifies the user’s intent to send out something.

• The Secure Overlay will have to wait for the UI monitor to provide any information

about how this input changes the display.

Both of these will add to the time from the user press a key/click to mouse to when he/she

can see the effect of his/her input on the secure overlay.

To determine if this turn around time for processing user input under GYRUS is still in

acceptable range, we performed the following study:

• First, we typed a document without generating any input that signifies an intent to

send out network traffic, and measured the time from the Central Control first observe

each input to the time the Secure Overlay is updated to reflect the input.

• Second, we measured the same turn around time for mouse events that result in focus

change, resize and movement of the window of a target application.

• Finally, we also measured the time needed for the UI monitor to confirm that an input

event signifies user intent to send out traffic.

Table 2 shows the results of our experiments. To provide some context for interpreting the

44

Table 3: Network latency for HTTP connections.

Cases KVM Gyrus Overhead

Single (A) 101.7ms 102.3ms +0.6ms (.5%)
Single (B) 31.20ms 32.30ms +1.1ms (3.5%)
Web Page 897.5ms 951.3ms +53.8ms (6%)
Download 51.1MB/s 49.3MB/s –1.8MB/s (3.5%)

results, we note that prior research suggests that acceptable range of such turn around time

for interaction with the human is 50-150ms [145]. Thus, our experiments show that on

average case, users can smoothly interact with a system protected by GYRUS.

Network Latency. We have also measured the network latency caused by GYRUS (as

compared to the system that runs KVM without GYRUS) for three different cases:

• The time to establish an HTTP connection (and we used two test sites),

• The time to load a web page with dynamic content, measured by The Chromium’s

Page Benchmark extension [149],

• The effective bandwidth of a system, obtained by measuring the time to download a

550MB disk image from the Debian repository through HTTP.

To measure the overhead introduced by our Man-In-The-Middle (MITM) proxy for

HTTPS connections, we did two tests:

• Download 15KB of web-page data from a public website, and

• Download a 32MB file from a remote HTTPS server.

We repeated all experiments for ten times, and Table 3 and Table 4 shows the average results

of the experiments.

Comparing the results from a KVM Guest versus GYRUS running on it, GYRUS only

introduces around 1 ms of single response delay, less than 6% (53.8 ms) of delay for web

page loading, and less than 4% overhead on the network bandwidth, for HTTP connection.

For HTTPS, there exists CPU time overhead from an additional connection per each session

for MITM on establishing, encrypting, and decrypting the contents. From our experiment,

45

Table 4: Network latency for HTTPS connections (with Man-In-The-Middle proxy).

Cases KVM Gyrus Overhead

Single Request 90.72ms 94.50ms +3.78ms (4%)
Download 37.40MB/s 35.23MB/s –2.17MB/s (5.8%)

it incurs 4 ms of delay on getting access to a single webpage data, and adds less than 6%

of bandwidth overhead on downloading of file content. Evaluation results for the network

latency show that GYRUS has very little overhead, at worst 6% on both bandwidth and

loading a webpage.

2.7 Summary

In this chapter, we introduced the GYRUS framework and showed how it can be used

to distinguish between human and malware generated network traffic for a variety of

applications. By combining the secure monitoring of hardware events with an analysis

leveraging the accessibility interface within dom-U, we linked human input to observed

network traffic and used this information to make security decisions. Using GYRUS, we

demonstrated how to stop malicious activities that manipulate the host machine to send

malicious traffic, such as spam, social network impersonation attacks, and online financial

services fraud. Our evaluation demonstrated that GYRUS successfully stops modern malware,

and our analysis shows that it would be very challenging for future attacks to defeat it. Finally,

our performance analysis shows that GYRUS is a viable option for deployment on desktop

computers with regular user interaction. GYRUS fills an important gap, enabling security

policies that consider user intent in determining the legitimacy of network traffic.

46

CHAPTER III

MIMESIS AEGIS: A MIMICRY PRIVACY SHIELD

3.1 Motivation

A continuously increasing number of users now utilize mobile devices [151] to interact

with public cloud services (PCS) (e.g. Gmail, Outlook, and WhatsApp) as an essential part

of their daily lives. While the user’s connectivity to the Internet is improved with mobile

platforms, the problem of preserving data privacy while interacting with PCS remains

unsolved. In fact, news about the US government’s alleged surveillance programs reminds

everybody about a very unsatisfactory status quo: while PCS are essentially part of everyday

life, the default method of utilizing them exposes users to privacy breaches, because it

implicitly requires the users to trust the PCS providers with the confidentiality of their data.

But such trust is unjustified, if not misplaced. Incidents that demonstrate a breach of this

trust is easy to come by:

• PCS providers are bound by law to share their users’ data with surveillance agen-

cies [28],

• it is the business model of the PCS providers to mine their users’ data and share it

with third parties [15, 2, 17, 51],

• operator errors [43] can result in unintended data access, and

• data servers can be compromised by attackers [74].

To alter this undesirable status quo, solutions should be built based on an updated trust

model of everyday communication that better reflects the reality of the threats mentioned

above. In particular, new solutions must first assume PCS providers to be untrusted. This

assumption implies that the PCS providers control all other entities, including the apps that

users installed to engage with the PCS, must also be assumed untrusted.

47

Although there are a plethora of apps available today that come in various combinations

of look and feel and features, we observed that many of these apps provide text commu-

nication services (e.g. email or private/group messaging categories). Users can still enjoy

the same quality of service1 without needing to reveal their plaintext data to PCS providers.

PCS providers are essentially message routers that can function normally without needing to

know the content of the messages being delivered, analogous to postmen delivering letters

without needing to learn the actual content of the letters.

Therefore, applying end-to-end encryption (E2EE) without assuming trust in the PCS

providers seems to solve the problem. However, in practice, the direct application of

E2EE solutions onto the mobile device environment is more challenging than initially

thought [160, 142]. A good solution must present clear advantages to the entire mobile

security ecosystem. In particular it must account for these factors: 1) the users’ ease-of-use;

hence acceptability and adoptability; 2) the developers’ efforts to maintain support; and 3)

the feasibility and deployability of the solution on a mobile system.

From this analysis, we formulate three design goals that must be addressed coherently:

1. For a solution to be secure, it must be properly isolated from untrusted entities. It is

evident that E2EE cannot protect data confidentiality if plaintext data or an encryption

key can be compromised by architectures that risk exposing these values. Traditional

solutions like PGP [148] and newer solutions like Gibberbot [61], TextSecure [126],

and SafeSlinger [52] provide good isolation, but force users to use custom apps, which

can cause usability problems (refer to (item 2)). Solutions that repackage/rewrite

existing apps to introduce additional security checks [166, 20] do not have this property

(further discussed in §3.2). Solutions in the form of browser plugins/extensions also

do not have this property (further discussed in §3.2), and they generally do not fit

into the mobile security landscape because many mobile browsers do not support

extensions [32], and mobile device users do not favor using mobile browsers [22]

1 the apps’ functionalities and user experience are preserved

48

to access PCS. Therefore, we rule out conventional browser-plugin/extension-based

solutions.

2. For a solution to be adoptable, it must preserve the user experience. We argue that

users will not accept solutions that require them to switch to different apps to perform

their daily tasks. Therefore, simply porting solutions like PGP to a mobile platform

would not work, because it forces users to use a separate and custom app, and it

is impossible to recreate the richness and unique user experience of all existing

text routing apps offered by various PCS providers today. In the context of mobile

devices, PCS are competing for market share not only by providing more reliable

infrastructure to facilitate user communication but also by offering a better user

experience [83, 141]. Ultimately, users will choose apps that feel the most comfortable.

To reduce interference with a user’s interaction with the app of their choice, security

solutions must be retrofittable to existing apps. Solutions that repackage/rewrite

existing apps have this criterion.

3. For a solution to be sustainable, it must be easy to maintain and scalable: the solution

must be sufficiently general-purpose, require minimal effort to support new apps,

and withstand app updates. In the past, email was one of the very few means of

communication. Protecting it is relatively straightforward because email protocols

(e.g. POP and IMAP) are well defined. Custom privacy-preserving apps can therefore

be built to serve this need. However, with the introduction of PCS that are becoming

indispensable in a user’s everyday life, a good solution should also be able to integrate

security features into apps without requiring reverse engineering of the apps’ logic

and/or network protocols, which are largely undocumented and possibly proprietary

(e.g. Skype, WhatsApp, etc.).

This chapter introduces Mimesis Aegis (M-AEGIS), a privacy-preserving system that

mimics the look-and-feel of existing apps to preserve their user experience and workflow

49

on mobile devices, without changing the underlying OS or modifying/repackaging existing

apps. M-AEGIS achieves the three design goals by operating at a conceptual layer we call

Layer 7.5 (L-7.5) that is positioned above the existing application layer (OSI Layer 7 [82]),

and interacts directly with the user (popularly labeled as Layer 8 [92, 53]).

From a system’s perspective, L-7.5 is a transparent window in an isolated process that

interposes itself between the Layer 7 and 8. The interconnectivity among these layers is

achieved using the accessibility framework, which is available as an essential feature of

modern operating systems. Note that utilizing accessibility features for unorthodox purposes

have been proposed by prior works [129, 85] that achieve different goals. L-7.5 extracts the

GUI information of an app below it through the OS’s user interface automation/accessibility

(UIA) library. Using this information, M-AEGIS is then able to proxy user input by rendering

its own GUI (with a different color as a visual cue) and subsequently handle those input

(e.g., to process plaintext data or intercept user button click). Using the same UIA library,

L-7.5 can also programmatically interact with various UI components of the app below on

behalf of the user (refer to Figure 3.3.3 for more details). Since major software vendors

today have pledged their commitment towards continuous support and enhancement of

accessibility interface for developers [117, 9, 68, 5], our UIA-based technique is applicable

and sustainable on all major platforms.

From a security design perspective, M-AEGIS provides two privacy guarantees during

a user’s interaction with a target app: 1) all input from the user first goes to L-7.5 (and is

optionally processed) before being passed to an app. This means that confidential data and

user intent can be fully captured; and 2) all output from the app must go through L-7.5 (and

is optionally processed) before being displayed to the user.

From a developer’s perspective, accessing and interacting with a target app’s UI compo-

nents at L-7.5 is similar to that of manipulating the Document Object Model (DOM) tree of

a web app using JavaScript. While the DOM tree manipulation only works for browsers,

UIA works for all apps on a platform. To track the GUI of an app, M-AEGIS relies on

50

Figure 7: This diagram shows how M-Aegis uses L-7.5 to transparently reverse-transform the
message “deadbeef” into “Hi there”, and also allows a user to enter their plaintext message “Hello
world” into M-Aegis’s text box. To the user, the GUI looks exactly the same as the original app.
When the user decides to send a message, the “Hello world” message will be transformed and relayed
to the underlying app.

resource ID names available through the UIA library. Therefore, M-AEGIS is resilient to

updates that change the look and feel of the app (e.g. GUI position or color). It only requires

resource id names to remain the same, which, through empirical evidence, often holds true.

Even if a resource id changes, minimal effort is required to rediscover resource id names

and remap them to the logic in M-AEGIS. From our experience, M-AEGIS does not require

developer attention across minor app updates.

From a user’s perspective, M-AEGIS is visible as an always-on-top button. When it is

turned on, users will perceive that they are interacting with the original app in plaintext

mode. The only difference is the GUI of the original app will appear in a different color to

indicate that protection is activated. This means that M-AEGIS preserves subtle features that

contribute towards the entire user experience such as spell checking and in-app navigation.

However, despite user perception, the original app never receives plaintext data. Figure 7

gives a high-level idea of how M-AEGIS creates an L-7.5 to protect user’s data privacy when

interacting with Gmail.

51

For users who would like to protect their email communications, they will also be

concerned if encryption will affect their ability to search, as it is an important aspect of

user productivity [159]. For this purpose, we designed and incorporated a new searchable

encryption scheme named easily-deployable efficiently-searchable symmetric encryption

scheme (EDESE) into M-AEGIS that allows search over encrypted content without any

server-side modification. We briefly discuss the design considerations and security concerns

involved in supporting this functionality in Figure 3.3.3.

As a proof of concept, we implemented a prototype M-AEGIS on Android that protects

user data when interfacing with text-based PCS. M-AEGIS supports email apps like Gmail

and messenger apps like Google Hangout, WhatsApp, and Facebook Chat. It protects data

privacy by implementing E2EE that passes no plaintext to an app while also preserving the

user experience and workflow. We also implemented a version of M-AEGIS on the desktop

to demonstrate the generality of our approach. Our initial performance evaluation and user

study show that users incur minimal overhead in adopting M-AEGIS on Android. There is

imperceptible encryption/decryption latency and a low and adjustable false positive rate

when searching over encrypted data.

In summary, these are the major contributions of this chapter:

• We introduced Layer 7.5 (L-7.5), a conceptual layer that directly interacts with users

on top of existing apps. This is a novel system approach that provides seemingly

contrasting features: transparent interaction with a target app and strong isolation

from the target app.

• We designed and built M-AEGIS based on the concept of L-7.5, a system that preserves

user privacy when interacting with PCS by ensuring data confidentiality. Essential

functionalities of existing apps, especially search (even over encrypted data), are also

supported without any server-side modification.

• We implemented two prototypes of M-AEGIS, one on Android and the other on

Windows, with support for various popular public cloud services, including Gmail,

52

Facebook Messenger, Google Hangout, WhatsApp, and Viber.

• We designed and conducted a user study that demonstrated the acceptability of our

solution.

3.2 Related Work

Since M-AEGIS is designed to achieve the three design goals described in §3.1 while

seamlessly integrating end-to-end encryption into user’s communication, we discuss how

well existing works achieve some of these goals and ow they differ from M-AEGIS. As far

as we know, no existing work achieves all the three design goals.

Standalone Solutions. There are many standalone solutions that aim to protect user

data confidentiality. olutions like PGP [148] (including S/MIME [47]), Gibberbot [61],

TextSecure [126], SafeSlinger [52], and FlyByNight [106] provide secure messaging and/or

file transfer through encryption of user data. These solutions provide good isolation from

untrusted entities. However, since they are designed as standalone custom apps, they do

not preserve the user experience and require users to adopt a new workflow on a custom

app. More importantly, these solutions are not retrofittable to existing apps on the mobile

platform.

Like M-AEGIS, Cryptons [45] introduced a similarly strong notion of isolation through

its custom abstractions. However, Cryptons assumes a completely different threat model

that trusts PCS, and requires both server and client (app) modifications. Thus, Cryptons

could not protect a user’s communication using existing messaging apps while assuming the

provider to be untrusted. We also argue that it is non-trivial to modify Cryptons to achieve

the three design goals that we mentioned in §3.1.

Browser Plugin/Extension Solutions. Other solutions that focus on protecting user

privacy include Cryptocat [98], Scramble! [17], TrustSplit [51], NOYB (None of Your

Business) [71], and SafeButton [100]. Some of these assume different threat models and

achieve different goals. For example, NOYB protects a user’s Facebook profile data while

53

SafeButton tries to keep a user’s browsing history private. Most of these solutions try to

be transparently integrated into user workflow. However, since these solutions are mostly

based on browser plugins/extensions, they are not applicable to the mobile platform.

Additionally, Cryptocat and TrustSplit require new and independent service providers to

support their functionalities. However, M-AEGIS works with the existing service providers

without assuming trust or requiring modification to server-side communication.

Repackaging/Rewriting Solutions. There is a category of work that repackages/rewrites

an app’s binary to introduce security features, such as Aurasium [166], Dr. Android [87],

and others [20]. Our solution is similar to these approaches in that we can retrofit our

solutions to existing apps and still preserve user experience, but is different in that M-AEGIS’

coverage is not limited to apps that do not contain native code. Additionally, repackaging-

based approaches suffer from the problem that they will break app updates. In some cases,

attackers can circumvent the security of such solutions because the isolation model is unclear,

i.e., the untrusted code resides in the same address space as the reference monitor (e.g.,

Aurasium).

Orthogonal Work. Although our work focuses on user interaction on mobile platforms

with cloud providers, we assume a very different threat model than those that focus on

more robust permission model infrastructures and those that focus on controlling/tracking

information flow, such as TaintDroid [49] and Airbag [163]. These solutions require hanges

to the underlying app, framework, or the OS, but M-AEGIS does not.

Access Control Gadgets (ACG) [133] uses user input as permission granting intent to

allow apps to access user owned resources. Although we made the same assumptions as ACG

to capture authentic user input, the design of ACG aims to provide a different threat model

and security goal than ours. Furthermore, ACG requires a modified kernel but M-AEGIS

does not. Persona [13] presents a completely isolated and new online social network that

provides certain privacy and security guarantees to the users. While related, it differs from

the goal of M-AEGIS. Frientegrity [55] and Gyrus (in §2) focus on different aspects of

54

integrity protection of a user’s data. Tor [44] is well known for its capability to hide a user’s

IP address while browsing the Internet. However, it focuses on anonymity guarantees while

M-AEGIS focuses on data confidentiality guarantees. Off-the-record messaging (OTR) [25]

is a secure communication protocol that provides perfect forward secrecy and malleable

encryption. While OTR can be implemented on M-AEGIS using the same design architecture

to provide these extra properties, it is currently not the focus of our work.

3.3 System Design
3.3.1 Design Goals

In this section, we formally reiterate our design goals. We posit that a good solution must:

• Offer good security by applying strong isolation from untrusted entities (defined in

§3.3.2).

• Preserve the user experience by providing users transparent interaction with existing

apps.

• Be easy to maintain and scale by devising a sufficiently general-purpose approach.

Above all, these goals must be satisfied within the unique set of constraints found in the

mobile platform, including user experience, transparency, deployability, and adoptability

factors.

3.3.2 Threat Model

In-Scope Threats. We begin with the scope of threats that M-AEGIS is designed to protect

against. In general, there are three parties that pose threats to the confidentiality of users’

data exposed to public cloud through mobile devices. Therefore, we assume these parties to

be untrusted in our threat model:

• Public cloud service (PCS) providers. Sensitive data stored in the public cloud can be

compromised in several ways:

1. PCS providers can be compelled by law [1] to provide access to a user’s sensitive

55

data to law enforcement agencies [28];

2. The business model of PCS providers creates a strong incentive for them to

share/sell user data to third parties [15, 2, 17, 51];

3. PCS administrators who have access to the sensitive data may also compromise

the data, either intentionally [28] or not [43]; and

4. Vulnerabilities of the PCS can be exploited by attackers to exfiltrate sensitive

data [74].

• Client-side apps. Since client-side apps are developed by PCS providers to allow a

user to access their services, we consider these apps as untrusted.

• Middle boxes between a PCS and a client-side app. Sensitive data can also be

compromised when it is transferred between a PCS and a client-side app. Incorrect

protocol design/implementation may allow attackers to eavesdrop on plaintext data or

perform Man-in-the-Middle attacks [50, 14, 40].

M-AEGIS addresses the above threats by creating L-7.5, which it uses to provide end-to-

end encryption (E2EE) for user private data. We consider the following components as our

trusted computing base (TCB): the hardware, the operating system (OS), and the framework

that controls and mediates access to hardware. In the absence of physical input devices (e.g.,

mouse and keyboard) on mobile devices, we additionally trust the soft keyboard not to leak

the keystrokes of a user. We rely on the TCB to correctly handle I/O for M-AEGIS and to

provide proper isolation between M-AEGIS and untrusted components.

Additionally, we also assume that all the components of M-AEGIS, including L-7.5 that

it creates, are trusted. The user is also considered trustworthy under our threat model in

his intent. This means that he is trusted to turn on M-AEGIS when he wants to protect the

privacy of his data during his interaction with the PCS.

Out of Scope Threats. Our threat model does not consider the following types of attacks.

First, M-AEGIS only guarantees the confidentiality of a user’s data, but not its availability.

56

Therefore, attacks that deny access to data (denial-of-service) either at the server or the client

are beyond the scope of this work. Second, any attacks against our TCB are orthogonal to

this work. Such attacks include malicious hardware [95], attacks against the hardware [161],

the OS [88], the platform [154] and privilege escalation attacks (e.g., unauthorized rooting

of a device). However, note that M-AEGIS can be implemented on a design that anchors its

trust on trusted hardware and hypervisor (e.g. Gyrus [85] and Storage Capsules [24]) to

minimize the attack surface against the TCB. Third, M-AEGIS is designed to prevent any

direct flow of information from an authorized user to untrusted entities. Hence, leakages

through all side-channels [153] are beyond the scope of this work.

Since the user is assumed to be trustworthy under our threat model to use M-AEGIS

correctly, M-AEGIS does not protect the user against social-engineering-based attacks. For

example, phishing attacks to trick users into either turning off M-AEGIS and/or entering

sensitive information intounprotected UI components are beyond the scope of this work.

Instead, M-AEGIS deploys best-effort protection by coloring the UI components in L-7.5

differently from that of the default app UI.

The other limitations of M-AEGIS, which are not security threats, are discussed in

§3.6.2.

3.3.3 M-Aegis Architecture

M-AEGIS is architected to fulfill all of the three design goals mentioned in §3.3.1. Providing

strong isolation guarantees is first. To achieve this, M-AEGIS is designed to execute in a

separate process, though it resides in the same OS as the target client app (TCA). Besides

memory isolation, the filesystem of M-AEGIS is also shielded from other apps by OS app

sandbox protection.

Should a greater degree of isolation be desirable, an underlying virtual-machine-based

system can be adopted to provide even stronger security guarantees. However, we do not

consider such design at this time as it is currently unsuitable for mobile platforms, and the

57

Figure 8: The figure on the left illustrates how a user perceives the Gmail preview page when
M-Aegis is turned on. The figure on the right illustrates the same scenario but with M-Aegis turned
off. Note that the search button is painted with a different color when M-Aegis is turned on.

adoption of such technology is beyond the scope of this work.

The main components that make up M-AEGIS are as follows.

Layer 7.5 (L-7.5). M-AEGIS creates a novel and conceptual layer called Layer 7.5 (L-7.5)

to interpose itself between the user and the TCA. This layer allows M-AEGIS to implement

a true end-to-end encryption (E2EE) without exposing plaintext data to the TCA while

maintaining the TCA’s original functionalities and user experience, fulfilling the second

design goal. L-7.5 is built by creating a transparent window that is always-on-top. This

technique is advantageous in that it provides a natural way to handle user interaction, thus

preserving user experience without the need to reverse engineer the logic of TCAs or the

network protocols used by the TCAs to communicate with their respective cloud service

backends, fulfilling the third design goal.

There are three cases of user interactions to handle. The first case considers interactions

that do not involve data confidentiality (e.g., deleting or relabeling email). Such input does

not require extra processing/transformation and can be directly delivered to the underlying

58

TCA. Such click-through behavior is a natural property of transparent windows and helps

M-AEGIS maintain the look and feel of the TCA.

The second case considers interactions that involve data confidentiality (e.g., entering

messages or searching encrypted email). Such input requires extra processing (e.g., encryp-

tion and encoding operations). For such cases, M-AEGIS places opaque GUIs that “mimic”

the GUIs over the TCA, which are purposely painted in different colors for two reasons: 1)

as a placeholder for user input so that it does not leak to the TCA, and 2) for user visual

feedback. Mimic GUIs for the subject and content as seen in Figure 9 are examples of this

case. Since L-7.5 is always on top, this provides the guarantee that user input always goes

to a mimic GUI instead of the TCA.

The third case considers interactions with control GUIs (e.g. send buttons). Such input

requires user action to be “buffered” while the input from the second case is being processed

before being relayed to the actual control GUI of the TCA. For such cases, M-AEGIS creates

semi-transparent mimic GUIs that register themselves to absorb/handle user clicks/taps.

Again, these mimic GUIs are painted with a different color to provide a visual cue to a user.

Examples of these include the purple search button in the left figure in Figure 8 and the

purple send button in Figure 9. Note that our concept of intercepting user input is similar to

that of ACG’s [133] in capturing user intent, but our application of the user intent differs.

UIA Manager (UIAM). To be fully functional, M-AEGIS requires certain capabilities that

are not available to regular apps. First, although M-AEGIS is confined within the OS’ app

sandbox, it must be able to determine with which TCA the user is currently interacting.

This information allows M-AEGIS to invoke specific logic to handle the TCA, and helps

M-AEGIS clean up the screen when the TCA is terminated. Second, M-AEGIS requires

information about the GUI layout for the TCA it is currently handling. This information

allows M-AEGIS to accurately render mimic GUIs on L-7.5 to intercept user I/O. Third,

although isolated from the TCA, M-AEGIS must be able to communicate with the TCA to

maintain functionality and ensure user experience is not disrupted. For example, M-AEGIS

59

must be able to relay user clicks to the TCA, eventually send encrypted data to the TCA,

and click on TCA’s button on behalf of the user. For output on the screen, it must be able to

capture ciphertext so that it can decrypt it and then render it on L-7.5.

M-AEGIS extracts certain features from the underlying OS’s accessibility framework,

which are exposed to developers in the form of User Interface Accessibility/Automation

(UIA) library. Using UIA, M-AEGIS is not only able to know which TCA is currently

executing, but it can also query the GUI tree of the TCA to get detailed information about

how the page is laid out (e.g., location, size, type, and resource-id of the GUI components).

More importantly, it can obtain information about the content of these GUI items.

Exploiting UIA is advantageous to our design as compared to other methods of informa-

tion capture from the GUI, e.g., optical character recognition (OCR). Besides having perfect

content accuracy, our technique is not limited by screen size. For example, even though the

screen size may prevent full text to be displayed, M-AEGIS is still able to capture text in its

entirety through the UIA libraries, allowing us to apply decryption to ciphertext comfort-

ably. We thus utilize all these capabilities and advantages to build a crucial component of

M-AEGIS called the UIA manager (UIAM).

Per-TCA Logic. M-AEGIS can be extended to support many TCAs. For each TCA of

interest, we build per-TCA logic as an extension module. The per-TCA logic is responsible

for rendering the specific mimic GUIs according to information it queries from the UIAM.

Therefore, per-TCA logic is responsible for handling direct user input. Specifically, it

decides whether the user input will be directly passed to the TCA or be encrypted and

encoded before doing so. This decision ensures that the TCA never obtains plaintext data

while user interaction is in plaintext mode. Per-TCA logic also intercepts button clicks so

that it can then instruct UIAM to emulate the user’s action on the button in the underlying

TCA. Per-TCA logic also decides which encryption and encoding scheme to use according

to the type of TCA it is handling. For example, encryption and encoding schemes for

handling email apps would differ from that of messenger apps.

60

Cryptographic Module. M-AEGIS’ cryptographic module is responsible for providing

encryption/decryption and cryptographic hash capabilities to support our searchable en-

cryption scheme (described in detail later) to the per-TCA logic so that M-AEGIS can

transform/obfuscate messages through E2EE operations. Besides standard cryptographic

primitives, this module also includes a searchable encryption scheme to support search

over encrypted email that works without server modification. Since the discussion of any

encryption scheme is not complete without encryption keys, the Key Manager is also a part

of this module.

Key Manager. M-AEGIS has a key manager per TCA that manages key policies that

can be specific to each TCA according to user preference. The key manager supports a

range of schemes, including simple password-based key derivation functions (of which we

assume the password to be shared out of band) to derive symmetric keys, which we currently

implement as default, to more sophisticated PKI-based scheme for users who prefer stronger

security guarantees and do not mind the additional key set-up and exchange overheads.

However, the discussion about the best key management/distribution policy is beyond the

scope of this work.

Searchable Encryption Scheme (EDESE). There are numerous encryption schemes that

support keyword search [65, 146, 64, 29, 39, 23, 93]. These schemes exhibit different

tradeoffs between security, functionality, and efficiency, but all of them require modifications

on the server side. Schemes that make use of inverted index [39] are not suitable, as updates

to inverted index cannot be practically deployed in our scenario.

Since we cannot assume server cooperation (consistent with our threat model in §3.3.2),

we designed a new searchable encryption scheme called easily-deployable efficiently-

searchable symmetric encryption scheme (EDESE). EDESE is an adaptation of a scheme

proposed by Bellare et al. [19], with modifications similar to that of Goh’s scheme [64] that

is retrofittable to a non-modifying server scenario.

We incorporated EDESE for email applications with the following construct. The

61

idea for the construction is simple: we encrypt the document with a standard encryption

scheme and append HMACs of unique keywords in the document. We discuss the specific

instantiations of encryption and HMAC schemes that we use in §3.4.1. To prevent leaking

the number of unique keywords we add as many dummy keywords as needed. We present

this construction in detail in the full version of this work [102].

In order to achieve higher storage and search efficiency, we utilized a Bloom filter

(BF) to represent the EDESE-index. In essence, a BF is a data structure that allows for

efficient set-inclusion tests. However, such set-inclusion tests based on BFs are currently not

supported by existing email providers, which only support string-based searches. Therefore,

we devised a solution that encodes the positions of on-bits in a BF as Unicode strings (refer

to §3.4.4 for details).

Since the underlying data structure that is used to support EDESE is a BF, search

operations are susceptible to false positives matches. However, this does not pose a real

problem to users, because the false positive rate is extremely low and is completely adjustable.

Our current implementation follows these parameters: the length of keyword (in bits) is

estimated to be k = 128, the size of the BF array is B = 224, the maximum number of

unique keywords used in any email thread is estimated to be d = 106, the number of bits set

to 1 for one keyword is r = 10. Plugging in these values into the formula for false positive

calculation [64], i.e., (1− e−rd/B)r, we cap the probability of a false positive δ to 0.0003.

We formally assess the security guarantees that our construction provides. In the full

version of this work [102], we propose a security definition for EDESE schemes and discuss

why the existing notions are not suitable. Our definition considers an attacker who can obtain

examples of encrypted documents of its choice and the results of queries of keywords of its

choice. Given such an adversary, an EDESE scheme secure under our definition should hide

all partial information about the messages except for the message length and the number of

common keywords between any set of messages. Leaking the latter is unavoidable given

that for the search function to be transparent to encryption, the output of a query has to be a

62

Figure 9: User still interacts with Gmail app to compose email, with M-Aegis’ mimic GUIs painted
with different colors on L-7.5.

part a ciphertext. But everything else, e.g., the number of unique keywords in a message,

positions of the keywords, is hidden.

Given the security definition in the full version of this work [102], we prove that our

construction satisfies it under the standard notions of security for encryption and HMACs.

3.3.4 User Workflow

To better illustrate how the different components in M-AEGIS fit together, we describe an

example workflow of a user composing and sending an email using the stock Gmail app on

Android using M-AEGIS:

1. When the user launches the Gmail app, the UIAM notifies the correct per-TCA logic of

the event. The per-TCA logic will then initialize itself to handle the Gmail workflow.

2. As soon as the Gmail app is launched, the per-TCA logic will try to detect the state

of the Gmail app (e.g., preview, reading, or composing email). This detection allows

M-AEGIS to create mimic GUIs on L-7.5 to handle user interaction properly. For

63

example, when a user is on the compose page, the per-TCA logic will mimic the

GUIs of the subject and content fields (as seen in Figure 9). The user then interacts

directly with these mimic GUIs in plaintext mode without extra effort. Thus, the

workflow is not affected at all. Note that essential but subtle features like spell check

and autocorrect are still preserved, as they are innate features of the mobile device’s

soft keyboard. Additionally, the “send” button is also mimicked to capture user intent.

3. As the user finishes composing his email, he clicks on the mimicked “send” button

on L-7.5. Since L-7.5 receives the user input and not the underlying Gmail app,

the per-TCA logic can capture this event and proceed to process the subject and the

content.

4. The per-TCA logic selects the appropriate encryption key to be used based on the

recipient list and the predetermined key policy for Gmail. If a key cannot be found for

this conversation, M-AEGIS prompts the user (see Figure 10) for a password to derive

a new key. After obtaining the associated key for this conversation, M-AEGIS will

then encrypt these inputs and encode it back to text such that Gmail can consume it.

5. The per-TCA logic then requests the UIAM to fill in the corresponding GUIs on

Gmail with the transformed text. After they are filled, the UIAM is instructed to click

the actual “send” button on behalf of the user. This procedure provides a transparent

experience to the user.

This workflow evidently shows that because of the mimicking properties of M-AEGIS,

the workflow of using Gmail remains the same from the user’s perspective.

3.4 Implementation and Deployment

In this section, we discuss important details of our prototype implementations. We imple-

mented a prototype of M-AEGIS using Java on Android, as an accessibility service. This is

done by creating a class that extends the AccessibilityService class and requesting the

64

Figure 10: Password prompt when user sends encrypted mail for a new conversation.

BIND_ACCESSIBILITY_SERVICE permission in the manifest. This allows us to interface with

the UIA library, building our UIAM. We discuss this in further detail in §3.4.2.

We then deployed our prototype on two Android phones from separate manufacturers,

namely Samsung Galaxy Nexus and LG Nexus 4, targeting several versions of Android, from

Android 4.2.2 (API level 17) to Android 4.4.2 (API level 19). The deployment was done

on stock devices and OSes, i.e., without modifying the OS, Android framework, or rooting.

Only simple app installation was performed. This demonstrates the ease of deployment and

distribution of our solution. We have also implemented an M-AEGIS prototype on Windows

7 to demonstrate interoperability and generality of approach, but we do not discuss the

details here, as it is not the focus of this work.

As an interface to the user, we create a button that is always on top even if other apps are

running on the screen. This overlaying allows us to create a non-bypassable direct channel

of communication with the user besides providing a visual cue of whether M-AEGIS is

turned on or off.

For app support, we use Gmail as an example of an email app and WhatsApp as an

65

example of a messenger app. We argue that it is easy to extend the support to other apps

within these classes.

We first describe the cryptographic schemes that we deployed in our prototype, then

explain how we build our UIAM and create L-7.5 on Android, and finally discuss the

per-TCA logic required to support both classes of apps.

3.4.1 Cryptographic Schemes

For all the encryption/decryption operations, we use AES-GCM-256. For a password-based

key generation algorithm, we utilized ccPBKDF2 with SHA-1 as the keyed-hash message

authentication code (HMAC). We also utilized HMAC-SHA-256 as our HMAC to generate

tags for email messages (§3.4.4). These functionalities are available in Java’s javax.crypto

and java.security packages.

For the sake of usability, we implemented a password-based scheme as the default, and

we assume one password for each group of message recipients. We rely on the users to

communicate the password to the receiving parties using out of band channel (e.g. in person

or phone calls). For messaging apps, we implemented an authenticated Diffie-Hellman key

exchange protocol to negotiate session keys for WhatsApp conversations. A PGP key is

automatically generated for a user during installation based on the hashed phone number,

and is deposited in publicly accessible repositories on the user’s behalf (e.g., MIT PGP Key

Server [121]). Further discussion about verifying the authenticity of public keys retrieved

from such servers is omitted from this chapter. Since all session and private keys are stored

locally for user convenience, we make sure that they are never saved to disk in plaintext.

They are additionally encrypted with a key derived from a master password that is provided

by the user during installation.

66

3.4.2 UIAM

As mentioned earlier, UIAM is implemented using UIA libraries. On Android, events that

signify something new being displayed on the screen can be detected by monitoring follow-

ing the events: WINDOW_CONTENT_CHANGED, WINDOW_STATE_CHANGED, and VIEW_SCROLLED.

Upon receiving these events, per-TCA logic is informed by UIAM. The UIA library presents

a data structure in the form of a tree with nodes representing UI components with the root

being the top window. This tree structure allows UIAM to locate all UI components on the

screen.

Additionally, Android’s UIA framework also provides the ability to query for UI nodes

by providing a resource ID. For instance, we can find the node that represents Gmails search

button by querying for com.google.android.gm:id/search. More importantly, there is no

need to guess the names of these resource IDs. Rather, we use a tool called UI Automator

Viewer [7] (see §3.4.4), which comes with the default Android SDK. Once we found the

node of interest, we can get all the other information about the GUI represented by the node.

This information includes the exact location and size of text boxes and buttons on the screen.

M-AEGIS can programmatically interact with various GUIs of a TCA using the function

performAction(). This function allows it to click on a TCAs button on the users behalf

after it has processed the user input.

3.4.3 Layer 7.5

We implemented Layer 7.5 on Android as specific types of system windows, which are

always-on-top of all other running apps. Android allows the creation of various types of

system windows. We focus on two, TYPE_SYSTEM_OVERLAY and TYPE_SYSTEM_ERROR. The

first is for displaying only and allowing all tap/keyboard events to go to underlying apps. In

contrast, the second type allows for user interaction. Android allows the use of any View

objects for either type of window, and we use this to create our mimic GUIs, and set their

size and location. We deliberately create our mimic GUIs in different colors as a subtle

67

Figure 11: The UI Automator Viewer presents an easy to use interface to examine the UIA tree and
determine the resource ID (blue ellipse) associated with a GUI of interest (red rectangle)

visual cue to the users that they are interacting with M-AEGIS, without distracting them

from their original workflow.

3.4.4 Per-TCA Logic

From our experience developing per-TCA logic, the general procedure for development is

as follows:

• Understand what the app does. First, we need to identify which GUIs need to be

mimicked by the TCA logic for intercepting user I/O. For text-based TCAs, this is a

trivial step because the core functionalities that M-AEGIS needs to handle are limited

and thus easy to identify, e.g., buffering users typed texts and sending them to the

intended recipient.

• Using UI Automator Viewer [7], examine the UIA tree for the relevant GUIs of a

TCA and identify signatures (GUI resource IDs) for each TCA state. UI Automator

Viewer allows inspection of the UIA tree through a graphical interface (as seen in

Figure 11), which reduces development time. We rely on UI components that are

unique to individual states (e.g., the “send” button signifies that we are in the compose

68

state).

• For each relevant GUI, we need to devise algorithms to extract either the location

and content of ciphertext (for decryption and display), or the type, size, and location

of GUIs we need to mimic (e.g., the subject and content boxes in the Gmail com-

pose UI). Again, this is done through UI Automator Viewer. For example, for the

Gmail preview state, we query the UIA for nodes with ID com.google.android.gm:

/id/conversation_list to identify all the UIA nodes corresponding to the preview

item of individual email, and from those, we can extract all ciphertext on the preview

window through the UIA).

• Create event handlers for controls we mimic on L-7.5. For the Gmail compose state,

we need to listen for click/touch events for the L-7.5 “send” button and carry out the

process described in Figure 3.3.3 to encrypt the email and send the ciphertext to the

underlying TCA.

• Identify ways that each relevant state can be updated. Updates can be handled via the

following method: clear L-7.5, extract all necessary information from the new state,

and then render again. This procedure is equivalent to redrawing all GUIs on L-7.5

based on the detected state.

There are two details worth considering when developing per-TCA logic. First, careful

consideration must be given to the type of input data fed to TCAs. Since most TCAs only

accept input data in specific formats, e.g., text, they do not support the input of random byte

sequences as valid data. Therefore, encrypted data must be encoded into text format before

feeding it as input to a TCA. Conventionally, base64 encoding is used for this purpose.

However, base64 encoding consumes too much on-screen real estate. To overcome this, we

encoded the binary encrypted data into Chinese Japanese Korean (CJK) Unicode characters,

which have efficient on-screen real estate consumption. To map the binary data into the CJK

plane, we process the encrypted data at the byte granularity (28). For each byte, its value is

added to the base of the CJK Unicode representation, i.e., 0x4E00. For example, byte 0x00

69

will be encoded as ‘一’, and byte 0x01 will be represented as ‘丁’.

Second, M-AEGIS can only correctly function if it can differentiate between ordinary

messages and encrypted messages. We introduce markers into the encrypted data after

encoding. In particular, we wrap the subject and content of a message using a pair of curly

braces (i.e. {, }).

Next, we describe implementation details that are specific to these classes of apps. We

begin by introducing the format of message we created for each class. Then we discuss

other caveats (if any) that are involved in the implementation.

Email Apps. We implemented support for Gmail on our prototype as a representative app

of this category. We create two custom formats to communicate the necessary metadata to

support M-AEGIS’ functionalities:

• Subject: {Encode(IDKey||IV ||Encrypt(Subject))}

• Content: {Encode(Encrypt(Content)||Tags)}

A particular challenge that we faced in supporting decryption during the Gmail preview

state is that only the beginning parts of both the title and the subject of each message are

available to us. Additionally, the exact email addresses of the sender and recipients are not

always available, as some are displayed as aliases, and some are hidden due to lack of space.

The lack of such information makes it impossible to automatically decrypt the message even

if the corresponding encryption key actually exists on the system.

To solve these problems, when we encrypt a message, we include a key-ID (IDKey) to

the subject field (as seen in the format described above). Note that since the key-ID is not

a secret, it need not be encrypted. This way, we will have all the information we need to

decrypt the subtext displayed on the Gmail preview correctly.

The Tags field is a collection of HMAC digests that are computed using the conversation

key and keywords that exist in a particular email. It is then encoded and appended as part of

the content that Gmail receives to facilitate encrypted search without requiring modification

to Gmail’s servers.

70

Messenger Apps. We implemented support for WhatsApp on our prototype as a represen-

tative app of this category. The format we created for this class of apps is simple, as seen

below:

• Message: {Encode(IV ||Encrypt(Message))}

We did not experience additional challenges when supporting WhatsApp.

3.5 Evaluations

In this section, we report the results of experiments to determine the correctness of our

prototype implementation, measure the overheads of M-AEGIS, and user acceptability of

our approach.

3.5.1 Correctness of Implementation

We manually verified M-AEGIS’s correctness by navigating through different states of

the app and checking if M-AEGIS creates L-7.5 correctly. We manually verified that the

encryption and decryption operations of M-AEGIS work correctly. We ensured that plaintext

is properly received at the recipient’s end when the correct password is supplied. We

manually verified the correctness of our searchable encryption scheme by introducing

specific search keywords. We performed the search using M-AEGIS and found no false

negatives in the search result.

3.5.2 Performance on Android

The overhead that M-AEGIS introduced to a user’s workflow can be broken down into two

factors: 1) the additional computational costs incurred during encryption and decryption

of data, and 2) the additional I/O operations when redrawing L-7.5. We measure overhead

by measuring the overall latency presented to the user in various use cases. We found that

M-AEGIS imposes negligible latency to the user.

We exercised all test cases on a stock Android phone (LG Nexus 4), with the following

specifications: Quad-core 1.5 GHz Snapdragon S4 Pro CPU, equipped with 2.0 GB RAM,

71

running Android Kit Kat (4.4.2, API level 19). Unless otherwise stated, we repeated each

experiment for ten times and took the averaged result for reporting.

For our evaluation, we only performed experiments for the setup of the Gmail app

because Gmail is representative of a more sophisticated TCA, and thus indicates worst-case

performance for M-AEGIS. Messenger apps incur fewer overheads given their simpler TCA

logic.

Previewing Encrypted Email. There are additional costs involved in previewing encrypted

emails on the main page of Gmail. The costs are broken down into times taken to 1) traverse

the UIA tree to identify preview nodes, 2) capture ciphertext from the UIA node, 3) obtain the

associated encryption key from the key manager, 4) decrypting ciphertext, and 5) rendering

plaintext on L-7.5. We measure these operations as a single entity by running a macro

benchmark.

For our experiment, we ensured that the preview page consists of encrypted emails (a

total of six can fit on-screen) to demonstrate worst-case performance. We measured the time

taken to perform all operations. We found, on average, it takes an additional 76 ms to render

plaintext on L-7.5. Note that this latency is well within expected response time (50 - 150

ms), beyond which a user would notice the slowdown effect [145].

Composing and Sending Encrypted Email. We measured the extra time taken for

encrypting a typical email and building our searchable encryption index for it. We used the

Enron Email Dataset [34] as a representation of typical emails. We randomly picked ten

emails. The average number of words in an email is 331, of which 153 are unique. The

shortest sampled email contained 36 words, of which 35 are unique. The longest sampled

email contains 953 words, of which 362 are unique.

With the longest sampled email, M-AEGIS took 205 ms in total to both encrypt and

build the search index. Note that this includes the network latency a user will perceive while

sending an email, regardless of their use of M-AEGIS.

Searching on Encrypted Emails. A user usually inputs one to three keywords per search

72

operation. The latency experienced when performing a search is negligible. This is because

the transformation of the actual keyword into indexes requires only the forward computation

of one HMAC, which is nearly instantaneous.

3.5.3 User Acceptability Study

This section describes the user study we performed to validate our hypothesis of user

acceptability of M-AEGIS. Users were sampled from a population of college students. They

must be able to operate smartphones proficiently and have had previous experience using

the Gmail app. Each experiment was conducted with two identical smartphones, i.e., Nexus

4, both running Android 4.3, installed with the stock Gmail app (v. 4.6). One of the devices

had M-AEGIS installed.

The setup of the experiment is as follows. We asked the user to perform a list of tasks:

previewing, reading, composing, sending, and searching through email on a device that

is not equipped with M-AEGIS. Participants were asked to pay attention to the overall

experience of performing such tasks using the Gmail app. This experiment served as the

control experiment.

Participants were then told to repeat the same set of tasks on another device that was

equipped with M-AEGIS. This experiment was done with the intention that they were able to

mentally compare the difference in user experience when interacting with the two devices.

We queried the participants if they found any difference in previewing, reading, sending,

and searching email, and if they felt that their overall experience using the Gmail app on the

second device was significantly different.

We debriefed the participants about the experiment process and explained the goal of

M-AEGIS. We asked them whether they would use M-AEGIS to protect the privacy of their

data. The results we collected and report here are from 15 participants.

We found that no participants noticed major differences between the two experiences

using the Gmail app. One participant noticed a minor difference in the email preview

73

interface, i.e., L-7.5 did not catch up smoothly when scrolled. A different participant noticed

a minor difference in the process of reading email, i.e., L-7.5 lag before covering ciphertext

with mimic GUIs. There were only two participants that found the process of sending email

differed from the original. When asked for details, they indicated that the cursor when

composing email was not working properly. After further investigation, we determined

this was a bug in Android’s GUI framework rather than a fundamental flaw in M-AEGIS’s

design.

Despite the perceived minor differences when performing particular tasks, all partic-

ipants indicated that they would use M-AEGIS to protect the privacy of their data after

understanding what M-AEGIS is. This feedback implies that they believe that the overall

disturbance to the user experience is not large enough to impede adoption.

Since we recruited 15 users for this study, the accuracy/quality of our conclusion from

this study lies between 80% and 95% (between 10 and 20 users) according to findings

in [54]. We intend to continue our user study tto validate our acceptability hypothesis further

and to continuously improve our prototype based on received feedback.

3.6 Discussions
3.6.1 Generality and Scalability

We believe that our M-AEGIS architecture presents a general solution that protects user data

confidentiality, which is scalable in the following aspects:

Across Multiple Cloud Services. There are two main classes of apps that provide

communication services, email and messenger apps. By providing functionality for apps in

these two categories, we argue that M-AEGIS can satisfy a large portion of mobile security

user needs. The different components of M-AEGIS incur a one-time development cost. We

argue that it is easy to scale across multiple cloud services because the per-TCA logic that

needs to be written is minimal per new TCA. This should be evident through the five general

steps highlighted in §3.4.4. Additionally, the logic we developed for the first TCA (Gmail)

74

serves as a template/example to implement support for other apps.

Across App Updates. Since the robustness of the UIAM construct (§3.4.2) gives M-AEGIS

the ability to track all TCA GUIs regardless of TCA state, M-AEGIS can easily survive app

updates. Our Gmail app support has survived two updates without requiring major efforts to

adapt.

Resource ID names can change across updates. For example, when upgrading to Gmail

app version 4.7.2, the resource ID name that identifies a sender’s account name changed.

Using UI Automator Viewer, we quickly discovered and modified the mapping in our TCA

logic. Note that only the mapping was changed; the logic for the TCA does not need to be

modified. This is because the core functionality of the updated GUI did not change (i.e., the

GUI associated with a sender’s account remained a text input box).

3.6.2 Limitations

As mentioned earlier, M-AEGIS is not designed to protect users against social-engineering-

based attacks. Adversaries can trick users into entering sensitive information to the TCA

while M-AEGIS is turned off. Our solution is best effort by providing distinguishing visual

cues to the user when M-AEGIS is turned on, and its L-7.5 is active. For example, the mimic

GUIs that M-AEGIS creates a different color. Users can toggle M-AEGIS’ button on or off

to see the difference (see Figure 8). Note that M-AEGIS’s main button is always on top and

cannot be drawn over by other apps. However, we do not claim that this entirely mitigates

the problem.

One of the constraints that we faced while retrofitting a security solution to existing

TCAs (not limited to mobile environments) is that data must usually be of the right format

(e.g., strictly text, image, audio, or video). For example, Gmail accepts only text (Unicode-

compatible) for an email subject, but Dropbox accepts any type of files, including random

blobs of bytes. Currently, other than the text format, we do not yet support other types of user

data (e.g., image, audio, and video). However, this is not a fundamental design limitation of

75

our system. Rather, it is because of the unavailability of transformation functions (encryption

and encoding schemes) that works for these media types.

Unlike text, the transformation/obfuscation functions in M-AEGIS for other types of data

may also need to survive other process steps, such as compression. It is normal for TCAs to

perform compression on multimedia to conserve bandwidth and/or storage. For example,

Facebook is known to compress/downsample the image uploads.

The confidentiality guarantee that we provide excludes risks at the end points themselves.

For example, a poor random number generator can potentially weaken the cryptographic

schemes M-AEGIS applies. It is currently unclear how our text transformations will affect a

server’s effectiveness in performing spam filtering.

Our system currently does not tolerate typographical error during the search. However,

we would like to point out that this is an unlikely scenario, given that soft keyboards on

mobile devices utilize spell check and autocorrect features. Again, this is not a flaw in our

architecture. Rather, it is because of the unavailability of encryption schemes that tolerate

typographical error search without requiring server modification.

3.7 Summary

In this chapter, we presented Mimesis Aegis (M-AEGIS), a new approach to protect private

user data in public cloud services. M-AEGIS provides strong isolation and preserves user

experience through the creation of a novel conceptual layer called Layer 7.5 (L-7.5), which

acts as a proxy between an app (Layer 7) and a user (Layer 8). This approach allows

M-AEGIS to implement true end-to-end encryption of user data while achieving three goals:

1. Plaintext data is never visible to a client app, any intermediary entities, or the cloud

provider;

2. the original user experience with the client app is preserved completely, from workflow

to GUI look-and-feel; and

76

3. the architecture and technique are general to a large number of apps and resilient to

app updates.

We implemented a prototype of M-Aegis on Android that can support a number of popular

cloud services (e.g., Gmail, Google Hangout, Facebook, WhatsApp, and Viber). Our user

study shows that our system preserves both the workflow and the GUI look-and-feel of

the protected applications, and our performance evaluations show that users experienced

minimal overhead in utilizing M-Aegis on Android. As the industry’s follow-up after

releasing the implementation detail of M-Aegis, many internet messenger company take

the route to apply a true end-to-end (i.e., user-to-user) encryption on their messaging

services. For example, in the year of 2016, WhatsApp applied a user-to-user, perfect forward

secrecy encryption to its application and also released a whitepaper that describes their

implementation for public verification. While we are hoping the other internet messenger

vendors to adopt such approach, M-Aegis could be a soultion to apply before the vendors

moving towards implementing more secure messengers.

77

CHAPTER IV

A11Y ATTACKS: EXPLOITING ACCESSIBILITY IN OPERATING

SYSTEMS

4.1 Motivation

On August 9, 1998, the United States Congress amended the Rehabilitation Act of 1973 to

eliminate barriers to electronic and information technology for people with disabilities [150].

Effective June 21, 2001, the law is enforced on the development, procurement, maintenance,

or use of electronic and information technology by the federal government [114]. Driven

by this requirement, OS vendors [117, 9, 69] have included accessibility features such as

on-screen keyboards, screen magnifiers, voice commands, screen readers, etc. in their

products to comply with federal law.

Assistive technologies, especially natural language voice processors, are gaining widespread

market acceptance. Since the iPhone 4S, Apple has included in iOS a voice-based personal

assistant, Siri, which can help the user complete a variety of tasks, such as placing a call,

sending a text, and modifying personal calendars. Google also added a similar feature, Voice

Action, to its Android platform. Furthermore, wearable devices such as Google Glass use

voice as the primary interaction interface.

In general, adding new features into modern complex OSes usually introduces new

security vulnerabilities. Accessibility support is no exception. For example, in 2007, it

was reported that Windows Vista could be compromised through its speech recognition

software [127]; in 2013, a flaw was discovered in Siri that allowed the bypass of an iPhone’s

lock screen to access photos and email [46]. As more and more people are using accessibility

features, security issues caused by such vulnerabilities can become more serious.

In this work, we present the first security evaluation of the accessibility support of

78

commodity OSes. Our hypothesis is that alternative I/O subsystems such as assistive

technologies bring a common challenge to many widely deployed security mechanisms in

modern OSes. Modern OSes support restricted execution environments (e.g., sandboxes)

and ask for the user’s approval before applying a security sensitive change to the system (e.g.,

User Access Control (UAC) on Windows [118] and remote view on iOS [18]). However,

accessibility support usually offers interfaces to programmatically generate user inputs, such

as keystrokes and mouse clicks, which essentially enables the interface to act like a human

being. Consequently, it might be pOSesible to bypass these defense mechanisms and abuse

a user’s permissions by generating synthesized user inputs. Similarly, attackers may also be

able to steal security sensitive information displayed on the screen through the accessibility

interfaces.

To verify our hypothesis, we examined the security of accessibility on four commodity

OSes: Microsoft Windows 8.1, Ubuntu 13.10, iOS 6, and Android 4.4. We were able

to identify twelve 1 attacks 2 that can bypass many state-of-the-art defense mechanisms

deployed on these OSes, including UAC, the Yama security module, the iOS App sandbox,

and the Android sandbox.

When designing new interfaces that provide access to computing systems, one must

ensure that these new features do not break existing security mechanisms. However, current

designs and implementations of accessibility support have failed to meet this requirement.

Our analysis shows that current architectures for providing accessibility features make it

extremely difficult to balance compatibility, usability, security, and (economic) cost. In

particular, we found that security has received less consideration compared to the other

factors. Under current architectures, there is not a single OS component that has all

the information necessary to enforce meaningful security policy; instead, the security of

accessibility features depends on security checks implemented in the assistive technology,

1We discovered eleven new attacks, and we cover an attack for Siri that was released in public as exploitation
of accessibility in OS.

2 Disclosure: we reported all vulnerabilities that we found to the OS vendors.

79

the OS, and the applications. Unfortunately, in our evaluation, we found that security

checks are either entirely missed or implemented incorrectly (or incompletely) at all levels.

Based on our findings, we believe a fundamental solution to the problem will involve a

new architecture that is designed with security in mind. Proposing this new architecture

is beyond the scope of our work. Instead, we propose several recommendations that work

under current architectures to either make the implementation of all necessary security

checks easier and more intuitive or to alleviate the impact of missing/incorrect checks. We

also point out some open problems and challenges in automatically analyzing a11y support

and identifying security vulnerabilities.

In summary, this chapter makes the following contributions:

• We performed a security evaluation of accessibility support for four major OSes:

Windows, Ubuntu Linux, iOS, and Android;

• We found several new vulnerabilities that can be exploited to bypass many state-of-the-

art defense mechanisms deployed on these systems, including UAC and application

sandboxes;

• We analyzed the root cause of these vulnerabilities and proposed a number of recom-

mendations to improve the security of a11y support;

• We showed that the current architectures for providing accessibility features are

inherently flawed because no single OS component can implement a security policy:

security checks at the assistive technology, the OS, and the application must be

implemented correctly; failure in any of these checks introduces vulnerabilities.

4.2 Overview of Accessibility

In this section, we give a brief overview of accessibility in operating systems, and explain

definitions of terminologies used in this work.

80

Process	
Output	

Assistive Technology

OS

App

Process	
Input	

App	
Ouptut	

Input	
Handler	

A11y	
Library	

Alt. input through a11y

Alt. output through a11y

Regular
Input Devices Screen

Output

Original I/O path

A11y Input
(Voice)

A11y Output
(Speaker)

Figure 12: A general architecture for implementing accessibility features. Supporting an accessibility
feature creates new paths for I/O on the system (two dotted lines), while original I/O from/to hardware
devices (e.g., keyboard/mouse and screen) is indicated on the right side.

4.2.1 Accessibility Features

In compliance with the amended Rehabilitation Act, software vendors have incorporated

various accessibility features into their systems. In this work, we define computer accessi-

bility (a11y) features as new I/O subsystems that provide alternative ways for users with

disabilities to interact with the system. For example, for visually impaired users, text-to-

speech based Narrator (on MS Windows), VoiceOver (on OS X), and TalkBack (on Android)

provide an output subsystem that communicates with the user through speech. For hearing

impaired users, accessibility features like captioning services turn the system’s audio output

into visual output. Similarly, some systems can alert the user about the presence of audio

output by flashing the screen. For users with motor disabilities, traditional mouse/keyboard

based input systems are replaced by systems based on voice input. In general, we can see

these accessibility features as implemented within an OS architecture in Figure 12.

There are also accessibility features that use traditional I/O devices (e.g., the screen,

81

mouse, and keyboard), but make them easier for users with disabilities to interact with the

system. Examples of such features include:

• Magnifier in Windows, which enlarges certain portions of the screen;

• High Contrast in Windows, which provides higher contrast for easy distinction of user

interfaces; and

• On-screen keyboard, sticky keys, filter keys, assisted pointing, and mouse double-click

speed adjust to allow input requiring less movement.

4.2.2 Accessibility Libraries

In addition to pre-installed accessibility features, most OS vendors provide libraries for

third parties to implement their own accessibility features. This makes it possible to create

new alternative I/O subsystems based on other I/O devices (e.g., a braille terminal). In this

case, the assistive technology part in Figure 12 is a program developed by the third party.

Examples of these libraries include:

• UI Automation in Microsoft Windows,

• The accessibility toolkit (ATK) and Assistive Technology Service Provider Interface

(AT-SPI) in Ubuntu Linux,

• AccessibilityService and related classes in Android, and

• The (public) NSAccessibility and (private) UIAutomation frameworks in iOS.

For all the discussions that follow, we will refer to these libraries as accessibility libraries.

In general, the accessibility libraries provide the following capabilities as APIs:

• Notifications on changes to the system’s display (e.g., new window popped up, content

of a window changed/scrolled, change of focus, etc.);

• Ways to probe what is displayed on various UI elements (e.g., name of a button,

content of a textbox, or static text displayed);

• Ways to synthesize inputs to various UI elements (e.g., click a button to place text into

a textbox).

82

4.2.3 Assistive Technologies

For the rest of this chapter, we will use the term assistive technology (AT) to refer to the

logic that runs in user space to provide any of the following functionality:

• (F1) processing user input from alternative input devices, “understanding” what the

user wants and turning it into commands to the OS for control of other applications

(or the OS itself);

• (F2) receiving information about the system’s output and presenting it to users using

alternative output devices.

Usually an assistive technology makes use of an accessibility library to obtain required

capabilities for implementing a new accessibility feature.

4.3 Security Implications of A11y

In this section, we discuss new attack paths due to accessibility features in computing

systems and correspondingly the required security checks for securing accessibility support.

For the rest of this chapter, we adopt the threat model where the attacker controls one user

space process with access to the accessibility library, and we do not assume any other special

privilege for this malicious process.

4.3.1 New Attack Paths

The first functionality (F1) of AT allows users to control the system through alternative input

devices, which is inherently dangerous from a security perspective. While modern OSes

provide increasingly restricted isolation between applications, accessibility support provides

a way to bypass this isolation and control other applications on the system.

To prevent malware from abusing security sensitive privileges of the user, OSes also

deploy defense mechanisms such as User Account Control (UAC) [118] in Windows,

remote view [18] in iOS, and ACG [133], with the policy of “ask for user consent explicitly

before performing dangerous operations” (see Figure 13). However, since user-consent

83

Request	 from	
an	 App	

Seek	
User	 Consent	

Perform	
Ac6on	

Reject	
Opera6on	

NO

NO

Security
Sensitive?

User
Agreed?

YES
YES

OS

User Input Prompt Dialog

Figure 13: A workflow for the traditional mechanism to seek user consent before performing
privileged operations.

is usually represented by a certain input event (e.g., click on a button), the capability to

programmatically generate input events also breaks the underlying assumption of these

security mechanisms that input is always the result of user action.

The ability of AT to monitor and probe the information currently being displayed on the

screen (F2) is also problematic because it provides a way to access certain security sensitive

information, e.g., plaintext passwords usually not displayed on the screen (e.g., most OSes

show only scrambled symbols in the password box).

Based on the above observations, we argue that accessibility interfaces provide malware

authors with these new paths of attacks:

• (A1) Malware implemented as AT penetrates the OS security boundary by obtaining

new capabilities of controlling applications;

• (A2) Malware exploits the capability of generating interaction requests to bypass

defense mechanisms or escalate its privilege;

• (A3) Malware exploits the capability of monitoring and probing the UI output to

84

Process	
Input	

Auth	
User?	

I/O	
Dispatcher	

YES

NO

NO

YES

Perform	

YES

NO

Assistive Technology

OS
A11y Library

App

AT
Allowed?

A11y
Allowed?

Alt. Input

Figure 14: Required security checks for an AT as a new input subsystem. User input is passed to
the AT first, moved to OS through accessibility libraries, then the synthetic input is delivered to the
application. Grayed boxes indicate security checks required by each entity that receives the input.

access otherwise unavailable information.

4.3.2 Required Security Checks

To evaluate how a platform could be secure against these new attack paths, we propose two

reference models of required checks: one for handling alternative input (Figure 14) and the

other for handling output (Figure 15).

The key to securely handling alternative input is to validate whether the input is truly

from the user. To achieve this goal, we argue that three checks (gray boxes in Figure 14)

along the input path are necessary: within the AT, in the OS, and at the application level.

First, an AT should validate whether the input is from the user. Otherwise, attacks can be

launched by synthesizing the input format of this AT. For example, malware can transform

malicious operations into synthetic voice (e.g., via text-to-speech, TTS) and drive the natural

language user interface to control other applications (A1) or escalate its privilege (A2).

Second, since not all ATs can be trusted (e.g., those provided by a third-party), the OS

85

Process	
Output	

Output	

YES

Assistive Technology

OS

App

On
Screen?

On
A11y?

NO

YES

Screen Output Alt. Output

A11y Library

YES
NO AT

Allowed?

Figure 15: Required security checks for an AT as a new output subsystem. The application is
required to decide which input can transit through the accessibility library. Then the AT receives the
output to deliver it to the user. Grayed boxes indicate the checks required by OS and the application.

should have control over what applications an AT can control. For example, interaction

requests from untrusted AT to security sensitive processes such as system services and

system settings should not be forwarded. Otherwise, privilege escalation would be feasible

(A2). Additionally, the access control policy should be consistent with other access control

mechanisms to prevent a malicious AT from obtaining new capabilities (A1).

Third, the OS should provide the flexibility to allow an application to specify a fine-

grained security policy on how to handle interaction requests from an AT. More specifically,

the OS should 1) allow the application to distinguish input from real hardware and input

from AT; and 2) allow the application to set its own callback functions to handle input events

from AT. More importantly, when no customization is provided, the default setting should

align with the platform’s default security policy.

These three checks are complementary to each other for the following reasons. First,

for AT-like natural language user interfaces for motor disabled people, it has to be able to

control all applications and the underlying system; the only viable check is within the AT

86

itself. Second, as not all ATs are trustworthy, the OS-level check is necessary to prevent

malicious AT from compromising the system. Third, OS-level access controls are not aware

of the context of each non-system application, so the application level check provides the

last line of defense for an application to protect itself from malicious ATs (A1).

Similarly, to securely handle alternative output and prevent information leakage (A3),

two checks (gray boxes in Figure 15) should be performed. The application level check

allows the application to specify what information is sensitive so it will not be available to

AT. Again, we must emphasize that when no customization is provided, the default setting

should align with the platform’s security policy. The OS-level check prevents untrusted ATs

from acquiring sensitive information specific to the system.

4.4 Security Evaluation of A11y

In this section, we first describe our evaluation methodology and then present the results of

the security evaluation on major platforms: Microsoft Windows, Ubuntu Linux, iOS, and

Android. The specific versions of the evaluated systems are: Windows 8.1, Ubuntu 13.10,

iOS 6 and Android 4.4 on the Moto X 3.

4.4.1 Evaluation Methodology

Given an OS platform, we evaluate the security of the accessibility features it offers as

follows:

• We studied the availability of the built-in assistive technologies and the accessibility

library on the platform. For built-in assistive technologies, we focused on the availabil-

ity of a natural language user interface because it provides the most powerful control

over the system. For the accessibility library, we focused on whether an application

needs special privileges to use the library; if so, we focused on how such privileges

3 For Windows, Ubuntu, and Android, we tested the latest release version as of November 2013. Attacks
still work for the current release versions. For iOS, we tested iOS 6.1.4, the latest iOS 6 at the time the research
was performed.

87

are granted.

• Using our input validation model (Figure 14), we examined the input handling process

of the analyzed platform. When a check is missing or flawed, we try to launch

attacks exploiting the missing or flawed check. Specifically, if the built-in natural

language user interface lacks input validation or if the validation can be bypassed,

we try to escalate our malware’s privilege through synthetic voice. If the OS-level

check is missing and there is a security mechanism that requires user consent, we try

to escalate our malware’s privilege by spoofing the mechanism with synthetic input.

If the OS-level check is not missing, we assess whether its access control policy is

consistent with other security mechanisms; if not, we evaluate what new capabilities

become available. If the application level check is missing or flawed, we examine

whether accessibility support provides us new capabilities.

• Using our output validation model (Figure 15), we examined the output handling

process of the analyzed platform. If the OS-level check is missing, we try to read

the UI structure of other applications. If the application level check is missing, we

examine whether new capabilities become available. In particular, since most of the

displayed information is available through screenshots, we try to steal a password

because it is usually not displayed in plaintext. We assume obtaining any other

(potentially sensitive) information as plaintext via AT is no harder than reading a

password.

4.4.2 Availability of Accessibility Features

Table 5 summarizes the availability of a natural language user interface and accessibility

libraries on the four platforms. Natural language user interfaces are available on all platforms

except Ubuntu; accessibility libraries are available on all studied platforms 4.

For natural language user interfaces, both Speech Recognition and Touchless Control

4 On iOS, there is no accessibility library, but the UIAutomation framework provides most capabilities that
we require.

88

Table 5: A list of available accessibility libraries and natural language user interfaces on each
platform. * indicates the feature requires special setup/privilege.

Platform Natural Language User Interface Accessibility Libraries

Windows Speech Recognition* UIAutomation
Ubuntu None ATK, AT-SPI
iOS Siri UIAutomation*
Android Touchless Control* AccessibilityService*

for the Moto X5 require initialization (training) before first use. Siri can be enabled without

any setup. Although Speech Recognition on Windows requires initialization, this step

can be bypassed by modifying the values of a registry sub-key at HKEY_CURRENT_USER

/Software/Microsoft/Speech. Since this key is under HKEY_CURRENT_USER, it is writable

by any unprivileged process.

For accessibility libraries, both desktop environments (Windows and Ubuntu Linux) have

no privilege requirements for using the libraries. Thus they are available to any application.

On iOS, the UIAutomation framework, though not a full-fledged accessibility library,

provides the functionality to send synthesized touch and button events. Since this framework

is part of the private API set, its usage is forbidden by apps in the Apple App Store. However,

as demonstrated in an attack to iOS [157], the enforcement can be bypassed.

Unlike other platforms, Android’s accessibility library (AccessibilityService) is available

only after the following requirements are met: first, the app must declare the use of the

permission BIND_ACCESSIBILITY_SERVICE. Second, the user must explicitly enable the app

as an accessibility service. When changing accessibility settings, a user is prompted with a

dialog that displays what kind of capabilities will be granted to the AccessibilityService,

which is very similar to the app permission system. Nonetheless, users are prone to

enable permissions when apps provide step-by-step instructions. In particular, we find that

there are more than 50 apps on the Google Play store that declare use of permissions for

AccessibilityService, and two of them [63, 132] have been downloaded by more than ten

5 For the natural language user interface on Android, we try to analyze Touchless Control which is only
available on the Moto X, due to the lack of a privileged natural language user interface in Android by default.

89

Table 6: The status of input validation on each platform. * indicates the check enforces a security
policy that is different from other security mechanisms.

Platform Assistive Tech. Check OS Level Check Application Level Check

Windows None UIPI* None
Ubuntu N/A None None
iOS 6 None None None
Android Authentication Permission* None

million users combined.

4.4.3 Vulnerabilities in Input Validation

Table 6 summarizes the examination results of each platform when checked against our

input reference model (Figure 14). There are two common problems across all analyzed

platforms.

Missing or flawed input validation within AT. Natural language user interfaces usually

have more privileges than normal applications; most of them lack authentication for voice

input. Moreover, some accept self-played input (sending audio from the built-in speaker

to a microphone), making it possible to inject audio input through text-to-speech (TTS).

Although Touchless Control on the Moto X tries to authenticate its input, the authentication

can easily be bypassed with a replay attack. As a result, an attacker can obtain the privileges

of the natural language user interface (attack #1, #5, #9).

Control of other applications. At the application level, no platform provides a precise

way to check whether the input event is from the hardware or from the accessibility library.

Moreover, at the OS level, although Windows and Android have access controls for AT,

their protections are not complete. This allows a malicious AT to control most applications

the same way as a human user would. Specifically, a malicious AT can send input events

to make other applications perform security sensitive actions (attack #4, #6, #7, #10) and

spoof security mechanisms that require user consent (attack #2, #3, #8).

90

Implementation of attacks. We tested all Windows-based attacks by implementing proof-

of-concept malware. For controlling apps on Ubuntu Linux, iOS 6, and Android, we checked

the capability of sending synthetic input to other applications by writing sample code for

sending basic user interactions such as clicking a button, and writing content into a textbox.

For iOS, we also wrote code to test for special UI windows such as passcode lock, password

dialog, and remote view. For Touchless Control, we implemented sample malware that

records sound in the background; we then sliced the authentication phrase from it manually

and replayed the slice within the malware. For Siri, we manually performed the same attack.

4.4.3.1 Windows

The OS-level check applied to the accessibility library on Windows is called User Interface

Privilege Isolation (UIPI) [116]. UIPI is a mandatory access control (or mandatory integrity

control (MIC) in Microsoft’s terminology) that sets an integrity level (IL) for every process

and file, and enforces a relaxed Biba model [21, 115]: no write/send to a higher integrity

level. The integrity levels (IL) are divided into five categories: Untrusted, Low, Medium,

High, and System.

Regular applications run at Medium IL, while processes executed by an active adminis-

trator runs at High IL. As an MIC, the IL of a process is inherited by all of its child processes

and takes the minimum privilege when two or more ILs are applied on the process.

UIPI prevents attackers from sending input to higher IL processes. For example, malware

cannot spoof UAC through a synthesized click because normal programs including malware

run at either Medium IL (when launched by the user) or Low IL (when launched by a

browser, i.e., drive-by attacks), while the UAC window runs at System IL. Furthermore,

malware cannot take control of applications that are executed by the administrator, which

has a higher IL (High IL).

Unfortunately, the protection provided by UIPI is not complete: since most applications

91

are running at the same Medium IL as malware, UIPI allows malware to control most other

applications via AT. Furthermore, the lack of security checks at the assistive technology and

application levels results in more vulnerabilities: missing input validation in the built-in nat-

ural language user interface allows privilege escalation attacks through Speech Recognition

(attack #1); missing application level checks enables escalation of privilege (attack #2), and

theft of user passwords (attack #3).

Attack #1: privilege escalation through Speech Recognition. Control of Speech Recog-

nition is security-sensitive for several reasons. First, although there is a setup phase, it can

be bypassed as mentioned in §4.4.2. After setup, any process can start Speech Recognition.

Second, Speech Recognition always runs with administrative privilege (High IL) regardless

of which process runs it. This allows it to control almost all other applications on the system,

including applications running with administrative privileges. Because of these “features”

of Speech Recognition and the problems mentioned previously (i.e., no input validation, and

accepting self-played voice), malware running at Medium or even Low IL can escalate itself

to administrative privilege through synthetic voice.

Figure 16 shows the workflow of the privilege escalation attack from a Medium IL

malware. The first step is to launch Speech Recognition through CreateProcess() with

the argument sapisvr.exe -SpeechUX. Second, the malware launches the msconfig.exe

application through CreateProcess(). Since msconfig.exe is an application for an admin-

istrator to manage the system configuration, it automatically runs at High IL. While malware

cannot send input events to this process (prevented by UIPI), Speech Recognition can. After

launching msconfig.exe, the malware can use voice commands to launch a command shell

by choosing an item under the Tools tab of msconfig.exe. This is accomplished by playing

a piece of synthetic speech “Tools, Page Down, Command Prompt, Launch!”. Once the

command shell that inherits the High IL from msconfig.exe is launched, the malware then

says “cd” to its directory, says its own executable name and “Press Enter” to be executed

92

1. Invoke Speech Recognition Commander

2. Invoke msconfig.exe (run as HIGH IL)

3. Play artificial speech using text-to-speech library

Tools!	 Page	 Down!	
Command	 Prompt!	

Launch!	

4. Administrative Command Prompt has launched

5. Execute Stage-2 Malware by Speech
(Run as HIGH IL)

Type	 D,	 Type	 I,	 Type	 R	
Press	 ENTER!	

Figure 16: The workflow of privilege escalation attack with Windows Speech Recognition.

with administrative privileges.

Attack #2: privilege escalation with Explorer.exe. Explorer.exe is a special process in

Windows that has higher privilege than its running IL. Unlike other Medium IL processes,

Explorer.exe has the capability of writing to High IL objects such as the System32 directory.

Although this capability is protected by a UAC-like dialog (Figure 17), i.e., Explorer.exe

asks for the user confirmation before writing to a system directory of Windows, the dialog

belongs to Explorer.exe itself. Since this action requires user consent, the application

should check whether the input comes from the user or AT. However, there is no such check.

As a result, malware can overwrite files in system directories by clicking the confirmation

dialog through the accessibility library.

Some system applications in system directories are automatically escalated to the ad-

ministrative privilege at launch. On Windows, when a process tries to load a DLL, the

dynamic linker first looks for the DLL from the local directory where the executable resides.

93

Figure 17: A dialog that pops-up when Explorer.exe tries to copy a file to a system directory. The
dialog runs at the same Medium IL as Explorer.exe. Thus, any application with Medium IL can
send a synthetic click to the “Continue” button and proceed with writing the file.

Once malware injects malicious DLLs into the directory containing these applications, it

can obtain the administrative privilege when the applications are run, thus bypassing UAC.

An example of such an application is sysprep, which will load Cryptbase.DLL from the

local directory. By sending synthetic clicks to Explorer.exe and injecting a malicious

Cryptbase.DLL, malware can achieve privilege escalation.

Attack #3: stealing passwords using Password Eye and a screenshot. On Windows,

passwords are protected in several ways. They are not shown on the screen; and even with

real user interactions, the content in a password box cannot be copied to the clipboard.

Furthermore, as will be described in detail in Table 7, it is also not possible to retrieve

password content directly through the accessibility library. However, the lack of input

validation on the password box UI component opens up a method of stealing the plaintext of

a password.

Starting with Windows 8, Microsoft introduced Password Eye as a new UI feature to

give visual feedback to users to correct a typo in a password input box (Figure 18). This

“Eye” appears when a user provides input to a password box, and clicking it will reveal the

plaintext of the password. Unfortunately, since Password Eye cannot distinguish hardware

input from a synthetic input, malware can click it as long as UIPI permits. Again, since

94

A) Before clicking Eye B) After clicking Eye

Figure 18: Password Eye on the Gmail web application, accessed with Internet Explorer 10. In
Windows 8 and 8.1, this Eye is attached to password fields not only for web applications but also for
regular applications. By left-clicking the Eye, the box reveals its plaintext content.

most applications run at the same IL as malware, malware can send a left-click event to

reveal the content of the password dialog (Figure 18) and can extract it from a screenshot.

4.4.3.2 Ubuntu Linux Desktop

Since Ubuntu does not have a built-in natural language user interface, we only consider the

attacks enabled by missing checks in the OS or an application. The missing check at the OS

level allows malware to control any application and thus break the boundary enforced by

other security mechanisms (attack #4). The missing check at the application level does not

provide additional capabilities beyond those already provided by the missing OS level check.

Attack #4: bypassing the security boundaries of Ubuntu. Since neither the OS nor

applications authenticate input, malware can send a synthetic input to any application in

the GUI, i.e. the current X Window display. The display here does not mean the physical

display (i.e., a monitor screen) of the device; rather, it refers to the logical display space

(e.g., :0.0) of the X Window Server.

In this setting, the lack of security checks for input breaks two security boundaries in

Ubuntu. The first violation is regarding user ID (UID) boundaries. Regardless of the UID

95

of the display service, a launched process will run with the UID of the user who launched

it. For example, if a non-root user runs a GUI application with sudo (e.g., sudo gparted

or a GUI shell with root privileges), the application runs in the same display space of the

non-root user account, even though it runs as the root UID. Since AT-SPI allows control of

any application running on the logical display space, malware with a non-root UID can send

synthetic input to control other applications, even those with root privileges.

Second, process boundaries can be bypassed by sending a synthetic input. Starting with

Ubuntu 10.10, Ubuntu adopted the Yama security module [36] to enhance security at the

kernel level. In particular, one feature in Yama prohibits a process from attaching to another

process using the ptrace() system call, unless the target process is a descendant of the caller.

Thus, a process cannot attach or read/write other processes’ memory if the target process is

not created by itself or its descendants. However, malware can bypass this restriction: it can

write values or perform UI actions to change application status through synthetic inputs or

interfaces available by AT-SPI such as settextvalue() and invokemenu().

4.4.3.3 iOS

iOS 6 lacks security checks at all levels. Missing input validation in its natural language

user interface, Siri, allows an attacker to abuse its privileges to perform sensitive operations

and access sensitive information (attack #5). Furthermore, missing OS-level checks allows

malware to 1) bypass sandbox restrictions to control other apps (attack #6), 2) spoof the

remote view mechanism to programmatically authorize access permissions to sensitive

resources (attack #7), and 3) bypass password protection (attack #8).

Finally, since there are no available checks at the application level, synthetic input from

a malicious app cannot be prevented or detected by the targeted application.

Attack #5: bypassing passcode lock using Siri. 6 iOS allows several security-sensitive

6 We note that this attack on Siri was not originally discovered by us. The attack has been publicly known
since September 2013 [46], but we include this in this chapter due to the importance of its security implications

96

actions to be carried out through Siri even when the device is locked with a passcode.

Such actions include making phone calls, sending SMS messages, sending emails, posting

messages on Twitter and Facebook, checking and modifying the calendar, and checking

contacts by name. Since there is no input validation, any attacker who has physical access

to the iOS device can launch the attack without any knowledge of the passcode.

Attack #6: bypassing the iOS sandbox. App sandboxing [10] in iOS enforces a strict

security policy that strongly isolates an app from others. The data and execution state of an

app is protected so that other apps cannot read or write its memory, or control its execution

(e.g., launching the app). However, the lack of OS-level security checks on accessibility

makes it possible for malware to control other apps by sending synthesized input.

With synthetic touch, malware can perform any actions available to a user, such as

launching other apps, typing keystrokes, etc. That is, malware can steal capabilities of other

apps across the app sandbox.

Attack #7: privilege escalation with remote view. . In addition to app sandboxing, iOS

protects its security sensitive operations with the remote view mechanism [18]. Protected

operations include sending email, posting on Twitter or Facebook, and sending SMS. Remote

view works as follows: when an app tries to access any protected operation, the underlying

service (which is a different process) pops up a UI window to seek user consent. For

example, if an app wants to send an email, it invokes a remote function call to the email

service, which would then pop up a confirmation window. The email message can only be

sent after the user clicks the “Send” button in the pop-up window.

Remote view is considered an effective defense mechanism to prevent misuse of sensitive

operations. However, the lack of input validation in iOS allows malware to send synthetic

touches to spoof user input to remote view and execute these privileged operations.

on built-in AT.

97

Figure 19: Screenshot of passcode and password input in iOS. For passcode (left), typed numbers
can be identified by color differences on the keypad. For the password (right), iOS always shows the
last character to give visual feedback to the user.

Attack #8: bypassing password protection on iOS.

Another protection mechanism in iOS is passwords. This is utilized in two system apps:

the lock screen and the App Store.

The lock screen prevents any unauthorized access to the device and is applied not only

to UI events, but also to security data such as KeyChain and encrypted files. Moreover,

once the screen is locked, all touch events are blocked; thus malware is no longer able to

manipulate apps other than the lock screen.

The App Store asks for an Apple ID and password for each purchase. Although malware

can generate “clicks” to initiate the purchase, without knowing the password, it is not

possible to finish the transaction.

Unfortunately, since iOS always displays the last character of a passcode/password in

plaintext (Figure 19) and background screenshots can be taken through the private API call

createScreenIOSurface in UIWindow class, it is possible to steal the user’s passcode and

password. With a stolen password, since both the lock screen and the App Store accept

synthesized input, malware can programmatically unlock the device and make malicious

transactions.

98

4.4.3.4 Android

The Android platform has the most complete input validation among the four evaluated

platforms. First, Touchless Control [123], a natural language user interface for the Moto X,

utilizes voice authentication: the user is required to register his/her voice with Touchless

Control at first boot; the app then constantly monitors microphone input for the fixed authen-

tication phrase “OK Google Now” from the user. Once the command is captured, it checks

whether the phrase matches the voice signature extracted from the registered phrase; if so, it

then launches the Google Now application to execute a voice command. Nonetheless, like

other non-challenge-response-based authentication, this voice authentication is vulnerable

to replay attacks (#9).

Second, as discussed in §4.4.2, Android requires explicit user consent to acquire ac-

cessibility capabilities. However, its protection is incomplete. Specifically, Android has

no runtime security check for AT. Once an app is allowed to be an AT, it can leverage

the accessibility library to create a new inter-process communication (IPC) channel that is

not protected by the ordinary Android permission system (#10). As a result, a malicious

AT can easily achieve the same effect as capability leakage attacks [56, 31, 41, 70, 164]

and information leakage attacks [84, 167]. Moreover, unlike UIPI, Android’s OS level

access control on accessibility does not protect system apps. In particular, we found that our

malware can change system settings through AT, which offers us many powerful capabilities.

The only missing check in Android is at the application level. Similar to the iOS case,

we did not find new capabilities beyond what is enabled due to inconsistent OS-level checks.

Attack #9: bypass Touchless Control’s voice authentication. Fragile authentication

for AT leads to a vulnerability in Touchless Control on the Moto X. In particular, voice

authentication can be bypassed by a replay attack shown in Figure 20. First, an attacker can

build malware as a background service that constantly monitors sound from the microphone.

As the phrase “OK Google Now” is the only authentication phrase, the user is likely

to repeat it frequently. The malware can easily record the authentication phrase. Once

99

OK,	 Google	
Now!	

1. Record authentication phrase in background

OK,	 Google	
Now!	

2. Play authentication phrase when the user is away.

Call	
Alice!	

3. Command Touchless Control with Text-to-Speech API

Figure 20: The workflow of the attack on the Moto X’s Touchless Control. Malware in the
background can record a user’s voice, and replay it to bypass voice authentication.

recorded, the malware can play the recorded phrase through the device speaker to activate

Touchless Control. Since Touchless Control accepts self-played sound from the speaker to

the microphone, it subsequently launches Google Now. After this, the malware can play

arbitrary commands using the default TTS library for Google Now. Since there is no further

authentication for the command phrase, the malware can utilize a variety of commands to

make phone calls, send SMS, send email, set alarms, and launch applications.

Attack #10: bypassing Android sandboxing and more. Sandboxing in Android [6]

provides isolation between apps to protect memory and filesystem access, and prohibits an

app from interfering with the execution of other apps. Furthermore, its permission system

restricts an app’s access to sensitive resources.

However, once an app is activated as an AT, there are no further restrictions. A malicious

AT can then read UI structure (including location, type, text, etc.) of the whole system and

deliver user actions to any UI element, such as the click of a button, a scroll up or down, a

100

Table 7: The status of output validation on each platform. * means the check enforces an inconsistent
security policy.

Platform Reading of UI Structure Password Protection

Windows UIPI Yes
Ubuntu None Yes*
iOS N/A N/A
Android None Settings*

cut/copy/paste of text, a change of focus, and expand/dismiss of UI. Therefore, malware

can control other apps as if it is the user. Malware can abuse the permissions of other apps,

e.g., even without network permission, our malware can control the Gmail application to

exfiltrate stolen data.

Additionally, malware can change system settings such as user-configurable settings,

and install/uninstall apps. Moreover, malware can programmatically enable developer mode

(e.g., by sending seven synthetic clicks) which can put a device at risk for further infection.

4.4.4 Vulnerabilities in Output Validation

Table 7 summarizes the evaluation results of each platform compared against our output

reference model in Figure 15. iOS does not support alternative output, so its result is omitted

in this section.

Across all platforms, only Windows enforces an OS-level check (UIPI) for output.

However, since UIPI does not have any protection among applications in the same IL,

Windows suffers from the same UI-level attacks described below.

Reading UI state of other applications. All platforms except iOS allow an AT to access

UI structures. The library provides not only the metadata for the UI such as the type of

element, location, and size but also the content of the UI element. Hence, a malicious AT

can monitor other applications in a fine-grained manner. For example, malware can detect

the current state of the target application using 1) available UI structures, 2) UI events such

as change of focus, movement of a window, and change of contents, and 3) user interaction

events. With these capabilities, malware can spy on every action a user takes, as well as

101

maintain an accurate status of an application.

All three platforms (Windows, Ubuntu, and Android) protect the plaintext content of the

password in a password dialog box by default. However, in Ubuntu, AT-SPI fails to block all

paths for retrieving the plaintext of the password (#11). Android can be configured to allow

reading keystrokes on password dialog boxes; this can be enabled by malware implemented

as an AT (as mentioned in #10).

Implementation of attacks. For extracting passwords in Ubuntu (attack #11), we im-

plemented proof-of-concept malware that looks for authentication windows, obtains the

plaintext, and prints out the plaintext on the console using AT-SPI. For attack #12, we

implemented malware that enables the speaking of passwords via accessibility services and

registers itself as the TTS subsystem for the accessibility service. In this two-fold manner,

malware can receive and transmit the contents of a password to an attacker.

4.4.4.1 Windows

With UIPI, Windows is the only platform where the OS applies access control to the reading

of UI structures. Although UIPI prohibits accessing the structures of an application that has

higher IL than the caller, access on the same or lower IL is still permitted.

The application level output check exists for password boxes by default, which disallows

1) obtaining the password via WM_GETTEXT or ValuePattern in UI Automation, and 2)

copying the password via WM_COPY or by generating a Ctrl-C input event. Therefore, malware

cannot steal passwords through the accessibility library.

4.4.4.2 Ubuntu Linux Desktop

In Ubuntu, the application level check for passwords exists, but its implementation (in ATK)

is inconsistent with the UI (in GTK).

Attack #11: stealing sudoer passwords from authentication dialogs. On Ubuntu, we

found a password stealing vulnerability using AT-SPI. The security checks at the OS level

are incomplete. For a password box, there exists an API call, gettextvalue(), on the

102

Figure 21: The administrator authentication dialog of GNOME on Ubuntu 13.10. This dialog asks
for the password of the current user to gain root permissions.

Linux Desktop Testing Project (LDTP, a wrapper over AT-SPI and ATK). It throws a “Not

Implemented” exception when called, meaning that reading passwords through this API is

unavailable. However, AT-SPI missed security checks on a critical accessibility function

of a password box: copytext(). Although physically or synthetically pressing Ctrl-C does

not copy the value of a password box, copytext() from AT-SPI does copy the plaintext

of a password to the clipboard. The clipboard then can provide the plaintext content of a

password. Figure 21 shows a sudo dialog that is vulnerable to this attack. Once the sudoer’s

password is acquired in this manner, malware can easily gain root privileges.

4.4.4.3 Android

While Android prohibits reading of password content from its accessibility service, this can

be disabled via user preferences. In conjunction with the vulnerability of input validation

(attack #10), this restriction can easily be bypassed.

Attack #12: keylogger on Android. Although Android provides protections for accessing

the plaintext of a password, incomplete protections at the OS-level lead to a vulnerability.

Once an app is enabled as an AT (see Attack #10 for detail), the app can change any settings

on the device without user consent. Android provides an option called “Speak passwords”

in its accessibility settings. If enabled, keystrokes on a password box are delivered through

the text-to-speech (TTS) processor. We register malware as a TTS output application. Once

registered, the malware can receive password contents via the OS-level accessibility service.

103

4.5 Discussions

In this section, we explain how accessibility libraries are making it possible to implement our

attacks, discuss the limitations of our attacks, analyze the root causes of the vulnerabilities,

and consider open problems for future work.

4.5.1 Complexity of Accessibility Attacks

As we mentioned in section §4.2, accessibility libraries provide three capabilities: 1)

obtaining events representing UI change, 2) providing a way of programmatically prob-

ing/accessing UI widgets, and 3) synthesizing inputs to UI widgets.

With these functionalities, an attacker can create malware capable of performing suc-

cessful attacks with a degree of relative ease when compared to other non-AT methods that

achieve the same ends. As an example, we will describe how the “Password Eye” attack

(#3) can be implemented using accessibility libraries. To achieve the “Password Eye” attack,

malware needs to: 1) detect when the user types a password, 2) identify the UI “eye” and

click on it, and 3) locate the password field to grab its text in a screenshot. To determine

whether the user is typing a password, we can use the first capability of the accessibility

libraries to keep track of which UI component is currently focused. In particular, on the

Windows platform, this can be easily achieved by registering an event handler in the plat-

form’s accessibility framework that receives the focused UI element at any change of focus.

After being handed a focused element, we can check whether the element is a password box

with an “eye” by assessing its properties reported by the accessibility libraries. For example,

a TRUE value of isPassword property indicates a password box. Once we determine that the

focused element is a password box, we can use the second capability of the accessibility

libraries to get the “eye” button. In particular, since we know the relative position of the

focused text box and the “eye” button, we can walk the UI widget tree provided by the

accessibility library and calculate the position of the “eye”. Then, we can use the third

capability to click it. Finally, the handle to the focused password box we obtained in the

104

first step can also be used to retrieve the location of the box on the screen and also allow

us to grab the actual password typed from a screenshot. A point worth noting here is that

developing attacks using accessibility libraries is very similar to how one manipulates DOM

(Document Object Model) objects using Javascript in a web page.

One may point out that the same attack can be achieved on the Windows platform by

sending traditional Windows Messages (such as WM_CLICK), or using tools such as AutoIt.

However, we argue that the use of the accessibility library greater ease and reliability.

In particular, without the first capability of the accessibility libraries, one may need to

constantly probe the current state of UIs to determine if the user is typing a password.

Secondly, while it might be trivial to use a hardcoded coordinate to click the “eye” button in

a testing environment such as AutoIt, this strategy will be very fragile in a real attack; factors

such as variation in screen size and resizing/moving of the target window may break the

hardcoded approach in a real attack. Using hardcoded locations to extract a password from

screenshots will face a similar issue. Even though it may be possible to reliably implement

our attacks without accessibility libraries, this implementation would be more complex and

require greater effort on the part of the author.

4.5.2 Limitations of the Attacks

Since attacks through accessibility libraries perform actions over user interfaces, they have

an inherent limitation in that they are not stealthy. For example, if the target application is

running in the foreground when an attack is unfolding, the user may recognize visual cues

of the attack, such as button presses, an opening of a new UI window, etc. Furthermore,

attacks via voice commands play sounds, and are thus audible; or they fail if the speaker is

turned off.

However, we argue that these attacks can be launched in a stealthy way. First, malware

can detect whether the user is using the device or not. For desktop machines, the presence of

a user can be detected by monitoring physical keystroke or mouse movement. Malware can

105

exploit a time period when the user is absent to launch UI-intensive attacks. If necessary, the

malware can blank the screen when launching the attack, because screen sleep after some

period of non-use is a natural and expected behavior of the system. For mobile devices,

prior research works [135, 165, 73] discussed how to track the user’s behavior using an app

on the device. With the help of various sensors, such as the camera, face proximity detector,

GPS location, accelerometer, etc., malware can determine when the user is not watching the

screen, away from the device, or when the device is in the user’s pocket. It can then launch

an attack without being exposed.

Second, UI actions can be delivered in the background for some platforms. Thus, an

attack can be carried out even when the user is actively using the device. In Windows, once

a handle to a UI widget is obtained while it is in the foreground, it can still be manipulated

even when it is in the background or minimized. In Linux, probing the UI of a minimized

application is possible. Furthermore, in the worst case, malware can move a window to

nearly off the screen, so that the user does not notice any UI change. In our experiment, if

any pixel of an app is visible on the screen 7, there is no limitation on probing or performing

actions on it.

Third, it is possible to make the attacks on natural language user interfaces stealthy with

the help of hardware. Common audio devices such as the Realtek HD Audio device and other

sound card devices’ drivers provide functionality called Stereo Mix. Stereo Mix sends the

output of system sound to an internal microphone input. Enabling this functionality does not

require any special privilege. Malware can play audio internally to deliver text-to-speech

audio to a natural language user interface. The attack succeeds without outputting audio to

speakers and also works when there is no speaker device at all.

Finally, our experience with OS vendors shows that these threats will be taken seriously.

In the May of 2013, before presenting an attack [103] that takes advantage of private APIs

for synthesizing touches and taking screenshots on iPhone, we informed Apple of our

7 For example, while all other pixels are invisible, only one pixel of the window is visible.

106

1 // On real touch event

2 public boolean onTouchEvent(MotionEvent event) {
3 switch (event.getAction()) {
4 case MotionEvent.ACTION_UP:
5 {

6 // ...

7 // performClick() is called to handle real click event

8 performClick();

9 // ...

10 }

11 }

12 }

13

14 // On a11y request for click

15 boolean performAccessibilityActionInternal(int action,
16 Bundle arguments) {

17 // ...

18 switch (action) {
19 case AccessibilityNodeInfo.ACTION_CLICK:
20 {

21 if (isClickable()) {
22 // the same performClick() is invoked to handle a11y request

23 performClick();

24 return true;
25 }

26 } break;
27 }

28 // ...

29 }

Figure 22: Code that handles the real input (above), and code that handles the a11y input (below) for
click, in View.java of Android. The same function performClick() is used to handle both requests.

attack. In the August of 2013, the exploited vulnerabilities were removed from the then

newly-released iOS 7.

4.5.3 Root Causes, and Design Trade-offs

We strongly believe that to eliminate a11y related vulnerabilities fundamentally, a new

architecture for providing accessibility features is necessary. However, proposing such an

architecture is out of the scope of this work; instead, we present the findings of our root

cause analysis to illustrate why security checks spread across the AT, OS, and application

tend to fail, and to show some of the trade-offs taken in the current implementation of

accessibility features.

The first identified root cause is the emphasis on availability/compatibility of a11y

support in all the studied systems. In every case we have studied, native UI widgets include

logic to handle requests from accessibility libraries, and UI widgets provided by OS are

107

1 static void gtk_entry_copy_clipboard (GtkEntry *entry) {
2 GtkEntryPrivate *priv = entry->priv;

3 // ...

4 // ### security check for password box ###

5 if (!priv->visible)
6 {

7 // do not copy text to clipboard

8 gtk_widget_error_bell (GTK_WIDGET (entry));

9 return;
10 }

11 // ...

12 }

Figure 23: Code that handles copying of text (pressing Ctrl-C) in GTK. Inside the function, GTK
checks the security flag priv->visible to decide whether or not to provide selected text to the
clipboard. If GtkEntry is set as a password box (if the flag is true), then the text will not be copied.

usually built to reuse the same interfaces/channels to handle both real user inputs and a11y

inputs. As a result, it is very hard for an application to distinguish a11y inputs from real user

inputs. This design choice enables many attacks by accepting and processing synthesized

input as if it is a real input (A28). For instance, in Android, physically tapping a UI widget

with a finger will invoke the performClick() function. Equally, on an a11y request, the

same performClick() function is invoked (see Figure 22 for details). In Windows, just

like the real user input, clicks generated by UIAutomation are delivered as a Windows

Message WM_CLICK. Similarly, for Ubuntu and iOS, a11y requests take the same path as

I/O requests within the UI widget. While this means all applications that use the native

UI widgets automatically and naturally work with the requests from accessibility libraries,

such design also imposes a default security policy that makes every widget available to all

ATs. As we can see in attack #2 and #3, this is too permissive policy. Furthermore, in all

the studied systems, if the application/UI developers were to instead implement their own

policy regarding how an application should process requests from accessibility libraries,

they would have to implement their own UI widgets (usually by “subclassing” the native

ones), and this comes with a non-trivial cost.

Second, from both technical and economic perspectives, it is challenging to perform

complete validation and authentication for certain inputs introduced by AT. As a result, new

8Please refer to §4.3.1 New Attack Paths for details.

108

1 // A11y code snippet

2 void atk_editable_text_copy_text (Editable e, int start, int end) {
3 AtkEditableText *text;

4 // ...

5 *(iface->copy_text) (text, start_pos,);

6 // calls gtk_entry_accessible_copy_text()

7 }

8

9 static void gtk_entry_accessible_copy_text(AtkEditableText *t,
10 int start, int end) {
11 GtkEditable *e;

12 // ...

13 gchar *str = gtk_editable_get_chars (e, start, end);

14 // ...

15 }

16 // A11y code end, calls functions in Gtk UI

17

18 // Gtk code snippet

19 gchar* gtk_editable_get_chars (GtkEditable *e,

20 int start, int end) {
21 return (editable)->get_chars (e, start, end);
22 // calls gtk_entry_get_chars()

23 }

24

25 // Final function that returns text content

26 gchar* gtk_entry_get_chars (GtkEntry *e, int start, int end) {
27 gchar *text;

28 text = gtk_entry_buffer_get_text (get_buffer (entry));

29 // ### no security checks at all on getting text ###

30 return g_strndup (text + start_index, end_index - start_index);
31 // return text without checking priv->visible

32 }

Figure 24: Code that handles an accessibility request (ATK) for copying text. ATK internally calls
a function of a module in GTK that supports accessibility. The module then calls a function that
directly interacts with the UI widget (GTK functions). However, the module GtkEntryAccessible
calls a different function gtk_editable_get_chars(), which misses required security checks of the
password box.

109

attack vectors become available due to missing security checks on processing input (A2)

and output (A3) requests from ATs or accessibility libraries. For example, in attack #11,

simply pressing Ctrl-C will call gtk_entry_copy_clipboard in which there is a security

check for preventing the text in a password field from being copied (see Figure 23 for

details). However, a different function copytext() will be executed in ATK, which takes a

different execution path without security checks, potentially leading to password leakages.

We suspect that the ATK code was added to the OS by a group of developers who were not

aware of the principles of input validation and complete mediation, or that the ATK code

was added to the OSs only recently and has thus not been through rigorous security code

review and testing when compared to older portions of the OS.

There are also technical and economic reasons for a lack of validation and authentication.

For example, for the cases of attack #1 and #9, the AT needs to check whether the voice

input actually comes from a real user, and also needs to further authenticate the authorized

user. Voice based validation and authentication require non-trivial technical support, with

potentially high research and development costs.

Finally, to improve the usability of ATs, OSs usually have weak access control on

accessibility libraries; while this makes the installation and use of ATs (their intended

purpose) easy, it is not a good security practice. In particular, accessibility libraries can

usually be accessed by any application on a system. For example, in Windows, iOS 6, and

Linux, any program can be an AT without any authorization. This also opens paths for

attacks so that any (malicious) program can abuse accessibility functionalities to launch the

attacks described in this chapter. The exception is Android; it has a setup menu for enabling

an app’s use of the accessibility library, though this check is only performed at initial app

setup.

110

4.5.4 Recommendations and Open Problems

Based on the root cause analysis in §4.5.3, we present recommendations on how to alleviate

(if not eliminate) the security risks created by the a11y support. Our recommendations are

intended to work with the current architecture for supporting accessibility features, and thus

are limited by the inherent difficulties that come with this architecture; nonetheless, we

believe they will help the community to improve security for a11y before the introduction of

a complete a11y security policy occurs. We will also discuss some open problems involved

in implementing these recommendations.

Our first recommendation is to have fine-grained access control over which program

can access specific functionality of the accessibility library. From our study, we find that

both Linux and iOS have no such access control at all, while Windows allows all programs

to use the accessibility library to control/read the content of any other program with the

same integrity level. Android appears to be the only system that has access control policy

specific for the accessibility library: the user has to explicitly grant the AT the privilege to

use the accessibility library. However, once this privilege is granted, the AT has full access

to all the capabilities of the accessibility library. In many cases, this violates the principle of

least-privileged access. For example, a screenreader will only need to read the content of

other apps through the accessibility library, but it does not need to be able to interact with

other apps. Based on this observation, we recommend the privilege of using the accessibility

library be at least split into two, one for reading the content of other apps and one for the

more privileged capability of interacting and controlling other apps. While this may present

an extra hurdle for users who need AT, it will only incur a one-time setup cost, which we feel

is an acceptable trade-off for the extra security against misuse of the accessibility library.

Our second recommendation is to provide mechanisms for a UI developer to flag how

different widgets in their UI will handle various requests from the AT, rather than requiring

the UI developer to handle this task themselves. For example, in many UI libraries, a

developer can flag a text field as a password field, and the underlying logic of the UI will

111

make the content in the field invisible to both the display and the ATs. However, this

generally appears to be the only instance of such a flag, and it only applies to text fields. We

believe more such flags should be available to specify various a11y related security policies,

and such flags should be made applicable to various kinds of widgets (e.g. attack #2 and #3

can easily be eliminated if a security flag is applicable to buttons). As future work, we will

study what kind of a11y related security policies UI developers usually need to specify, and

what language features are needed for specifying such policy as attributes of widgets in the

UI.

Our final recommendation can be considered a new security component in the current

a11y architecture, and can significantly limit the damage caused by exploitation of a11y-

related vulnerabilities. We propose to extend accessibility support to user-driven access

control mechanisms like UAC in Windows or Remote View in iOS. While this recom-

mendation may not be directly derived from our root cause analysis, we believe it will

fundamentally eliminate many a11y related security issues discussed in this chapter. In

particular, OS vendors should develop versions of access control mechanisms to support

various disabilities. For example, for visually impaired users, the system can read out

(through the speaker) the message seeking permission, and have the user confirm or abort by

clicking the “F” or “J” button on the keyboard (which are tactilely different from all other

keys on the keyboard), and for the users who lack fine motor skills, the permission granting

can be driven by voice recognition. We note that while this approach is not general enough to

support the need for all users with different kinds of disabilities, it will significantly improve

the security for all users that are covered. Furthermore, in the case of voice recognition,

the introduction of a mechanism specifically designed for seeking vocal permission may

significantly simplify the task of authenticating user input (only “yes” or “no” need be

verified, rather than performing general voice recognition), and thus move the burden of

performing voice recognition from the AT developer to the OS vendor (who may have more

resources to research and develop a mechanism that is robust against attack #1 and #9).

112

Finally, we acknowledge that our analysis requires significant manual effort and reverse

engineering work and thus is not exhaustive. We will leave it as an open problem to design

systems that can automatically find a11y related vulnerabilities. We believe this will be a

challenging problem for the several reasons. First, automatically detecting a11y functions

and analyzing their related vulnerabilities requires whole system analysis. Since an a11y

request is regarded as an I/O event, it is processed asynchronously. As a result, it is very

hard to find entry points. The complicated execution of a11y logic extends to many different

low-level modules, which usually make use of many (function) pointers. Proprietary OSs do

not provide source code, and so researchers can only perform analysis with the compiled

binary, which makes the task even harder. Second, unlike general programming errors,

confirming a11y related vulnerabilities requires a deep understanding of the semantics of

an application, which significantly limits the scalability of such analysis. We hope that our

work can motivate further studies toward this direction.

4.6 Related Works

Attacks on Windows. In 2007, it was reported that an attacker could control a Windows

Vista machine by playing an audio clip to Speech Recognition [127]. However, since the

attack could not bypass UAC and assumed Speech Recognition was already enabled, it was

considered a minor bug at that time. Compared to this attack, our attack (attack #1) does

not require Speech Recognition to be enabled before the attack, and we can bypass UAC on

Windows 7 through 8.1 (due to policy changes in UAC [122]).

Just before the release of Windows 7, there was a UAC bypass attack [42] that exploited

the special capability of Explorer.exe to write to system directories. In this attack, a

malware process will attach to Explorer.exe, inject code, and exploit its capability to

write to system directories. Our attack #2 follows the same strategy, but instead of using

low-level function WriteProcessMemory() to inject code into Explorer.exe, we used the

accessibility library to simply click the “OK” button.

113

Attacks on iOS. Recently, it was reported [46] that Siri in iOS 7 could be exploited to

bypass the lock screen and send email, SMS, post on Twitter and Facebook, make phone

calls, etc. We referred to this attack as attack #5 in the vulnerability section.

Although the accessibility library is a private API that is not usable by regular app

developers, the threat is real. Last year, an attack [157] showed that it is possible to

circumvent the Apple App Store review process by successfully publishing an App Store

app that invoked private API calls.

Attacks on Android. In Android, there have been many attacks on the permissions [56,

31, 41, 70, 164] and private information [84, 167] of an app that demonstrate data leakage

through Android’s IPC channel. To address these problems, researchers have proposed a

number of mechanisms [49, 70, 27, 105]. Unfortunately, since all of the proposed mech-

anisms were focused on the official IPC channel, they are not able to prevent attacks

through accessibility libraries. Furthermore, our attacks can steal the capabilities and private

information of other apps.

4.7 Summary

In compliance with the amendment to the Rehabilitation Act of 1973, software vendors have

been continuously adding accessibility features to their OSs. As the technology advances,

accessibility features have become complex enough to comprise a complete I/O subsystem

on a platform. In this chapter, we performed an analysis of the security of accessibility

features on four popular platforms. We discovered vulnerabilities that led to twelve practical

attacks that are enabled via accessibility features. Further analysis shows that the root

cause of the problem is due to the design and implementation of a11y support requiring

trade-offs between compatibility, usability, and security. We conclude with proposing several

recommendations to either make the implementation of all necessary security checks easier,

or to alleviate the impact of incomplete checks.

114

CHAPTER V

SGX-USB: ESTABLISHING SECURE USB I/O PATH IN INTEL

SGX

5.1 Motivation

Today’s system is very complex. Even a simple desktop computer consists of a huge software

stack including operating system, device drivers, system daemons and other applications, etc.

Thus protecting the entire software stack of a system is extremely difficult. One promising

approach to protecting a system is to reduce the attack surface by isolating the execution

runtime into a separate environment. History of building secure OS and hypervisors have

evolved into many software-based approaches [113, 137, 112, 97, 125, 99, 30] to provide the

trusted execution environment (TEE) in commodity systems. Recently, Intel has introduced

a new hardware extension, Intel Software Guard Extension (SGX) [75], which provides

a hardware-based TEE as an enclave. While software-based TEEs still require either a

trusted hypervisor or a trusted operating system, this hardware TEE implementation offers a

strong security guarantee of not trusting privileged software including operating systems

and hypervisors, by isolating memory and registers at the hardware level [37, 134].

Although Intel SGX is now available in the most of the newly manufactured commodity

x86 processors, this hardware TEE is still limited to server or daemon applications because

Intel SGX cannot support trusted user I/O to its enclave that is running in ring 3, due to the

requirement that I/O handling must be done in ring 0. In order to get benefits from Intel

SGX, we design SGX-USB, which can establishe a secure I/O path between a USB device

and an enclave. In particular, SGX-USB opens a secure channel that can support USB

protocol, which enables supporting for variety of user I/O devices including a keyboard,

mouse, camera, speaker, and display, and even for non-user-facing devices such as a disk.

115

To enable a secure channel, SGX-USB places a proxy device that sits in the middle of the

channel and establishes a secure communication channel between an I/O device and the

enclave.

These two devices establish a secure channel that can guarantee the authenticity of end

points, and both the confidentiality and integrity of data channel. establishing a secure

communication channel starts with the remote attestation process that authenticates an

enclave and the proxy device and shares a secret between these two at the same time.

After authenticating and sharing a secret, the proxy device opens a communication channel

between a USB I/O device and an enclave and protect the data transmitted in the channel by

using a derived encryption key from the shared secret. Throughout the remote attestation

process and application of encryption over the channel, SGX-USB can guarantee the three

key security properties: authenticity by remote attestation, and confidentiality and integrity

by encryption. Thus, SGX-USB provides the assurance of user input and allows the enclave

instance to handle commands and data from the user securely. While the currently discussed

applications of Intel SGX only perform the network and the file I/O securely, this new

design enables secure user I/O in the TEE so that Intel SGX can facilitate user-facing trusted

applications, such as authentication manager that securely processes password. Moreover,

we show that constructing an end-to-end trusted I/O channel from one user to another user

over the Internet is possible with SGX-USB; for example, having a video chat over the

Internet. SGX-USB can forward not only the user I/O devices but also general USB I/O

devices through the established secure channel. Its overhead on the bandwidth is around

1%, and added latency is around 11 microseconds, all of which are negligible.

To summarize, we made the following contributions in this chapter:

• We design SGX-USB, which enables the trusted user I/O to an enclave of Intel SGX by

establishing a trusted I/O channel between a USB device and an enclave. The design

of SGX-USB ensures the authenticity of channel end points and the confidentiality

and the integrity of the data that flows through the established secure channel.

116

• We extended the Intel SGX remote attestation process to enable authentication and

secret sharing between a remote device and an enclave.

• We implemented a prototype of SGX-USB with commodity hardware, a small board

computer and a desktop computer, to demonstrate the feasibility of the design of

SGX-USB for securely delivering keyboard input to an enclave. Moreover, we present

a potential interesting use case of SGX-USB for video chat, which establishes a

user-to-user trusted I/O channel over the Internet.

The rest of chapter is structured as follows. §5.2 introduces background on Intel SGX and

several related works for building trusted I/O. §5.3 gives a brief overview of SGX-USB and

presents its threat model. §5.4 describes the design of SGX-USB in detail, and §5.5 demon-

strates compelling use cases that are enabled by SGX-USB. §5.7 presents the evaluation

result of our prototype implementation of SGX-USB. §5.8 discusses further considerations

on current design and implementation of SGX-USB.

5.2 Background and Related Work

This section presents backgrounds on Intel SGX that is necessary to understand the problem

that SGX-USB tackles. The contents of this section include the architecture of Intel SGX,

how SGX utilizes I/O devices, and compare SGX with other TEEs.

5.2.1 Intel SGX

Intel Software Guard Extensions (SGX) [75, 80, 81, 134] is an extension of the x86 instruc-

tion set architecture (ISA), which provides trusted execution environment (TEE), called

enclaves, as a user-level process.

SGX Threat Model. SGX only includes the processor hardware and the program runs

in an enclave as its trusted computing base (TCB). To maintain the TCB without trusting

an operating system, SGX provides an isolated memory space and execution runtime to

an enclave [37]. SGX prohibits any access to the memory and registers that belong to an

enclave from the execution domain other than the enclave at the architectural level. This

117

isolation is applied to all the other programs even including the operating system kernel,

so the access to the runtime of an enclave is strictly prohibited. Moreover, SGX applies

encryption to all of the data that belongs to an enclave to ensure confidentiality and integrity

to protect an enclave from physical attacks such as the cold-boot attack and bus snooping

attack.

Based on this isolation and encryption, an enclave can remain secure from the attacks

that could be originated in operating systems, kernel device drivers, other processes, etc.

Remote attestation. In addition to the isolation and encryption, SGX provides a protocol

for local and remote attestation to ensure the integrity of code and loading parameters of an

enclave instance. An enclave can generate a report of its launching status that contains the

measurement (i.e., hash) of loaded code in the enclave and its security parameters.

The local attestation provides a way of verifying an enclave from the other enclave on

the same hardware. The report of a target enclave will be signed by a hardware key, and the

other enclave can verify the report by using the same key.

The remote attestation lets a verifier placed at a remote location can verify the status

of an enclave. To support remote attestation, Intel provides the Quoting Enclave and Intel

Attestation Service. The Quoting Enclave is a special enclave that can generate a quote,

which is a signed report of an enclave, by going through the similar process to the local

attestation. This quote is signed by the hardware key that is issued by Intel, and Intel

Attestation Service provides APIs for verifying a quote for its validity. Thus, after a remote

verifier obtained a quote from an enclave, it must submit the quote to IAS to check whether

or not the quote is valid.

I/O handling in SGX. Because the design of SGX set the enclave run in the user-space

(i.e., ring 3), the enclave cannot directly handle I/O requests, which typically require kernel

(i.e., ring 0) privilege [37]. Insteads, the application runs outside the enclave handles I/O

request on behalf of the enclave, in cooperation with the operating system in the same way

how a regular process works in the OS.

118

Since the actual I/O is handled by the untrusted operating system without having any

protection, the enclave must protect I/O channel by itself to ensure the confidentiality and

the integrity of data transmitted through the channel. Thus, Intel recommends to use the

remote attestation protocol with Diffie-Hellman key exchange [90, 26, 4] to establish a

secure communication channel between an enclave instance and a remote host, and to use

the sealing feature [4] that provides authenticated encryption using hardware-based key

to store data generated by an enclave permanently on the disk. Additionally, many other

research projects that rely on Intel SGX for the confidentiality and the integrity protection

of data utilize Transportation Layer Security (TLS) to provide authenticated encryption to

its network communication channel [16, 94, 143, 77, 11, 136].

User I/O in SGX. Unlike network connections that can negotiate security parameters over

the channel, user I/O devices such as keyboard and mouse, which are dumb I/O devices,

cannot negotiate encryption scheme for establishing a secure communication channel with

an enclave. The other general I/O devices are the same, for example, graphic display devices

(i.e., a GPU), which requires direct memory access (DMA) for processing data, cannot

work with an enclave securely because they do not have a protocol for establishing a secure

communication channel.

Intel provides a trusted output path for audio and video outputs through the protected

audio and video path (PAVP) [79] on the chipset, which encrypts data that is being transmit-

ted in the bus channel. However, its protocol is proprietary and only the Intel HD Graphics

device, which is an integrated GPU to the processor, can support the protocol. Therefore,

regular I/O devices cannot make use of this protocol.

5.2.2 Related Work

Comparing SGX with other TEEs. Prior research projects have developed various TEEs

in both software and hardware platform. For the software-based TEE, security hypervisors

backed by trusted platform module (TPM) such as Flicker [113], TrustVisor [112], and

119

more generalized work the Extensible and Modular Hypervisor Framework (XMHF) [155]

provides a trusted hypervisor that can provide a strong guarantee of isolation on the system.

Additionally, seL4, a small, verifiable microkernel that guarantees the correctness of the

system thus it protects and isolates a process in a provable manner. However, these software-

based TEEs still requires trusting a set of privileged software and also limited in supporting

full-fledged applications in their TEE. In contrast, Intel SGX does not trust any privileged

software. Moreover, Intel SGX can run unmodified large applications such as Apache, GCC,

and the R interpreter [152].

For hardware-based TEEs, the ARM architecture introduced TrustZone and AMD

recently added a new feature called secure encrypted virtualization (SEV). Unlike Intel SGX,

ARM TrustZone has a trusted path for I/O. The threat model of TrustZone requires a

separated, trusted operating system, and this operating system handles I/O request for the

applications run on this OS in the secure domain. However, this design requires to include

secure operating system into the trusted computing base (TCB), which will enlarge the

attack surface of the TEE.

The AMD Ryzen processor also provides the TEE through its new feature called secure

encrypted virtualization (SEV). The threat model of SEV is similar to, but a little differs

from SGX. In particular, while SGX does not trust underlying OS but runs an application in

the enclave in ring 3, SEV does not trust underlying hypervisor but runs the entire virtual

machine in ring 0. Although the virtual machine instance of SEV runs in privileged level,

the direct memory access (DMA) area for I/O remains unencrypted because I/O devices

cannot handle the encryption.

Trusted I/O Paths. Zhou et al. [168, 169] have built trusted I/O path in commodity a

commodity x86 system using a small trusted hypervisor and driver. In the first version of the

work [168], they isolated a PCI device from an untrusted OS by using the trusted hypervisor.

However, the design cannot create an end-to-end trusted path from the user to the application

because the application is unprotected and runs outside the TCB. In the second version of the

120

work [169], they enabled on-demand, isolated trusted I/O path. On isolating the execution

environment, their approach requires running of a trusted hypervisor, a small, trusted wimpy

kernel and a wimpy application on top of the trusted kernel. In contrast, SGX-USB utilizes

Intel SGX as a hardware-based isolation mechanism and does not require trusted hypervisor

or trusted kernel.

Li et al. [104] have built a trusted I/O path on ARM TrustZone while running device

driver in the insecure domain. However, their protection mechanism relies on the random-

ization of colors on the screen or the randomization of the keyboard layout, all of which are

not directly serving I/O to the TEE nor can support general I/O devices.

Martignoni et al. [110] built a trusted terminal for the applications in the cloud. While

their thin-client implementation looks promising with a small TCB, however, this method

can only be applied to applications running on the cloud machine.

5.3 Overview

SGX-USB aims to establish a trusted communication channel that supports user I/O devices

to an enclave instance of Intel SGX. In particular, SGX-USB opens a secure channel that

can support USB devices because USB can support a variety of user I/O devices including a

keyboard, mouse, camera, speaker, and display, and even for non-user-facing devices such

as a disk. Unfortunately, regular USB devices do not have a capability for negotiating and

applying security parameters to its I/O channel.

To resolve this, SGX-USB places a proxy device that sits in the middle of the channel

and establishes a secure communication channel between an I/O device and the enclave.

Establishing a secure communication channel starts with the remote attestation process

that authenticates an enclave and the proxy device and shares a secret between these two

at the same time. After authenticating and sharing a secret, the proxy device opens a

communication channel between a USB I/O device and an enclave and protect the data

transmitted in the channel by using a derived encryption key from the shared secret.

121

The remote attestation process ensures the authenticity of both channel end points, and

applying authenticated encryption ensures that all I/O requests to/from the target USB device

will securely be delivered through the channel; in other words, no system component other

than the enclave can access the I/O data.

5.3.1 Security Guarantees

SGX-USB provides the following security guarantees on a secure communication channel

that it establishes between an enclave and the USB Proxy Device.

• Authenticity: SGX-USB establishes a secure channel only if it can verify its end

points: an enclave and the USB Proxy Device. The I/O request on the channel will be

encrypted with a secret key that is only shared between an authenticated enclave and

an authenticated proxy device.

• Confidentiality: SGX-USB encrypts all I/O request that flows on the channel using

an encryption key that is secure derived from a shared secret. Because the remote

attestation process ensures that no system components other than two end points of

communication channel will get the knowledge of encryption key, no attackers can

obtain plaintext data of I/O requests.

• Integrity: the encryption also guarantees the integrity of I/O request that flows on the

channel. Because SGX-USB uses an authenticated encryption scheme that is resistant

to data modification, the replay attack, and the reordering attack, no attacker can inject

I/O request on the channel.

5.3.2 Threat Model

We make the following assumption on modeling the threat on building SGX-USB to provide

a secure I/O channel from a USB device to an SGX enclave.

• The operating system running on the computer that runs enclaves is untrusted. This

assumption assumes that attacker can compromise the entire software stack except for

the program in an enclave, including applications running on the OS (not an enclave

122

application), libraries, drivers, and the kernel.

• We trust the hardware component of Intel SGX (i.e., the processor) and the remote

attestation service (Intel Attestation Service, IAS) provided by Intel. This assumption

let us verify the integrity of the program that runs inside enclave and share secret keys

with an enclave and the USB Proxy Device with authentication.

• We trust the software stack that consists the USB Proxy Device (UPD). The trusted

stack includes the operating system kernel of UPD, the usbip driver [124], system

libraries, and the proxy application runs on the device.

• We assume attackers cannot have the physical access to any of the machine compo-

nents that consists SGX-USB. Moreover, we assume that the hardware devices that

we use for building SGX-USB are trusted. This assumption means that the attacker

does not have the power to access the USB device directly (e.g., the keyboard) or to

implant a hardware backdoor.

The assumption of trusting the components of Intel SGX (both hardware and software)

and not trusting operating system conforms to the typical threat model of Intel SGX.

Although we implement the UPD with commodity OS (i.e., Ubuntu 16.04 LTS), which

contains a large code base, the reason behind this decision is for fast prototyping. We believe

that implementing the UPD with minimal TCB is possible; for example, a UPD can be

implemented by using small trusted hypervisor such as XMHF or using the other TEEs such

as TrustZone; or implemented entirely in hardware. We further discuss on this in §5.8.

5.4 Design of SGX-USB
5.4.1 Architecture

To provide the required security properties to the channel that is established to an enclave, the

SGX-USB system consists of following components: an enclave program, the Remote At-

testation Service Provider (RASP), and the USB Proxy Device (UPD). Figure 25 illustrates

how the SGX-USB components are connected.

123

Remote	Attestation	ServiceApp
Enclave

Remote	Attestation
Service	Provider	

Intel
Attestation
Service

USB	Proxy	Device

OS

Ethernet	
Adapter

Protected by TLS
Protected by SGX-USB

SGX-USB	Device	Components

Trusted component
Untrusted component

Device
Driver

Secure
App

Figure 25: A diagram that illustrates the architecture of SGX-USB. An application that handles I/O
runs in the enclave. The enclave will authenticate with the remote attestation service provider (RASP)
through the Intel SGX remote attestation process. Intel Attestation Service (IAS) will provide the
verification of a quote generated for an enclave, to verify the authenticity of an enclave. The USB
Proxy Device (UPD) will receive the signed quote then verifies the signatures of the quote, and then
establishes a secure communication channel with the enclave and forward USB I/O devices.

Enclave Program. In SGX-USB, the program that will process I/O must be run in an

SGX enclave. This program can be any application that utilizes the secure I/O channel. For

example, on utilizing a secure I/O channel as a secure method of processing password, a

program that handles the authentication process with user’s password will be running in the

enclave.

Because an enclave of SGX cannot directly handle I/O requests, the enclave communi-

cates through the untrusted part of the program (i.e. ocall) that handles (untrusted) I/O re-

quests such as networking and exchanging unencrypted traffics with the USB Proxy Device.

Over the untrusted channel, an enclave and the USB Proxy Device wrap the channel with

an encryption layer to provide security guarantees on the confidentiality and the integrity of

the data that they stream through the channel.

To share an encryption key and to verify the authenticity of the channel end point,

SGX-USB utilizes the remote attestation process provided by Intel (through Intel IAS)

124

to prove its authenticity and integrity of the program in the enclave and verifying the

USB Proxy Device. This process is handled by the remote attestation service provider

(RASP).

Remote Attestation Service Provider (RASP). The RASP handles the verification of the

authenticity and integrity of an enclave program through the remote attestation protocol of

Intel SGX. The RASP is a server program that resides on the network (i.e., on the Internet)

and verifies whether or not the current enclave program is intact. By communicating with the

Intel Attestation Service (IAS) and the enclave, the RASP receives a quote that is generated

by the enclave, which indicates the launching status of the enclave, and sends the quote to

the IAS to get a signed quote. Subsequently, the RASP signs the quote by its private key to

make sure the authenticity of the ECDHE security parameter in the quote, which will be

used for establishing a secure communication channel between the USB Proxy Device and

the enclave.

Intel Attestation Service (IAS). Intel Attestation Service is a part of the remote attestation

infrastructure of Intel SGX. The job of the IAS is to verify a quote generated by the Quoting

Enclave, which is a signed data of a measurement report of an enclave. Because all the

quotes of enclaves are protected by a secret key that is fused in the processor and only Intel

knows, only the IAS can verify the legitimacy of the quote. The RASP verifies the quote

received from an enclave using the IAS to ensure the authenticity of the enclave.

USB Proxy Device (UPD). The USB Proxy Device is a proxy that forwards packets from

USB I/O devices to an enclave through secure communication channels. The UPD sits

between USB I/O devices and the enclave, and it acts as a middle man that creates secure

I/O channel and forwards the I/O requests. To establish the secure channel, the UPD first

shares a secret with the enclave program by following the remote attestation process. After

sharing a secret, the UPD derives an encryption key and apply an encryption layer to the

channel between an enclave and itself to make the channel secure. After establishing a

secure communication channel protected by encryption, the UPD forwards USB packets

125

1. SP initiates the remote attestation

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

Figure 26: The remote attestation process of Intel SGX.

from the target USB device to an enclave, and from an enclave to the target device, vice

versa.

5.4.2 Verifying Authenticity and Sharing Secret through Remote Attestation

Before establishing a secure communication channel between the UPD and an enclave, both

components authenticate each other to check if the each end point of the channel is intact.

Because the regular remote attestation protocol provided by Intel only allows us to verify

an enclave from the RASP, we extended the protocol to let the UPD verify an enclave and

sharing a secret between them.

Intel SGX Remote Attestation. Intel SGX provides a way of attesting the launching status

of an enclave through the remote attestation protocol. Figure 26 illustrates how this process

works. In the following, we describe each step of the protocol.

1. The service provider (the RASP), which is a remote party that requests the verification

of an enclave, initiates the remote attestation process.

126

2. The enclave that is being attested gets the request then send msg0, which contains

group ID of an enclave and msg1, which contains the public key (i.e., g_a) parameter

of the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) protocol that will be used

for sharing a secret with the service provider at the end of the remote attestation

process.

3. Next, on receiving both msg0 and msg1, the service provider verifies the group ID

(must be 0) in the msg0. If the group ID is zero, then the service provider requests

a revocation list (i.e., SigRL) from the Intel IAS. This SigRL is signed by Intel IAS

and will be used by the enclave for verifying the validity of the service provider.

After processing the messages, the service provider generates msg2, which contains

its public key parameter for the ECDHE key exchange (i.e., g_b).

4. After receiving msg2, the enclave generates a report and gets a quote for the report by

the Quoting Enclave (QE). A report of an enclave includes the measurements (i.e.,

hash) of the launching status of an enclave that only Intel Attestation Service can

verify as well as both of public key parameters (g_a and g_b) for the ECHDE key

exchange. The Quoting Enclave, an enclave that is developed by Intel, will sign the

report, and the enclave sends this quote to the service provider as msg3.

5. Subsequently, the service provider receives msg3 and send it to the IAS to verify

whether the quote is valid or not. Only for the valid quote, the IAS will return a signed

quote with a signature generated by Intel’s private key. The service provider verifies

this signature; if it is valid, the service provider generates a shared secret and then

send the signed quote to the enclave as msg4, by encrypting the signed quote with the

secret key.

6. The enclave also calculates a shared secret and derives an encryption key; then it

decrypts the quote from msg4 using the key and verifies the signature of the quote. In

consequence, the enclave can ensure that it has shared a secret with a service provider

127

1. User initiates SGX-USB

2. Enclave sends msg0, msg1, and g_a

3. SP sends msg2, sigRL, and g_b

4. Enclave sends msg3 (Quote)

req SigRL
get SigRL

req Sign Quote

get Signed Quote5. SP sends signed quote and
 verifiers (encrypted with g_a_b)

6. Enclave sends signed quote (g_a)
Signed Quote (g_a)

7. Send g_c and
 verifier (g_a_c)

8. Enclave sends verifier
 (encrypted with g_a_c)

RA END

Service
Provider

Intel
IAS Server

Client
Enclave

USB Forward
Device

Figure 27: An extended remote attestation process for SGX-USB. Steps from 1 to 5 remain the same
as the regular remote attestation of an enclave. Procedures marked with the bold face (Steps 6, 7, and
8) indicate additional procedures for attesting an enclave from the USB Forwarding Device.

that is certified by Intel (because they cannot get the correct signature from IAS unless

Intel does not certify them), and the service provider can ensure that it has shared a

secret with a legitimate enclave instance (because IAS will not sign the quote if an

enclave instance is not legitimate). Note that both the enclave and the RASP have

shared a secret (i.e., g_a_b) through the ECHDE protocol.

SGX-USB Remote Attestation. To share a secret between the UPD and an enclave, we

extended the remote attestation process of Intel SGX. Figure 27 shows the process of the

remote attestation with our extension. We describe the extended part of the process in the

following.

• For the step 1, we changed the process to be user initiated instead of the service

provider.

• After the step 5, the enclave sends the signed quote (decrypted from msg4) to the

UPD.

128

• On receiving the signed quote, the UPD verifies if the quote is correctly signed by

the Intel’s private key and the private key of the RASP. Only if both signatures are

verified, the UPD generates an ECDHE parameter and send the public part (i.e., g_c)

to the enclave as msg5, along with the signature of this public parameter and the

public key that can verify the signature. Note that the UPD presents a public key as a

certificate that contains its signature, signed by the RASP.

• On receiving msg5 from the UPD, the enclave verifies the signature of the ECDHE

parameter (i.e., g_c) using the public key of the RASP, to check if the RASP has

certified the signing key. As a result of the process, the UPD has verified that both the

IAS and the RASP have signed the quote (so it is valid), and the enclave has verified

that the signature of the public key parameter (i.e., g_c) is generated by a public key

that is certified by the RASP (so the UPD is certified one). Only if all signatures are

verified, both the enclave and the UPD calculates a shared secret (i.e., g_a_c) and

derives an encryption key that will be used for securing the I/O channel.

5.4.3 Trust Chain and User Verification

Trust Chain. For guaranteeing the authenticity of the channel end points, SGX-USB trusts

two private keys during the remote attestation process. First, we trust the private key of Intel

Attestation Service (IAS) that is used for signing quotes of an enclave. The quote from an

enclave, an evidence of running a correct enclave, can only be verified by Intel IAS. By

trusting Intel IAS, the USB Proxy Device can verify that it currently communicates with a

real, valid enclave instance.

Second, we trust the private key of the remote attestation service provider that signs the

public key of the USB Proxy Device. In this regard, an enclave can verify the validity of the

UPD by checking if the public key of the UPD that signs its ECDHE parameter is issued by

the RASP, by verifying its signature.

User Verification. Although the public key infrastructure and cryptographic operations can

129

Figure 28: The user interface for verifying an enclave and its usage, presented in the USB Proxy
Device. Figure on the left shows how the UPD displays the request for establishing a secure channel
to a keyboard from an enclave. The information displayed on the LCD screen indicates the name of
an enclave (i.e., AuthMgr), the name of the requested device (i.e., Keyboard), and application specific
information for indicating the usage of the input (i.e., paypal.com). After clicking the SELECT button
(i.e., the user approves), the screen will show the ’OK’ sign at the end of the second line to indicate
that the secure channel is established.

guarantee the authenticity, the confidentiality, and the integrity of communication channel,

the establishment of the channel must go through the user verification process to ensure that

the use of the channel follows the user’s intent.

To this end, the UPD explicitly display the identity of an enclave (e.g., application name),

the device that the enclave connects to (e.g., keyboard), and the usage of the device (e.g.,

that domain name that the keystrokes will be submitted).

Figure 28 shows an example of the user verification process of SGX-USB on using the

system as a password authentication manager. On the screen, the first line displays the

application name as AuthMgr and the device name as KBD to indicate that the AuthMgr

enclave would like to talk to the keyboard device. In the second line, the UPD will display

how the user input will be used for, in other words, displays the domain name paypal.com

to indicate that the password typed by the user will be submitted to the paypal.com.

To authorize the access, the user can click ’OK’ button on the device (indicated as Select

in Figure 28). The channel will be established only if there is a user approval; otherwise, the

UPD will not make the connection to the device.

130

Key ID
(4 bytes)

Shared Secret
(32 bytes)

Alg ID
(4 bytes)

“SGXRAENCLAVE\0”
(13 bytes)

“SGXRASERVER\0”
(12 bytes)

M :=

KEY := SHA256 (M)
SMK := KEY[0..16]
SK := KEY[16..32]

Figure 29: The data format for deriving secret key from a shared secret. The key derivation function
uses the SHA-256 message digest algorithm to derive a 16 bytes secret key from a shared secret.

5.4.4 Integrity and Confidentiality: Encrypted Communication Channel

To protect the communication channel between an enclave and the UPD, SGX-USB wraps

the channel with an encryption layer protected by the key that is exchanged during the

remote attestation process. In short, SGX-USB applies the AES-128-GCM scheme, which

is an authenticated encryption with associated data (AEAD) that can protect both data

confidentiality and data integrity.

Key derivation. After finishing the remote attestation process, both an enclave and the

UPD have shared a 256-bit secret through ECDHE protocol using the NIST P-256 curve. To

derive a 128 bit key for an AES encryption, SGX-USB followed the same way on how Intel

derives a secret key in their SDK example; the scheme uses the SHA-256 message digest

algorithm. Figure 29 illustrates how the key derivation function works. By hashing the Key

ID (0 in this case), the 32 bytes shared secret, the Algorithm ID (0 in this case), and two

string literals SGXRAENCLAVE and SGXRASERVER, the derivation function generates a 32 bytes

message digest and uses the latter 16 bytes (SK in Figure 29 for the encryption key.

Encryption Scheme. SGX-USB uses AES-128-GCM for the encryption scheme for the

secure channel. Since the GCM (Galois Counter Mode) is an authenticated encryption with

associated data (AEAD) encryption scheme, we can use one key for protecting both the

confidentiality and the integrity of the data. To encapsulate a plaintext USB packet into an

131

Authentication Tag (16 bytes) Payload Size (8 bytes)

Encrypted Payload (<264 bytes)

Excluded from AES-GCM data authentication

Figure 30: The header format for delivering encrypted payload on trusted I/O channel in SGX-USB.
Authentication Tag will be used for verifying the integrity of both the size field and encrypted
payload. While the AES-128-GCM encryption applied only to the payload, the size field is supplied
as additional data for AES-128-GCM data authentication; thus the encryption scheme protects the
integrity of both encrypted payload and the size field.

encrypted packet, we attach a 24 bytes header on the payload followed by the encrypted

packet payload. Figure 30 shows how the header of a packet in the channel composed.

To send a plaintext USB packet over the secure channel, we first identify the size of

the packet. To protect the integrity of both encrypted text and the size field, we encrypt the

packet payload using the AES-128-GCM encryption scheme. At the same time when the

encryption is being processed, we put the size (8 bytes) field as the additional data to be

authenticated. In this way, the scheme allows us to detect any forgery on both encrypted

data and the size field. As a result of an encryption routine, the scheme will generate a 16

bytes authentication tag that will be verified when decrypting the data to check if the data is

intact. We put this tag at the top of the header to deliver the tag to the other end point.

We process the decryption in a reverse way. After receiving the header data, we initialize

a decryption engine with the secret key, the authentication tag in the header, and the size

field in the header as the additional data to authenticate. The encryption scheme will return

true only if when the secret key and the authentication tag is matched.

Another point that is essential on applying the AES-128-GCM encryption scheme is the

setting of initialization vector (IV). To securely use the encryption scheme, one must not

132

reuse the IV for one secret key. To follow such a secure scheme, we set a 12 byte (96bit)

integer counter value starting with zero value for each of sending and receiving side, and

increment IV counter per each en(de)cryption operation. In this regard, the IV will not

be reused if the channel sends less than 296 packets, which is a practically unreachable

number. Additionally, because the IV counter is monotonically increasing on each sending

and receiving side, the scheme is resistant to the replay and the reordering attack.

5.5 Use Cases

This section illustrates potential use cases of SGX-USB. We present examples for applying

SGX-USB on protecting user’s password, and on establishing end-to-end trusted I/O channel

for video chat. Although we only cover these two use cases as examples, theoretically,

SGX-USB can support any USB device since SGX-USB forward USB I/O channel through

established secure communication channel.

5.5.1 AuthMgr: Protecting User’s Password using SGX-USB

Password is an essential user input that requires confidentiality protection because it is a

credential for a What-you-know factor of the authentication. Attackers can impersonate

themselves as a legitimate user if an attacker possesses user’s password. Under typical

operating system settings, there are several ways of attacking the password input. For

attackers with the kernel level privilege, they can easily intercept USB HID messages

to record keystrokes that user types on a password box. Even with the lower, user-level

privilege, attackers can either directly read process memory or build user-level keylogger to

obtain the typed password.

To block such attack pathways, we apply SGX-USB to protect user’s password. Suppose

a user wants to log on to Paypal while his/her machine has already been infected by a kernel

level malware (assuming the highest threat). When the user types a password, the user’s

password can be recorded or stolen from the memory by methods mentioned above.

However, SGX-USB can block such attacks. Before the user types a password, SGX-USB

133

EnclaveUSB	
Proxy Eth Eth

Enclave USB	
Proxy

Protected by Enclave Attestation
Protected by SGX-USB

Trusted component
Untrusted component

User	device	#1 User	device	#2

The Internet

Figure 31: A diagram that illustrates the end-to-end I/O protection use case of SGX-USB for the
Internet video chatting. The USB proxy device on the user’s machine will forward USB devices
required for video chatting such as camera, microphone, speaker, and display. The video chat
application running in the enclave can securely access these USB devices, and send I/O data through
the secure communication channel over the Internet between the enclaves.

will establish a secure communication channel to an enclave that handles the authentication

process with the password. After the user identifies that the secure channel is established,

the user types his/her password, and user’s keystrokes will be available only to an enclave as

plaintext. Because the secure communication channel ensures that the attackers cannot harm

the confidentiality of the data, the attackers will have no knowledge about the password.

Additionally, Intel SGX guarantees that no program other than the enclave, including the

kernel malware, can read the data in the enclave’s memory; thus the password is protected

from the attack.

After getting the password from the user, the enclave handles the authentication process

to the service using a secure network channel such as HTTPS, which is protected by TLS.

When the service accepts the password and returns a session cookie, the enclave will only

return the cookie as a one-time session token, which will become invalid after the user logs

out after he/she finishes the session, to the user’s web browser.

Although the malware could steal the session cookie from the machine, the password

remains secret to the attacker.

134

5.5.2 Internet Video Chatting: A Potential Use Case

SGX-USB can establish not only a trusted I/O channel to an enclave within the machine but

also an end-to-end trusted I/O channel between an enclave in the machine and enclaves over

the Internet. Figure 31 illustrates how the end-to-end trusted I/O channel can work with an

example of video chat over the Internet.

On one end device, the UPD establishes multiple secure communication channels to the

video chat application running in an enclave, and then forwards camera and microphone

devices to the enclave. On the other end device(s), the UPD of a remote machine establishes

secure communication channels to the video chat application running in an enclave, and

then forward display and speaker devices to the enclave. Finally, the enclave on one end

and the enclave on the other end establishes a secure communication channel (through the

authentication method in the video chat service). After all the connections are established,

the video and audio stream data provided by a user at one end can securely be delivered all

the way down to the other end’s display and speaker device.

Because all channels are established with proper authentication (by the remote attestation

process of SGX-USB and the authentication in the video chat application) and protected with

confidentiality and integrity guarantee, any attacker in the middle including OS, untrusted

application, and network and service operators can neither hijack the communication nor

evaesdrop the channel. Moreover, the video chat application is protected by an enclave of

Intel SGX; thus no software attacker can eavesdrop or altering video chat data from memory

or other system resources.

5.6 Implementation

We implemented our prototype of SGX-USB using a desktop machine that supports Intel

SGX and Raspberry Pi 3 model B device, which is a small board computer, and securely

forwarded a keyboard device to an enclave to reflect the AuthMgr use case in §5.5. In the

following, we describe the details of implementation settings.

135

Table 8: Source code line count for the software components of SGX-USB.

Component Module Language SLOC

Enclave
Core C++ 571
USB HID Driver (Keyboard) C++ 140
OCALL Layer C++ 125

USB Proxy Device
Remote attestation and Proxying C++ 658
LCD Controller Python 32

Remote Attestation
Server C++ 280

Service Provider

Common Library Crypto, Socket, etc. C++ 2,944

Enclave. We implemented the enclave application that securely processes a user’s password

for login (AuthMgr in §5.5) on a desktop machine equipped with a quad-core Intel Core i7

6700K (4.0Ghz) processor, which supports Intel SGX, attached with 32GB of DDR4 RAM

and running Ubuntu 16.04.2 LTS. For the software component for the enclave, we used the

Linux version of the Intel SGX SDK (v1.9), which we can clone the code publicly from

Github. The trusted part of the program consists of 571 lines of C++ code for handling the

establishment of a secure channel including remote attestation and encryption, and 140 lines

of C++ code for handling keyboard input through the USB HID protocol. The ocall layer,

which is untrusted part of the program, for transmitting network packet to the UPD and the

target login service through TLS is composed of 125 lines of C++ code.

USB Proxy Device. We implement the USB Proxy Devices using a Raspberry Pi 3 Model B

device equipped with a quad-core ARM Cortex-A53 (1.2Ghz) processor, attached with 1GB

DDR3 RAM and running Ubuntu 16.04.2 LTS for the armv7l architecture. We construct the

communication channel between the desktop machine and the USB Proxy Device using a

Gigabit Ethernet adapter connected to the USB 2.0 port of Raspberry Pi, which supports

around 310Mbps for its maximum throughput. For proxying USB devices to the network

adapter, we use the USBIP [124] project which is included in the Linux kernel. For the part

that handles the establishment of a secure channel including the remote attestation process

136

and encryption of packets, we composed it with 658 lines of C++ code. For controlling

the LCD display on the USB Proxy Device, we implemented a Python program that uses

AdaFruit_CharLCD library with 32 lines of code.

Remote Attestation Service Provider. We implemented the remote attestation service

provider (RASP) for handling the Intel SGX remote attestation process using OpenSSL

and libcurl for communicating with the Intel IAS, on a server equipped with Intel Xeon

E3-1271 v3 (3.6Ghz).

5.7 Evaluations

We evaluate SGX-USB by answering the following questions:

• How secure is the I/O communication channel established by SGX-USB? (§5.7.1)

• How much overhead does SGX-USB incur on delivering I/O packets in terms of

throughput and latency? (§5.7.2)

• How long does it take to establish the secure I/O channel through the remote attestation

process? (§5.7.2)

5.7.1 Security

The threat model of SGX-USB excludes the operating system from its trusted computing

base (TCB). So there are several points in the system that attacker can intervene before and

after SGX-USB establishes a secure I/O channel. In the following, we go over attack cases

and show how SGX-USB block such attacks.

Attacks against enclave instances. The first avenue for an attack is to thwart the protection

provided by an SGX enclave instance. Because Intel SGX isolates all memory access from

the entire domain controlled by attackers including operating system, attackers cannot obtain

nor alter the runtime data in the enclave’s memory. Additionally, attackers cannot change

the behavior of an enclave instance because the remote attestation process ensures that the

integrity of the code in the enclave. One possible way would be launching a malicious

137

enclave instance and establishing secure I/O channel using this enclave. However, because

the remote attestation process of SGX-USB not only includes the IAS but also utilizes

the RASP, the RASP will not generate a signed quote if the enclave instance (and its

measurement) is not pre-registered to the service. By only using the set of pre-registered

enclave applications, an attacker could launch a disguising attack that invokes a different

enclave instance with the enclave what user wants to use. In such a case, at the final

verification stage of SGX-USB, the user will notice that the name of the malicious enclave

instance is not the enclave that user has his/her intention, so request for establishing secure

I/O channel will be rejected.

Attacks on the remote attestation procedure. Attackers could try to forge an acceptable

message during SGX-USB’s remote attestation process. First, an attacker could attempt

to generate a fake quote; for example, the attacker could present a valid quote message

with a legitimate measurement for a registered enclave while executing a malicious enclave

instance. Nonetheless, this is strictly protected by the Intel SGX hardware and the IAS.

All the measurement reports must be generated by the secret key fused into the processor

hardware, and the quote can only be verified by the Quoting Enclave, which is created by

Intel. Thus, the attacker cannot either generate valid quote with forged message or pass the

verification process of the IAS.

Another avenue of attacking the remote attestation process is to forge the message

generated by the USB Proxy device. Again, forging message requires generating the correct

signature that bounds to the private key of the USB Proxy Device or a private key signed

by the RASP. Without obtaining the private key of these trusted instances, no attacker can

forge the message on the remote attestation process.

Finally, an attacker could attempt to build a fake USB Proxy Device to inject arbitrary

I/O message to an enclave instance. Although we set our threat model to exclude attack-

ers with any physical access to the device, the attacker could obtain an instance of the

138

USB Proxy Device if the device available in public. Because current prototype implemen-

tation builds the USB Proxy Device as a small computer instance, the attacker who can

obtain the device can disassemble to leak the private key signed by the RASP and use the

key to build a fake instance of the USB Proxy Device. However, we believe that this is

just an implementation issue; this can be protected by implementing the UPD with the

other TEE or entirely in hardware. We further discuss on other trusted ways of building the

USB Proxy Device in §5.8.

Attacks on the secure channel. Attackers could attempt to decrypt or inject data on the

established secure channel. Unfortunately, the secure channel is protected by a symmetric

encryption scheme, AES-128-GCM, which is an authenticated encryption with associated data

(AEAD). The correct use of the scheme guarantees that no attackers can decrypt or alter the

encrypted data without obtaining the encryption key. To achieve this guarantee, SGX-USB

follows the same way in how Transportation Layer Security (TLS) utilizes the same scheme

as AEAD (e.g., use decrypted data only if tag matches, encrypt only short block, does not

reuse the same IV, etc.). Moreover, because ECDHE key exchange scheme securely derives

the key, attackers can obtain the key only if by breaking the scheme or by forging the key

exchange message, all of which are impossible in SGX-USB construction.

Despite the fact that SGX-USB can guarantee the authenticity of channel end points and

the integrity and the confidentiality of the data on the channel, SGX-USB cannot guarantee

the availability of the channel. We further discuss on this limitation in §5.8.

5.7.2 Performance

We evaluated SGX-USB for the performance of I/O channel in terms of throughput and

latency. Moreover, we provide timing information how long does the establishment of a

secure I/O channel through remote attestation takes.

Throughput and Latency. To evaluate the performance of the secure I/O channel estab-

lished by SGX-USB, we measure the throughput and latency of the channel for various

139

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Packet Size (bytes)

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

bp
s)

17Mbps
34Mbps

57Mbps

92Mbps

138Mbps

181Mbps

222Mbps

243Mbps

285Mbps 291Mbps

AES-128-GCM
No encryption

Figure 32: The measured throughput of the secure I/O channel for various packet size.

packet sizes. To help understand the result, we note that the maximum packet size of

the USB protocol is 1 KB and typical packet size for USB HID devices is 32–512 bytes.

Although we use a Gigabit Ethernet adapter (max bandwidth 1Gbps) for the communication

channel, the adapter is connected to a USB 2.0 port (max bandwidth 480Mbps) due to the

hardware limitation on the USB Proxy Device so the maximum bandwidth of the channel is

around 310Mbps without any encryption or encapsulation.

Figure 32 depicts the throughput of the secure I/O channel for various packet size and

Table 9 lists detailed numbers.

The smaller packet size incurs more overhead on both encryption process (CPU) and size

(bandwidth). Because SGX-USB applies a separate instance of AES-128-GCM encryption

(i.e., using a different IV) per each packet, the number of required encryption initialization

process is increased for the smaller packet size. Moreover, because SGX-USB adds small

header data (24 bytes) per each packet for transmitting data authentication tag (16 bytes)

and indicating payload size (8 bytes), delivering smaller packet would incur more size

overhead. Furthermore, we deliver USB packets over a TCP connection on the Ethernet link,

140

Table 9: The measured throughput of the secure I/O channel for various packet size, in five seconds
of transmission. The throughput measured by the amount of payload data transmitted on the channel
without counting any additional data for encapsulation. W/O encapsulation indicates the channel
throuput when we count the entire amount of data transmitted through the channel including header
information. No encryption indicates the channel throughput when we applyed payload encapsulation
(i.e., adding of the header) but did not apply encryption.

Packet Size (Bytes) 64 128 512 1024 4096 8192

W/O encapsulation (Mbps) 181.3 295.1 309.6 306.8 294.6 292.2
No encryption (Mbps) 84.1 187.0 270.5 286.1 289.4 289.6
AES-128-GCM (Mbps) 57.1 91.5 181.0 222.3 285.3 289.4
Overhead (%) -32.1% -51.1% -35.5% -22.3% -1.4% -0.07%

Table 10: The measured average latency of the secure I/O channel for various packet size, in five
seconds of transmission. No encryption indicates the latency incurred when we applyed payload
encapsulation (i.e., adding of the header) but did not apply encryption.

Packet Size (Bytes) 64 128 256 512 1024 4096 8192

No encryption (usec) 1.74 1.93 2.39 4.64 9.10 35.99 71.53
AES-128-GCM (usec) 2.85 3.51 4.71 7.19 11.71 36.51 71.94
Overhead (usec) +1.11 +1.57 +2.32 +2.55 +2.61 +0.52 +0.41

so additional 50 bytes size overhead is applied per each 1426 byte payload (1426 = 1500

(MTU) - 50 (TCP/Ethernet) - 24 (header)).

Because of these overhead characteristics, SGX-USB demonstrated 57.1 Mbps of

throughput for 64 bytes packets, which is around 18% of the maximum throughput. However,

for 4K bytes packets, the bandwidth became saturated, and the overhead is negligible.

Encapsulating the packet and applying encryption on the packet also incurs overhead on

the channel latency. Figure 33 depicts the throughput of the secure I/O channel for various

packet size and Table 10 lists detailed numbers. Although the latency increases as the packet

size increases, the absolute value of the latency in maximum USB packet size (i.e., 1 KB) is

around 11 microsecond, which is fairly negligible.

141

16 32 64 128 256 512 1K 2K 4K 8K
Packet Size (bytes)

0

10

20

30

40

50

60

70

La
te

nc
y

(u
se

c)

AES-128-GCM
No encryption

Figure 33: The measured average latency of the secure I/O channel for various packet size, in five
seconds of transmission.

Authentication speed. The remote attestation process of SGX-USB requires:

• Two round trips between the enclave and the RASP for delivering msg0, msg1, and

msg2; and msg3 and msg4,

• Two round trips between the RASP and the IAS, one for requesting and receiving

SigRL and the other for and the signed quote,

• One round trip between the enclave and the UPD for exchanging ECHDE parameter

(using the signed quote).

To model a realistic use case, we setup the connection between the enclave and the UPD as

a local network connection, place the RASP on the remote network using the Google Cloud

Platform and using the test IAS server provided by Intel.

The total round trip time for the remote attestation for SGX-USB (Figure 27) from step 1

to step 7, it took in average 553 milliseconds, with standard deviation 31ms for 100 times of

remote attestation trials. This overhead is not that much because the entire process of remote

attestation is one-time cost per each channel; it only happens when the USB Proxy Device

142

establishes a new secure communication channel with an enclave.

5.8 Discussions

In this section, we discuss on how SGX-USB can support general I/O, on the performance of

the channel, on the feasibility of hardware implementation of the UPD, on authenticating the

identity of an enclave, and the availability of the channel, which is an unprotected security

property on the channel.

General I/O support with SGX-USB. On forwarding a USB device to a network device,

the prototype design of SGX-USB borrows the implementation of the usbip [124] project

that generally supports all kinds of USB devices, so SGX-USB is. Because the USB protocol

transmits its data as packets, delivering each USB packet as a packet over the IP can be done

by only incurring transformation overhead. Moreover, since we use transmission control

protocol (TCP), which is a reliable protocol, for the data transmission, so there will be no

missing packet on the other end. Therefore, as long as the driver software can run in the

enclave, SGX-USB can support any USB device by forwarding its packet to the enclave.

In addition to USB devices, we believe that SGX-USB can forward devices that support

RDMA (remote direct memory access) protocol through established channel by implement-

ing a driver counterpart in the enclave, because by design, data for RDMA can be delivered

over the network.

Channel Performance. Performance evaluation result of SGX-USB shows that its latency

is in a performant range, but suffers performance bottleneck due to the encryption process.

However, the bottleneck can be removed if the processor supports hardware-based encryption

engine. Starting from newer ARM processors, processor manufacturers other than Intel try

to integrate hardware module that accelerate encryption speed.

Regarding the size overhead of the channel bandwidth, the higher bandwidth would

mostly be used by USB at bulk transfer, which sends a large amount of data split in each

1K byte packet. In such a case, SGX-USB can set a buffer to consolidate multiple USB

143

packets into a large chunk (e.g., merging 16 packets into a 16Kbytes packet) only for the

bulk transfer then the overhead will be negligible.

Hardware implementation of the UPD. Although we implemented our prototype of

SGX-USB using a Raspberry Pi, which is a small board computer, we believe that imple-

menting the UPD in hardware or other TEE with smaller TCB is feasible. The hardware

implementation of UPD may include a USB host controller to receive raw packets from I/O

devices, a communication interface to the enclave device, (in any form, e.g. Ethernet or USB

OTG guest device), a cryptographic engine that handles the remote attestation process and

AES encryption, and a small storage that is loaded with trusted public keys and a firmware

that controls the components.

A more flexible design would be utilizing ARM TrustZone. In this case, by implementing

the usbip driver on a small and secure TEE OS for TrustZone, we can significantly reduce

the size of TCB. Moreover, in conjunction with using TPM, we can securely store the code

and the private key of UPD with the data sealing feature; so the attackers with a possession

of the UPD cannot alter the code nor retrieve the private key of the device.

Availability of the channel. We exclude the availability from the security property that

SGX-USB should guarantee for the communication channel. This is an inherent limitation

due to the adoption of the threat model of Intel SGX because Intel SGX excludes the

operating system, which runs as a higher privilege than an enclave, from the threat model.

Although guaranteeing availability cannot be possible under current threat model, un-

trusting the operating system, the user will directly be notified at least when the availability

issue happens (i.e., the device does not work at all). The operating status of the channel will

either be fully working or not and cannot be half-working status because missing any of

USB packet will break the encryption status of the secure channel.

144

CHAPTER VI

CONCLUSION

In this thesis, we analyzed and protected user I/O in commodity computer systems by

identifying the three key security properties of user I/O: integrity, confidentiality, and

authenticity.

In Chapter §2, we built GYRUS to protects the systems from transmitting non-user-

intended network traffic by preserving the integrity of user input from the user interface

layer to when the input transformed and transmitted to the network device. By protecting

the integrity of user input, GYRUS can cut-off various attack pathways including malware

threats in an attack-agnostic way.

In Chapter §3, we built M-AEGIS to protect user’s private data sending and receiving

on public messaging services by presenting transparent encryption layer between the user

and the application user interface. By protecting the confidentiality of user input/output,

M-AEGIS can provide a true user-to-user encryption to protect user’s private data without

modifying underlying protocols and applications.

In Chapter §4, we examined the user I/O security of popular operating systems regarding

the authenticity of I/O end points. Missing security checks that verify the source and the

destination of user I/O for a system’s accessibility support breaks an essential security

assumption that the input always comes to the user and the output can only be seen by the

user. Failure to authenticate the source of an input let attackers inject input to the system

so that attackers can take over the system as if they are a legitimate user even when the

state-of-the-art security mechanisms fully protect the system. Failure to authenticate the

destination of an output let attackers have access to security-sensitive data such as passwords,

which endangers a user.

145

After identifying the three key security properties of user I/O, in Chapter §5, we built

a trusted I/O channel that guarantees these security properties on using trusted execution

environment. Enabling trusted user I/O path let Intel SGX support user-facing applications

such as authentication manager and end-to-end trusted video chat.

In the following, we conclude by discussing several open problems in user I/O protection.

Open problems. On protecting the integrity of user input, GYRUS is still limited only to

protect text-based user input that only applied with simple transformation. One promising

approach to support arbitrarily complex transformation on user input is to apply probabilisti-

cally checkable proof or homomorphic encryption. However, such cryptographic approach

still suffers massive runtime overhead to be used as a practical solution.

On protecting the confidentiality of user input, M-AEGIS requires a developer’s manual

effort of building the per-TCA logic of an application. Applying machine learning to

automatically learn the UI layout of an application then automatically generating per-TCA

logic would be an exciting direction. Moreover, to support end-to-end encryption other

than text-based user input encounters another challenge. While we could use the Unicode

encoding to place encrypted text to the user interface of a normal application without having

compatibility issue, encrypting and transmitting image, audio, or other multimedia data

requires format preserving encryption even when the application applies a transformation to

optimize the size of content (e.g., image/video compression).

On evaluating the accessibility support in popular systems in the A11Y ATTACK, we

manually analyzed the system and each accessibility component. Building an automated

analysis tool for checking whether or not the information flow of user I/O conforms to a

system’s security policy would be a good direction to resolve such problem. The challenge

on this approach is at the point that the input handling routine is processed asynchronously.

To analyze the system, one must figure out how to exhaustively examine the point that an

input event can be injected and an output event will be generated. Moreover, designing a

new UI framework for securely supporting accessibility would be a great next step.

146

REFERENCES

[1] 107TH CONGRESS, “Uniting and strengthening america by providing appropriate
tools required to intercept and obstruct terrorism (usa patriot act) act of 2001,” Public
Law 107-56, 2001.

[2] ACQUISTI, A. and GROSS, R., “Imagined communities: Awareness, information
sharing, and privacy on the facebook,” in Privacy enhancing technologies, pp. 36–58,
Springer, 2006.

[3] ALEXA INTERNET, “Alexa - Top Sites in United States.” http://www.alexa.com/
topsites/countries/US.

[4] ANATI, I., GUERON, S., JOHNSON, S., and SCARLATA, V., “Innovative technol-
ogy for cpu based attestation and sealing,” in Proceedings of the 2nd international
workshop on hardware and architectural support for security and privacy, vol. 13,
2013.

[5] ANDROID DEVELOPERS, “Accessibility.”
http://developer.android.com/guide/topics/ui/accessibility/

index.html.

[6] ANDROID DEVELOPERS, “Security tips.” http://developer.android.com/
training/articles/security-tips.html.

[7] ANDROID DEVELOPERS, “UI Testing.”
http://developer.android.com/tools/testing/testing_ui.html.

[8] ANDROID OPEN SOURCE PROJECT, “Dalvik Technical Information.” https://
source.android.com/tech/dalvik/index.html.

[9] APPLE, INC., “Accessibility.” http://www.apple.com/accessibility/

resources/.

[10] APPLE, INC., “The ios environment.” https://developer.

apple.com/library/ios/documentation/iphone/conceptual/

iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.

html.

[11] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T., MARTIN, A., PRIEBE, C.,
LIND, J., MUTHUKUMARAN, D., O’KEEFFE, D., STILLWELL, M. L., and OTHERS,
“Scone: Secure linux containers with intel sgx,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), (Savannah,
GA), Nov. 2016.

147

http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/tools/testing/testing_ui.html
https://source.android.com/tech/dalvik/index.html
https://source.android.com/tech/dalvik/index.html
http://www.apple.com/accessibility/resources/
http://www.apple.com/accessibility/resources/
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html

[12] ARORA, S. and SAFRA, S., “Probabilistic checking of proofs: a new characterization
of np,” J. ACM, vol. 45, pp. 70–122, Jan. 1998.

[13] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE, B., and STARIN, D.,
“Persona: an online social network with user-defined privacy,” in Proceedings of the
20th ACM SIGCOMM, (Barcelona, Spain), Aug. 2009.

[14] BALDUCCI, F., “Whatsapp is broken, really broken.” http://fileperms.org/whatsapp-
is-broken-really-broken/.

[15] BATES, D., “New privacy fears as facebook begins selling personal access to compa-
nies to boost ailing profits.” http://www.dailymail.co.uk/news/article-2212178/New-
privacy-row-Facebook-begins-selling-access-users-boost-ailing-profits.html.

[16] BAUMANN, A., PEINADO, M., and HUNT, G., “Shielding applications from an
untrusted cloud with haven,” in Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), (Broomfield, Colorado),
pp. 267–283, Oct. 2014.

[17] BEATO, F., KOHLWEISS, M., and WOUTERS, K., “Scramble! your social network
data,” in Privacy Enhancing Technologies, pp. 211–225, Springer, 2011.

[18] BEGEMANN, O., “Remote View Controllers in iOS 6.” http://oleb.net/blog/
2012/10/remote-view-controllers-in-ios-6/.

[19] BELLARE, M., BOLDYREVA, A., and O’NEILL, A., “Deterministic and efficiently
searchable encryption.,” in CRYPTO (MENEZES, A., ed.), vol. 4622 of Lecture Notes
in Computer Science, pp. 535–552, Springer, 2007.

[20] BERTHOME, P., FECHEROLLE, T., GUILLOTEAU, N., and LALANDE, J.-F.,
“Repackaging android applications for auditing access to private data,” in Avail-
ability, Reliability and Security (ARES), 2012 Seventh International Conference on,
pp. 388–396, IEEE, 2012.

[21] BIBA, K. J., “Integrity considerations for secure computer systems,” tech. rep., DTIC
Document, 1977.

[22] BÖHMER, M., HECHT, B., SCHÖNING, J., KRÜGER, A., and BAUER, G., “Falling
asleep with angry birds, facebook and kindle: a large scale study on mobile application
usage,” in Proceedings of the 13th international conference on Human computer
interaction with mobile devices and services, pp. 47–56, ACM, 2011.

[23] BONEH, D., CRESCENZO, G. D., OSTROVSKY, R., and PERSIANO, G., “Public key
encryption with keyword search,” in EUROCRYPT (CACHIN, C. and CAMENISCH,
J., eds.), vol. 3027 of Lecture Notes in Computer Science, pp. 506–522, Springer,
2004.

148

http://oleb.net/blog/2012/10/remote-view-controllers-in-ios-6/
http://oleb.net/blog/2012/10/remote-view-controllers-in-ios-6/

[24] BORDERS, K., VANDER WEELE, E., LAU, B., and PRAKASH, A., “Protecting
confidential data on personal computers with storage capsules,” Ann Arbor, vol. 1001,
p. 48109, 2009.

[25] BORISOV, N., GOLDBERG, I., and BREWER, E., “Off-the-record communication, or,
why not to use pgp,” in Proceedings of the 2004 ACM workshop on Privacy in the
electronic society, pp. 77–84, ACM, 2004.

[26] BRICKELL, E. and LI, J., “Enhanced privacy ID: A direct anonymous attestation
scheme with enhanced revocation capabilities,” in Proceedings of the 2007 ACM
workshop on Privacy in electronic society, pp. 21–30, 2007.

[27] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T., SADEGHI, A.-R., and
SHASTRY, B., “Towards taming privilege-escalation attacks on android,” in Proceed-
ings of the 19th Annual Network and Distributed System Security Symposium (NDSS),
(San Diego, CA), Feb. 2012.

[28] CBS INTERACTIVE INC., “Snowden: Leak of NSA spy programs ”marks my
end”.” http://www.cbsnews.com/8301-201 162-57588462/snowden-leak-of-nsa-spy-
programs-marks-my-end/.

[29] CHANG, Y.-C. and MITZENMACHER, M., “Privacy preserving keyword searches on
remote encrypted data,” in Applied Cryptography and Network Security (IOANNIDIS,
J., KEROMYTIS, A., and YUNG, M., eds.), vol. 3531 of Lecture Notes in Computer
Science, pp. 442–455, Springer, 2005.

[30] CHEN, Y., REYMONDJOHNSON, S., SUN, Z., and LU, L., “Shreds: Fine-grained
execution units with private memory,” in Proceedings of the 37th IEEE Symposium
on Security and Privacy (Oakland), (San Jose, CA), pp. 56–71, May 2016.

[31] CHIN, E., FELT, A. P., GREENWOOD, K., and WAGNER, D., “Analyzing inter-
application communication in android,” in Proceedings of the 9th international
conference on Mobile systems, applications, and services, pp. 239–252, ACM, 2011.

[32] CHROME: DEVELOPER, “Google Chrome Mobile FAQ.”
https://developers.google.com/chrome/mobile/docs/faq.

[33] CHUNG, K.-M., KALAI, Y., and VADHAN, S., “Improved delegation of computation
using fully homomorphic encryption,” in Proceedings of the 30th annual conference
on Advances in cryptology, CRYPTO’10, (Berlin, Heidelberg), pp. 483–501, Springer-
Verlag, 2010.

[34] COHEN, W. W., “Enron email dataset.” http://www.cs.cmu.edu/ enron, August 2009.

[35] COLP, P., NANAVATI, M., ZHU, J., AIELLO, W., COKER, G., DEEGAN, T.,
LOSCOCCO, P., and WARFIELD, A., “Breaking up is hard to do: security and func-
tionality in a commodity hypervisor,” in Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), (Cascais, Portugal), Oct. 2011.

149

[36] COOK, K., “[patch] security: Yama lsm.” http://lwn.net/Articles/393012/.

[37] COSTAN, V. and DEVADAS, S., “Intel sgx explained,” tech. rep., Cryptology ePrint
Archive, Report 2016/086, 2016. http://eprint.iacr.org.

[38] CUI, W., KATZ, R. H., and TIAN TAN, W., “Design and Implementation of an
Extrusion-based Break-In Detector for Personal Computers,” in Proceedings of the
Annual Computer Security Applications Conference (ACSAC), (Tucson, AZ), Dec.
2005.

[39] CURTMOLA, R., GARAY, J. A., KAMARA, S., and OSTROVSKY, R., “Searchable
symmetric encryption: Improved definitions and efficient constructions,” in Proceed-
ings of the 13th ACM Conference on Computer and Communications Security (CCS),
(Alexandria, VA), Oct.–Nov. 2006.

[40] D. J. WALKER-MORGAN, “Sniffer tool displays other people’s WhatsApp
messages.” http://www.h-online.com/security/news/item/Sniffer-tool-displays-other-
people-s-WhatsApp-messages-1574382.html.

[41] DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., and WINANDY, M., “Privilege
escalation attacks on android,” in Information Security, pp. 346–360, Springer, 2011.

[42] DAVIDSON, L., “Windows 7 uac whitelist: Proof-of-concept source code.”
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_

details.html.

[43] DELTCHEVA, R., “Apple, AT&T data leak protection issues latest in cloud
failures.” http://www.messagingarchitects.com/resources/security-compliance-
news/email-security/apple-att-data-leak-protection-issues-latest-in-cloud-
failures19836720.html, June 2010.

[44] DINGLEDINE, R., MATHEWSON, N., and SYVERSON, P., “Tor: The second-
generation onion router,” tech. rep., DTIC Document, 2004.

[45] DONG, X., CHEN, Z., SIADATI, H., TOPLE, S., SAXENA, P., and LIANG, Z.,
“Protecting sensitive web content from client-side vulnerabilities with cryptons,” in
Proceedings of the 20th ACM Conference on Computer and Communications Security
(CCS), (Berlin, Germany), Oct. 2013.

[46] EDWARDS, J., “There’s a huge password security quirk in ios 7 that lets siri con-
trol your iphone.” http://www.businessinsider.com/password-security-
flaw-in-ios-7-lets-siri-control-your-iphone-2013-9.

[47] ELKINS, M., “Mime security with pretty good privacy (pgp),” 1996.

[48] ELSON, J. and CERPA, A., “RFC 3507 - Internet Content Adaptation Protocol
(ICAP).” http://www.ietf.org/rfc/rfc3507.txt.

150

http://lwn.net/Articles/393012/
http://eprint.iacr.org
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.businessinsider.com/password-security-flaw-in-ios-7-lets-siri-control-your-iphone-2013-9
http://www.businessinsider.com/password-security-flaw-in-ios-7-lets-siri-control-your-iphone-2013-9
http://www.ietf.org/rfc/rfc3507.txt

[49] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J., MCDANIEL, P., and
SHETH, A., “Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones.,” in Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), (Vancouver, Canada), Oct.
2010.

[50] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L., FREISLEBEN, B.,
and SMITH, M., “Why eve and mallory love android: An analysis of android ssl
(in)security,” in Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security (CCS), (Raleigh, NC), Oct. 2012.

[51] FAHL, S., HARBACH, M., MUDERS, T., and SMITH, M., “Trustsplit: usable confi-
dentiality for social network messaging,” in Proceedings of the 23rd ACM conference
on Hypertext and social media, pp. 145–154, ACM, 2012.

[52] FARB, M., LIN, Y.-H., KIM, T. H.-J., MCCUNE, J., and PERRIG, A., “Safeslinger:
easy-to-use and secure public-key exchange,” in Proceedings of the 19th annual
international conference on Mobile computing & networking, pp. 417–428, ACM,
2013.

[53] FARQUHAR, I., “Engineering Security Solutions at Layer 8 and Above.”
https://blogs.rsa.com/engineering-security-solutions-at-layer-8-and-above/, Decem-
ber 2010.

[54] FAULKNER, L., “Beyond the five-user assumption: Benefits of increased sample
sizes in usability testing,” Behavior Research Methods, Instruments, & Computers,
vol. 35, no. 3, pp. 379–383, 2003.

[55] FELDMAN, A. J., BLANKSTEIN, A., FREEDMAN, M. J., and FELTEN, E. W.,
“Social networking with frientegrity: privacy and integrity with an untrusted provider,”
in Proceedings of the 21st USENIX Security Symposium (Security), (Bellevue, WA),
Aug. 2012.

[56] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., and CHIN, E., “Permission
re-delegation: Attacks and defenses.,” in Proceedings of the 20th USENIX Security
Symposium (Security), (San Francisco, CA), Aug. 2011.

[57] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., and BONEH, D., “Terra:
A Virtual Machine-Based Platform for Trusted Computing,” in Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP), (Bolton Landing,
NY), Oct. 2003.

[58] GARFINKEL, T. and ROSENBLUM, M., “A Virtual Machine Introspection Based
Architecture for Intrusion Detection,” in Proceedings of the 10th Annual Network
and Distributed System Security Symposium (NDSS), (San Diego, CA), Feb. 2003.

[59] GENNARO, R., GENTRY, C., and PARNO, B., “Non-interactive verifiable computing:
outsourcing computation to untrusted workers,” in Proceedings of the 30th annual

151

conference on Advances in cryptology, CRYPTO’10, (Berlin, Heidelberg), pp. 465–
482, Springer-Verlag, 2010.

[60] GENTRY, C., A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

[61] GIBBERBOT, “Gibberbot for Android devices.”
https://securityinabox.org/en/Gibberbot main.

[62] GNOME DEV CENTER, “ATK - Accessibility Toolkit.” https://developer.
gnome.org/atk/2.8/.

[63] GO LAUNCHER DEV TEAM, “Go launcher ex notification.” https://play.google.
com/store/apps/details?id=com.gau.golauncherex.notification.

[64] GOH, E.-J., “Secure indexes,” IACR Cryptology ePrint Archive, 2003.

[65] GOLDREICH, O. and OSTROVSKY, R., “Software protection and simulation on
oblivious rams,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[66] GOLDWASSER, S., MICALI, S., and RACKOFF, C., “The knowledge complexity of
interactive proof systems,” SIAM J. Comput., vol. 18, pp. 186–208, Feb. 1989.

[67] GOLDWASSER, S., KALAI, Y. T., and ROTHBLUM, G. N., “Delegating computation:
interactive proofs for muggles,” in Proceedings of the 40th annual ACM symposium
on Theory of computing, STOC ’08, (New York, NY, USA), pp. 113–122, ACM,
2008.

[68] GOOGLE, INC., “Google Accessibility.”
https://www.google.com/accessibility/policy/.

[69] GOOGLE INC., “Section 508 Compliance (VPAT).” https://www.google.com/
sites/accessibility.html.

[70] GRACE, M., ZHOU, Y., WANG, Z., and JIANG, X., “Systematic detection of capabil-
ity leaks in stock android smartphones,” in Proceedings of the 19th Annual Network
and Distributed System Security Symposium (NDSS), (San Diego, CA), Feb. 2012.

[71] GUHA, S., TANG, K., and FRANCIS, P., “Noyb: Privacy in online social networks,”
in Proceedings of the first workshop on Online social networks, pp. 49–54, ACM,
2008.

[72] GUMMADI, R., BALAKRISHNAN, H., MANIATIS, P., and RATNASAMY, S., “Not-
a-Bot (NAB): Improving Service Availability in the Face of Botnet Attacks,” in
Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), (Boston, MA), Apr. 2009.

152

crypto.stanford.edu/craig
https://developer.gnome.org/atk/2.8/
https://developer.gnome.org/atk/2.8/
https://play.google.com/store/apps/details?id=com.gau.golauncherex.notification
https://play.google.com/store/apps/details?id=com.gau.golauncherex.notification
https://www.google.com/accessibility/policy/
https://www.google.com/sites/accessibility.html
https://www.google.com/sites/accessibility.html

[73] HAN, J., OWUSU, E., NGUYEN, L., PERRIG, A., and ZHANG, J., “Accomplice:
Location inference using accelerometers on smartphones,” in Communication Systems
and Networks (COMSNETS), 2012 Fourth International Conference on, pp. 1–9, Jan
2012.

[74] HENRY, S., “Largest hacking, data breach prosecution in U.S. history launches with
five arrests.” http://www.mercurynews.com/business/ci23730361/largest-hacking-
data-breach-prosecution-u-s-history, July 2013.

[75] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., and DEL CUVILLO, J.,
“Using innovative instructions to create trustworthy software solutions,” in Proceed-
ings of the 2nd International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), (Tel-Aviv, Israel), pp. 1–8, 2013.

[76] HOHMUTH, M., PETER, M., HARTIG, H., and SHAPIRO, J. S., “Reducing TCB
size by using untrusted components – small kernels versus virtual machine monitors,”
in Proc. of the ACM SIGOPS European Workshop, 2004.

[77] HUNT, T., ZHU, Z., XU, Y., PETER, S., and WITCHEL, E., “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), (Savannah,
GA), Nov. 2016.

[78] IMSPECTOR, “IMSpector: Instant Messenger Proxy Service.” http://www.
imspector.org/wordpress/.

[79] INTEL, “Graphics Drivers Blue-ray Disc* Playback On Intel Graphics FAQ.” http://
www.intel.com/support/graphics/sb/CS-029871.htm#bestexperience,
2008. Accessed: 05/04/2015.

[80] INTEL CORPORATION, “Intel Software Guard Extensions Programming Reference
(rev1),” Sept. 2013. 329298-001US.

[81] INTEL CORPORATION, “Intel Software Guard Extensions Programming Reference
(rev2),” Oct. 2014. 329298-002US.

[82] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, “International technol-
ogy - Open Systems Interconnection - Basic Reference Model: The Basic Model.”
http://www.ecma-international.org/activities/Communications/TG11/s020269e.pdf.

[83] IT BUSINESS EDGE, “Ten Mistakes That Can Ruin Customers’ Mobile App Experi-
ence.” http://www.itbusinessedge.com/slideshows/show.aspx?c=96038.

[84] JANA, S. and SHMATIKOV, V., “Memento: Learning secrets from process footprints,”
in Proceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland), (San
Francisco, CA), May 2012.

153

http://www.imspector.org/wordpress/
http://www.imspector.org/wordpress/
http://www.intel.com/support/graphics/sb/CS-029871.htm#bestexperience
http://www.intel.com/support/graphics/sb/CS-029871.htm#bestexperience

[85] JANG, Y., CHUNG, S. P., PAYNE, B. D., and LEE, W., “Gyrus: A Framework for
User-Intent Monitoring of Text-based Networked Applications,” in Proceedings of
the 21st Annual Network and Distributed System Security Symposium (NDSS), (San
Diego, CA), Feb. 2014.

[86] JANG, Y., SONG, C., CHUNG, S. P., WANG, T., and LEE, W., “A11y Attacks:
Exploiting Accessibility in Operating Systems,” in Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS), (Scottsdale, Arizona),
Nov. 2014.

[87] JEON, J., MICINSKI, K. K., VAUGHAN, J. A., FOGEL, A., REDDY, N., FOSTER,
J. S., and MILLSTEIN, T., “Dr. android and mr. hide: fine-grained permissions in
android applications,” in Proceedings of the second ACM workshop on Security and
privacy in smartphones and mobile devices, pp. 3–14, ACM, 2012.

[88] JIANG, X., “Gingermaster: First android malware utilizing a root exploit on android
2.3 (gingerbread).”
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/.

[89] JIANG, X., WANG, X., and XU, D., “Stealthy Malware Detection Through VMM-
Based “Out-of-the-Box” Semantic View Reconstruction,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS), (Alexandria,
VA), Oct.–Nov. 2007.

[90] JOHNSON, S., SCARLATA, V., ROZAS, C., BRICKELL, E., and MCKEEN, F., “Intel
software guard extensions: Epid provisioning and attestation services,” White Paper,
2016.

[91] JOSHI, A., KING, S. T., DUNLAP, G. W., and CHEN, P. M., “Detecting past and
present intrusions through vulnerability-specific predicates,” in Proceedings of the
20th ACM Symposium on Operating Systems Principles (SOSP), (Brighton, UK), Oct.
2005.

[92] KACHOLD, L., “Layer 8 Linux Security.” http://www.linuxgazette.net/166/kachold.html,
July 2009.

[93] KAMARA, S., PAPAMANTHOU, C., and ROEDER, T., “Dynamic searchable sym-
metric encryption,” in Proceedings of the 19th ACM Conference on Computer and
Communications Security (CCS), (Raleigh, NC), Oct. 2012.

[94] KIM, S., SHIN, Y., HA, J., KIM, T., and HAN, D., “A First Step Towards Leveraging
Commodity Trusted Execution Environments for Network Applications,” in Proceed-
ings of the 14th ACM Workshop on Hot Topics in Networks (HotNets), (Philadelphia,
PA), Nov. 2015.

[95] KING, S. T., TUCEK, J., COZZIE, A., GRIER, C., JIANG, W., and ZHOU, Y.,
“Designing and implementing malicious hardware,” in Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats, LEET’08, (Berkeley, CA,
USA), pp. 5:1–5:8, USENIX Association, 2008.

154

http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/

[96] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK, D., DERRIN,
P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M., SEWELL,
T., TUCH, H., and WINWOOD, S., “sel4: formal verification of an os kernel,” in
Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP),
(Big Sky, MT), Oct. 2009.

[97] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK, D., DERRIN,
P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M., SEWELL,
T., TUCH, H., and WINWOOD, S., “sel4: Formal verification of an os kernel,” in
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pp. 207–220, 2009.

[98] KOBEISSI, N., “Cryptocat.” https://crypto.cat.

[99] KOEBERL, P., SCHULZ, S., SADEGHI, A.-R., and VARADHARAJAN, V., “Trustlite:
A security architecture for tiny embedded devices,” in Proceedings of the Ninth
European Conference on Computer Systems, p. 10, ACM, 2014.

[100] KONTAXIS, G., POLYCHRONAKIS, M., KEROMYTIS, A. D., and MARKATOS, E. P.,
“Privacy-preserving Social Plugins,” in Proceedings of the 21st USENIX Security
Symposium (Security), (Bellevue, WA), Aug. 2012.

[101] LAU, B., CHUNG, P. H., SONG, C., JANG, Y., LEE, W., and BOLDYREVA, A.,
“Mimesis Aegis: A Mimicry Privacy Shield,” in Proceedings of the 23rd USENIX
Security Symposium (Security), (San Diego, CA), Aug. 2014.

[102] LAU, B., CHUNG, S., SONG, C., JANG, Y., LEE, W., and BOLDYREVA, A.,
“Mimesis Aegis: A Mimicry Privacy Shield.” http://hdl.handle.net/1853/52026.

[103] LAU, B., JANG, Y., SONG, C., WANG, T., CHUNG, P. H., and ROYAL, P., “Mactans:
Injecting malware into iOS devices via malicious chargers,” in Black Hat USA
Briefings (Black Hat USA), (Las Vegas, NV), Aug. 2013.

[104] LI, W., MA, M., HAN, J., XIA, Y., ZANG, B., CHU, C.-K., and LI, T., “Building
trusted path on untrusted device drivers for mobile devices,” in Proceedings of 5th
Asia-Pacific Workshop on Systems, p. 8, ACM, 2014.

[105] LU, L., LI, Z., WU, Z., LEE, W., and JIANG, G., “Chex: statically vetting android
apps for component hijacking vulnerabilities,” in Proceedings of the 19th ACM
Conference on Computer and Communications Security (CCS), (Raleigh, NC), Oct.
2012.

[106] LUCAS, M. M. and BORISOV, N., “Flybynight: mitigating the privacy risks of social
networking,” in Proceedings of the 7th ACM workshop on Privacy in the electronic
society, pp. 1–8, ACM, 2008.

[107] MAC OSX DEVELOPER CENTER, “NSAccessibility Protocol Reference.”
https://developer.apple.com/library/mac/#documentation/Cocoa/

155

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ApplicationKit/Protocols/NSAccessibility_Protocol/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ApplicationKit/Protocols/NSAccessibility_Protocol/Reference/Reference.html

Reference/ApplicationKit/Protocols/NSAccessibility_Protocol/

Reference/Reference.html.

[108] MADNICK, S. E. and DONOVAN, J. J., “Application and Analysis of The Virtual
Machine Approach to Information System Security and Isolation,” in Proc of the
Workshop on Virtual Computer Systems, 1973.

[109] MARTIGNONI, L., POOSANKAM, P., ZAHARIA, M., HAN, J., MCCAMANT, S.,
SONG, D., PAXSON, V., PERRIG, A., SHENKER, S., and STOICA, I., “Cloud termi-
nal: secure access to sensitive applications from untrusted systems,” in Proceedings
of the 2012 USENIX Annual Technical Conference (ATC), (Boston, MA), June 2012.

[110] MARTIGNONI, L., POOSANKAM, P., ZAHARIA, M., HAN, J., MCCAMANT, S.,
SONG, D., PAXSON, V., PERRIG, A., SHENKER, S., and STOICA, I., “Cloud Termi-
nal: Secure access to sensitive applications from untrusted systems,” in Proceedings of
the 2012 USENIX Annual Technical Conference (ATC), (Boston, MA), pp. 165–182,
June 2012.

[111] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A., GLIGOR, V., and PERRIG,
A., “Trustvisor: Efficient tcb reduction and attestation,” in Proceedings of the 31th
IEEE Symposium on Security and Privacy (Oakland), (Oakland, CA), May 2010.

[112] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A., GLIGOR, V., and PERRIG,
A., “TrustVisor: Efficient TCB Reduction and Attestation,” in Proceedings of the 31th
IEEE Symposium on Security and Privacy (Oakland), (Oakland, CA), pp. 143–158,
May 2010.

[113] MCCUNE, J. M., PARNO, B. J., PERRIG, A., REITER, M. K., and ISOZAKI, H.,
“Flicker: An Execution Infrastructure for TCB Minimization,” in Proceedings of the
3rd European Conference on Computer Systems (EuroSys), (Glasgow, Scotland),
pp. 315–328, Mar. 2008.

[114] MCLAWHORN, C., “Recent development: Leveling the accessibility playing field:
Section 508 of the rehabilitation act,” NORTH CAROLINA JOURNAL OF LAW &
TECHNOLOGY, vol. 3, no. 1, pp. 63–100, 2001.

[115] MICROSOFT, “Windows integrity mechanism design.” http://msdn.microsoft.
com/en-us/library/bb625963.aspx.

[116] MICROSOFT, “Windows vista integrity mechanism technical reference.” http://
msdn.microsoft.com/en-us/library/bb625964.aspx.

[117] MICROSOFT CORPORATION, “Microsoft and section 508.” http://www.
microsoft.com/enable/microsoft/section508.aspx.

[118] MICROSOFT CORPORATION, “User account control.” http://windows.

microsoft.com/en-us/windows7/products/features/user-account-

control.

156

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ApplicationKit/Protocols/NSAccessibility_Protocol/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ApplicationKit/Protocols/NSAccessibility_Protocol/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ApplicationKit/Protocols/NSAccessibility_Protocol/Reference/Reference.html
http://msdn.microsoft.com/en-us/library/bb625963.aspx
http://msdn.microsoft.com/en-us/library/bb625963.aspx
http://msdn.microsoft.com/en-us/library/bb625964.aspx
http://msdn.microsoft.com/en-us/library/bb625964.aspx
http://www.microsoft.com/enable/microsoft/section508.aspx
http://www.microsoft.com/enable/microsoft/section508.aspx
http://windows.microsoft.com/en-us/windows7/products/features/user-account-control
http://windows.microsoft.com/en-us/windows7/products/features/user-account-control
http://windows.microsoft.com/en-us/windows7/products/features/user-account-control

[119] MICROSOFT DEVELOPER NETWORK, “Inspect.” http://msdn.microsoft.com/
en-us/library/windows/desktop/dd318521(v=vs.85).aspx.

[120] MICROSOFT DEVELOPER NETWORK, “UI Automation Overview.” http://msdn.
microsoft.com/en-us/library/ms747327.aspx.

[121] MIT, “MIT PGP Public Key Server.” http://pgp.mit.edu/.

[122] MOTIEE, S., HAWKEY, K., and BEZNOSOV, K., “Do windows users follow the prin-
ciple of least privilege?: investigating user account control practices,” in Proceedings
of the Sixth Symposium on Usable Privacy and Security, SOUPS ’10, (New York,
NY, USA), ACM, 2010.

[123] MOTOROLA INC., “Moto X Features: Touchless Control.” http:

//www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-

features-2-touchless.html.

[124] MRTON, N., “USBIP protocol documentation,” June 2011. https://lwn.net/
Articles/449509/.

[125] ONARLIOGLU, K., MULLINER, C., ROBERTSON, W., and KIRDA, E., “Privexec:
Private execution as an operating system service,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (Oakland), (San Francisco, CA), pp. 206–220,
May 2013.

[126] OPEN WHISPER SYSTEMS, “Secure texts for Android.” https://whispersystems.org.

[127] OU, G., “Vista Speech Command exposes remote exploit.” http://www.zdnet.
com/blog/ou/vista-speech-command-exposes-remote-exploit/416.

[128] PARNO, B., HOWELL, J., GENTRY, C., and RAYKOVA, M., “Pinocchio: Nearly
practical verifiable computation,” in Proceedings of the 34th IEEE Symposium on
Security and Privacy (Oakland), (San Francisco, CA), May 2013.

[129] PEEK, D. and FLINN, J., “Trapperkeeper: the case for using virtualization to add
type awareness to file systems,” in Proceedings of the 2nd USENIX conference on
Hot topics in storage and file systems, pp. 8–8, USENIX Association, 2010.

[130] PEW INTERNET, “What Internet Users Do On A Typical Day.” http:
//www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-

Activities-Daily.aspx.

[131] PEW INTERNET, “What Internet Users Do Online.” http://www.pewinternet.
org/Static-Pages/Trend-Data-(Adults)/Online-Activites-Total.

aspx.

[132] POPS, “Pops ringtons & notifications.” https://play.google.com/store/
apps/details?id=com.pops.app.

157

http://msdn.microsoft.com/en-us/library/windows/desktop/dd318521(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd318521(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms747327.aspx
http://msdn.microsoft.com/en-us/library/ms747327.aspx
http://www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-features-2-touchless.html
http://www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-features-2-touchless.html
http://www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-features-2-touchless.html
https://lwn.net/Articles/449509/
https://lwn.net/Articles/449509/
http://www.zdnet.com/blog/ou/vista-speech-command-exposes-remote-exploit/416
http://www.zdnet.com/blog/ou/vista-speech-command-exposes-remote-exploit/416
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-Activities-Daily.aspx
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-Activities-Daily.aspx
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-Activities-Daily.aspx
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-Activites-Total.aspx
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-Activites-Total.aspx
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)/Online-Activites-Total.aspx
https://play.google.com/store/apps/details?id=com.pops.app
https://play.google.com/store/apps/details?id=com.pops.app

[133] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B., WANG, H. J., and COWAN,
C., “User-Driven Access Control: Rethinking Permission Granting in Modern Oper-
ating Systems,” in Proceedings of the 33rd IEEE Symposium on Security and Privacy
(Oakland), (San Francisco, CA), May 2012.

[134] ROZAS, C., “Intel software guard extensions,” Nov. 2013. http://www.pdl.cmu.
edu/SDI/2013/slides/rozas-SGX.pdf.

[135] SCHLEGEL, R., ZHANG, K., YONG ZHOU, X., INTWALA, M., KAPADIA, A.,
and WANG, X., “Soundcomber: A stealthy and context-aware sound trojan for
smartphones,” in Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS), (San Diego, CA), Feb. 2011.

[136] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C., PEINADO, M.,
MAINAR-RUIZ, G., and RUSSINOVICH, M., “VC3: Trustworthy Data Analytics in
the Cloud using SGX,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), (San Jose, CA), May 2015.

[137] SESHADRI, A., LUK, M., QU, N., and PERRIG, A., “Secvisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity oses,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 335–350, 2007.

[138] SETTY, S., MCPHERSON, R., BLUMBERG, A. J., and WALFISH, M., “Making
argument systems for outsourced computation practical (sometimes),” in Proceedings
of the 19th Annual Network and Distributed System Security Symposium (NDSS),
(San Diego, CA), Feb. 2012.

[139] SETTY, S., VU, V., PANPALIA, N., BRAUN, B., BLUMBERG, A. J., and WALFISH,
M., “Taking proof-based verified computation a few steps closer to practicality,” in
Proceedings of the 21st USENIX Security Symposium (Security), (Bellevue, WA),
Aug. 2012.

[140] SHACKLEFORD, D., “Blind as a Bat? Supporting Packet Decryption for Se-
curity Scanning.” http://www.sans.org/reading_room/analysts_program/
vss-BlindasaBat.pdf.

[141] SHAH, K., “Common Mobile App Design Mistakes to Take Care.”
http://www.enterprisecioforum.com/en/blogs/kaushalshah/common-mobile-
app-design-mistakes-take-c.

[142] SHENG, S., BRODERICK, L., HYLAND, J., and KORANDA, C., “Why johnny still
can’t encrypt: evaluating the usability of email encryption software,” in Symposium
On Usable Privacy and Security, 2006.

[143] SHIH, M.-W., KUMAR, M., KIM, T., and GAVRILOVSKA, A., “S-nfv: Securing nfv
states by using sgx,” in Proceedings of the 2016 ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization, pp. 45–48,
ACM, 2016.

158

http://www.pdl.cmu.edu/SDI/2013/slides/rozas-SGX.pdf
http://www.pdl.cmu.edu/SDI/2013/slides/rozas-SGX.pdf
http://www.sans.org/reading_room/analysts_program/vss-BlindasaBat.pdf
http://www.sans.org/reading_room/analysts_program/vss-BlindasaBat.pdf

[144] SHINAGAWA, T., EIRAKU, H., TANIMOTO, K., OMOTE, K., HASEGAWA, S.,
HORIE, T., HIRANO, M., KOURAI, K., OYAMA, Y., KAWAI, E., KONO, K.,
CHIBA, S., SHINJO, Y., and KATO, K., “Bitvisor: a thin hypervisor for enforcing i/o
device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, VEE ’09, (New York, NY, USA),
pp. 121–130, ACM, 2009.

[145] SHNEIDERMAN, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, fourth ed., 2005.

[146] SONG, D. X., WAGNER, D., and PERRIG, A., “Practical techniques for searches on
encrypted data,” in Proceedings of the 21st IEEE Symposium on Security and Privacy
(Oakland), (Oakland, CA), May 2000.

[147] STEVE SLAVEN, “xautomation.” http://hoopajoo.net/projects/

xautomation.html.

[148] SYMANTAC CORPORATION, “Symantec desktop email encryption end-to-end email
encryption software for laptops and desktops.” http://www.symantec.com/desktop-
email-encryption.

[149] THE CHROMIUM PROJECTS, “Benchmarking Extension.” http://www.chromium.
org/developers/design-documents/extensions/how-the-extension-

system-works/chrome-benchmarking-extension.

[150] THE UNITED STATES GOVERNMENT, “Section 508 Of The Rehabilitation Act.”
http://www.section508.gov/Section-508-Of-The-Rehabilitation-

Act.

[151] THOMAS BARNETT, JR., “Cisco Visual Networking In-
dex: Global Mobile Data Traffic Forecast Update, 2013–2018.”
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white paper c11-520862.html.

[152] TSAI, C.-C., PORTER, D. E., and VIJ, M., “Graphene-sgx: A practical library os
for unmodified applications on sgx,” in 2017 USENIX Annual Technical Conference
(USENIX ATC), 2017.

[153] TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M., and MIYAUCHI, H., “Crypt-
analysis of des implemented on computers with cache,” in Cryptographic Hardware
and Embedded Systems-CHES 2003, pp. 62–76, Springer, 2003.

[154] US-CERT/NIST, “Cve-2013-4787.”
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787.

[155] VASUDEVAN, A., CHAKI, S., JIA, L., MCCUNE, J., NEWSOME, J., and DATTA, A.,
“Design, implementation and verification of an extensible and modular hypervisor
framework,” in Proceedings of the 34th IEEE Symposium on Security and Privacy
(Oakland), (San Francisco, CA), pp. 430–444, May 2013.

159

http://hoopajoo.net/projects/xautomation.html
http://hoopajoo.net/projects/xautomation.html
http://www.chromium.org/developers/design-documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension
http://www.chromium.org/developers/design-documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension
http://www.chromium.org/developers/design-documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension
http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787

[156] WALTER, S., “Proxsmtp: An smtp filter.” http://memberwebs.com/stef/
software/proxsmtp/.

[157] WANG, T., LU, K., LU, L., CHUNG, S., and LEE, W., “Jekyll on ios: When benign
apps become evil,” in Proceedings of the 22th USENIX Security Symposium (Security),
(Washington, DC), Aug. 2013.

[158] WESSELS, D., NORDSTRÖM, H., ROUSSKOV, A., CHADD, A., COLLINS, R.,
SERASSIO, G., WILTON, S., and FRANCESCO, C., “Squid: Optimising web delivery.”
http://www.squid-cache.org/.

[159] WHITTAKER, S., MATTHEWS, T., CERRUTI, J., BADENES, H., and TANG, J., “Am I
Wasting My Time Organizing Email?: a Study of Email Refinding,” in Proceedings of
the 2011 annual conference on Human factors in computing systems, pp. 3449–3458,
ACM, 2011.

[160] WHITTEN, A. and TYGAR, J. D., “Why Johnny cant encrypt: A usability evaluation
of PGP 5.0,” in Proceedings of the 8th USENIX Security Symposium (Security),
(Washington, DC), Aug. 1999.

[161] WOJTCZUK, R. and TERESHKIN, A., “Attacking intel R⃝ bios,” Invisible Things Lab,
2010.

[162] WU, C., WANG, Z., and JIANG, X., “Taming Hosted Hypervisors with (Mostly)
Deprivileged Execution,” in Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS), (San Diego, CA), Feb. 2013.

[163] WU, C., ZHOU, Y., PATEL, K., LIANG, Z., and JIANG, X., “Airbag: Boosting
smartphone resistance to malware infection,” in Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS), (San Diego, CA), Feb.
2014.

[164] WU, L., GRACE, M., ZHOU, Y., WU, C., and JIANG, X., “The impact of vendor
customizations on Android security,” in Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), (Berlin, Germany), Oct. 2013.

[165] XU, N., ZHANG, F., LUO, Y., JIA, W., XUAN, D., and TENG, J., “Stealthy video
capturer: A new video-based spyware in 3g smartphones,” in Proceedings of the
Second ACM Conference on Wireless Network Security, WiSec ’09, (New York, NY,
USA), ACM, 2009.

[166] XU, R., SAÏDI, H., and ANDERSON, R., “Aurasium: Practical policy enforcement
for android applications,” in Proceedings of the 21st USENIX Security Symposium
(Security), (Bellevue, WA), Aug. 2012.

[167] ZHOU, Y. and JIANG, X., “Detecting passive content leaks and pollution in android
applications,” in Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS), (San Diego, CA), Feb. 2013.

160

http://memberwebs.com/stef/software/proxsmtp/
http://memberwebs.com/stef/software/proxsmtp/
http://www.squid-cache.org/

[168] ZHOU, Z., GLIGOR, V. D., NEWSOME, J., and MCCUNE, J. M., “Building verifiable
trusted path on commodity x86 computers,” in Security and Privacy (SP), 2012 IEEE
Symposium on, pp. 616–630, IEEE, 2012.

[169] ZHOU, Z., YU, M., and GLIGOR, V. D., “Dancing with giants: Wimpy kernels for
on-demand isolated i/o,” in Security and Privacy (SP), 2014 IEEE Symposium on,
pp. 308–323, IEEE, 2014.

161

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Motivations and Goals
	Dissertation Overview
	The Integrity of User Input
	The Confidentiality of User I/O
	The Authenticity of User I/O
	The Assurance of User I/O

	Chapter 2 — Gyrus: A Framework for User-Intent Monitoring of Text-based Networked Applications
	Motivation
	Related Work
	Overview
	Threat Model
	User Intent
	What You See Is What You Send
	Network Traffic Monitoring
	Target Applications

	Design and Implementation
	Architecture
	Implementation

	Application Case Studies
	Windows Live Mail
	Digsby: Yahoo! Messenger & Twitter
	Web-App: GMail
	Web-App: Facebook
	Web-App: Paypal
	Discussions

	Evaluation
	Security
	Usability
	Performance

	Summary

	Chapter 3 — Mimesis Aegis: A Mimicry Privacy Shield
	Motivation
	Related Work
	System Design
	Design Goals
	Threat Model
	M-Aegis Architecture
	User Workflow

	Implementation and Deployment
	Cryptographic Schemes
	UIAM
	Layer 7.5
	Per-TCA Logic

	Evaluations
	Correctness of Implementation
	Performance on Android
	User Acceptability Study

	Discussions
	Generality and Scalability
	Limitations

	Summary

	Chapter 4 — A11y Attacks: Exploiting Accessibility in Operating Systems
	Motivation
	Overview of Accessibility
	Accessibility Features
	Accessibility Libraries
	Assistive Technologies

	Security Implications of A11y
	New Attack Paths
	Required Security Checks

	Security Evaluation of A11y
	Evaluation Methodology
	Availability of Accessibility Features
	Vulnerabilities in Input Validation
	Vulnerabilities in Output Validation

	Discussions
	Complexity of Accessibility Attacks
	Limitations of the Attacks
	Root Causes, and Design Trade-offs
	Recommendations and Open Problems

	Related Works
	Summary

	Chapter 5 — SGX-USB: Establishing Secure USB I/O path in Intel SGX
	Motivation
	Background and Related Work
	Intel SGX
	Related Work

	Overview
	Security Guarantees
	Threat Model

	Design of SGX-USB
	Architecture
	Verifying Authenticity and Sharing Secret through Remote Attestation
	Trust Chain and User Verification
	Integrity and Confidentiality: Encrypted Communication Channel

	Use Cases
	AuthMgr: Protecting User's Password using SGX-USB
	Internet Video Chatting: A Potential Use Case

	Implementation
	Evaluations
	Security
	Performance

	Discussions

	Chapter 6 — Conclusion
	References

