
Identifying Open-Source License Violation and 1-day Security
Risk at Large Scale

Ruian Duan∗

Georgia Institute of Technology

Ashish Bijlani∗

Georgia Institute of Technology

Meng Xu
Georgia Institute of Technology

Taesoo Kim
Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

ABSTRACT

With millions of apps available to users, the mobile app market is
rapidly becoming very crowded. Given the intense competition, the
time to market is a critical factor for the success and profitability
of an app. In order to shorten the development cycle, developers
often focus their efforts on the unique features and workflows of
their apps and rely on third-party Open Source Software (OSS) for
the common features. Unfortunately, despite their benefits, care-
less use of OSS can introduce significant legal and security risks,
which if ignored can not only jeopardize security and privacy of
end users, but can also cause app developers high financial loss.
However, tracking OSS components, their versions, and interde-
pendencies can be very tedious and error-prone, particularly if an
OSS is imported with little to no knowledge of its provenance.

We therefore proposeOSSPolice, a scalable and fully-automated
tool for mobile app developers to quickly analyze their apps and
identify free software license violations as well as usage of known
vulnerable versions of OSS.OSSPolice introduces a novel hierarchi-
cal indexing scheme to achieve both high scalability and accuracy,
and is capable of efficiently comparing similarities of app binaries
against a database of hundreds of thousands of OSS sources (billions
of lines of code). We populated OSSPolice with 60K C/C++ and
77K Java OSS sources and analyzed 1.6M free Google Play Store
apps. Our results show that 1) over 40K apps potentially violate
GPL/AGPL licensing terms, and 2) over 100K of apps use known
vulnerable versions of OSS. Further analysis shows that developers
violate GPL/AGPL licensing terms due to lack of alternatives, and
use vulnerable versions of OSS despite efforts from companies like
Google to improve app security. OSSPolice is available on GitHub.

∗Co-first authors with equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134048

CCS CONCEPTS

• Security and privacy→ Software security engineering; Dig-
ital rights management; • Software and its engineering→ Soft-

ware libraries and repositories;

KEYWORDS

Application Security; License Violation; Code Clone Detection

1 INTRODUCTION

The mobile app market is rapidly becoming crowded. According
to AppBrain, there are 2.6 million apps on Google Play Store alone
[5]. To stand out in such a crowded field, developers build unique
features and functions for their apps, but more importantly, they
try to bring their apps to the market as fast as possible for the first-
mover advantage and the subsequent network effect. A common
development practice is to use open-source software (OSS) for the
necessary but “common” components so that developers can focus
on the unique features andworkflows.With the emergence of public
source code hosting services such as GitHub [34] and Bitbucket [6],
using OSS for faster app development has never been easier. As of
October 2016, GitHub [34] reported hosting over 46 million source
repositories (repos), making it the largest source hosting service in
the world.

Despite their benefits, OSS must be used with care. Based on our
study, two common issues that arise from the careless use of OSS
are software license violations and security risks.

License violations. The use of OSS code in apps can lead to
complex license compliance issues. OSS are released under a vari-
ety of licenses, ranging from the highly permissive BSD and MIT
licenses to the highly restrictive ones: General Public License (GPL),
and Affero General Public License (AGPL). Use of OSS implicitly
bounds the developer to the associated licensing terms, which are
protected under the copyright laws. Consequently, failure to com-
ply with those terms could have legal ramifications. For example,
Cisco and VMWare were involved in legal disputes for failing to
comply with the licensing terms of Linux kernel [69, 85].

Security risks.OSS may also contain exploitable vulnerabilities.
For instance, recently reported vulnerabilities in Facebook and
Dropbox SDKs [2, 53] could be exploited to hijack users’ Facebook
accounts and link their devices to attacker-controlled Dropbox

1

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2169

https://github.com/lingfennan/osspolice
https://doi.org/10.1145/3133956.3134048

accounts, respectively. Vulnerabilities found in OSS are typically
patched in subsequent releases while apps using old, unpatched
versions can put end users’ security and privacy in jeopardy.

To obviate such issues, app developers must diligently manage
all OSS components in their apps. In particular, developers not only
need to track all OSS components being used and regularly update
them with security fixes, but also comply with the license policies
and best practices in all OSS components and follow license changes
across versions.

However, manually managing multiple OSS components, their
versions, and interdependencies can quickly become very tedious
and error-prone, particularly if an OSS is imported with little to
no knowledge of its provenance. Moreover, license engineering
and compliance require both legal as well as technical expertise,
which given the diversity of software licenses, can prove costly and
time-consuming. Consequently, while some developers may ignore
the need for managing OSS to avoid additional overheads, others
may fail to correctly manage them due to ignorance or lack of tools
and expertise, thereby inadvertently introducing security risks and
license violations.

We have developed OSSPolice, a scalable and fully-automated
tool to quickly analyze app binaries to identify potential software
license violations and usage of known vulnerable OSS versions.
OSSPolice uses software similarity comparison to detect OSS reuse
in app binaries. Specifically, it extracts inherent characteristic fea-
tures (a.k.a. software birthmarks [37]) from the target app binary
and efficiently compares them against a database of features ex-
tracted from hundreds of thousands of OSS sources in order to
accurately detect OSS versions being used. In the event that the
correct version is missing from our database, or if two versions have
no distinct features, in line with our findings, the closest version of
OSS is detected.

Based on the detected usage of OSS versions, the ones containing
known software security vulnerabilities or under restrictive free
software licensing terms are reported. OSSPolice polls the Com-
mon Vulnerabilities and Exposures (CVE) database to track OSS
versions affected with security vulnerabilities. We also include vul-
nerabilities found by Google’s App Security Improvement program
(ASIP) [41]. In this work, we only track OSS usage under GPL and
AGPL licenses due to their wide usage and highly restrictive terms
(e.g. require derivatives works to open-source) and flag detected
cases as potential violations if app sources are not found. It is worth
noting that OSSPolice focuses solely on the technical aspects of
license compliance, not the legal issues. Although OSSPolice does
perform extra validation before reporting an app, such as check-
ing whether its source code is publicly available on the developer
website or popular code hosting webservices (e.g., GitHub), raising
legal claims is not a goal of OSSPolice.

The current prototype of OSSPolice has been designed to work
with Android apps due to its popularity and market dominance.
Nevertheless, the techniques used can also easily be applied to iOS,
Windows, and Linux apps.OSSPolice can analyze both types of An-
droid binaries: C/C++ native libraries and Java Dalvik executables
(dex).

A number of code reuse detection approaches have been pro-
posed, but each presents its own set of limitations when applied

to our problem setting. For instance, whereas some assume avail-
ability of app source code [8, 9, 45, 49, 51], others either support
only a subset of languages (C [39], Java [7, 10, 82]) or use compu-
tationally expensive birthmark features to address software theft
[23, 59, 65, 66, 90, 91], known bugs [28, 30] and malware detection
[25, 93, 96]. In contrast, the goal of OSSPolice is not to detect de-
liberate repackaging, software theft, or malware; rather it is a tool
for developers to quickly identify inadvertent license violations
and vulnerable OSS usage in their apps. To this end, we assume
that app binaries have not been tampered with in any specific way
to evade OSS reuse detection. Based on this assumption, we trade
accuracy in the face of code transformations to gain performance
and scalability in the design space. We use syntactical features,
such as string literals and exported functions when matching na-
tive libraries against OSS sources. This is because these features are
easy to extract and preserved even across stripped libraries. How-
ever, since Java code in Android apps is commonly obfuscated with
identifier renaming, OSSPolice has been designed to be resilient to
such simple code transformations. To match dex files against Java
OSS, we rely on string constants and proven obfuscation-resilient
features, such as normalized classes [7] and function centroids [22]
as features.

OSSPolice maintains an indexing database of features extracted
from OSS sources for efficient lookup during software similarity
detection. One approach to build such a database, as adopted by BAT
[39], is to create a direct (inverted) mapping of features to the target
OSS. However, this approach fails to consider large code duplication
across OSS sources [62] and, hence, suffers from low detection
accuracy and poor scalability (§3.4.1). Indexing multiple versions of
OSS further adds to the problem.OSSPolice, therefore, uses a novel
hierarchical indexing scheme that taps into the structured layout
(i.e., a tree of files and directories) of OSS sources to apply multiple
heuristics for improving both, the scalability and the detection
accuracy of the system (§3.4.3).

Our experiments show that OSSPolice is capable of efficiently
searching through hundreds of thousands of source repos (billions
of lines of code). We evaluated the accuracy of OSSPolice using
open-source Android apps on FDroid [29] with manually labeled
ground truth. OSSPolice achieves a recall of 82% and a precision
of 87% when detecting C/C++ OSS usage and a recall of 89% and a
precision of 92%when detecting Java OSS usage, which outperforms
both BAT [39] and LibScout [7]. For version pinpointing,OSSPolice
is capable of detecting 65% more OSS versions than LibScout [7].

In summary, we contribute as follows:

• We identify the challenges in accurately comparing an app
binary against hundreds of thousands of OSS source code
repos and propose a novel hierarchical indexing scheme to
achieve both the accuracy and scalability goals.
• We present the design and implementation of OSSPolice, a
scalable and fully-automated system for OSS presence de-
tection in Android apps, and further use the presence infor-
mation to identify potential license violations and usage of
vulnerable OSS versions in Android apps.
• We applyOSSPolice to analyze over 1.6 million free Android
apps from Google Play Store and compare their similarity

2

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2170

to 60K C/C++ and 77K Java OSS versions. To the best of our
knowledge, this is the first large-scale study to do so. We
present our findings, highlighting over 40K cases of potential
GPL/AGPL violations and over 100K apps using vulnerable
OSS versions (§6).
• We conduct further analysis on the detected results and
find that developers violate GPL/AGPL licensing terms due
to lack of choice, and use vulnerable OSS versions despite
efforts from companies like Google to improve app security.

2 RELATEDWORK

Previous efforts related to OSSPolice can be categorized into the
two lines of work.

Software similarity detection. Software similarity detection
techniques compare one software to another to measure their simi-
larity. Various such techniques have been studied and applied in
across domains. However, none of those are suitable for our prob-
lem setting, i.e. comparing Java dex files as well as fused C/C++
libraries in Android apps against hundreds of thousands of source
code repos §3.4.1.

Code clone detection. One such technique is code clone detection
that identifies the reuse of code fragments across source repos. It
was historically used to improve software maintainability [8, 9, 11,
27, 47–49, 52], but has also been studied to detect software theft (or
plagiarism) [1, 59, 65, 66, 74] and cloned bugs [32, 45, 57]. These
methods assume the availability of app source code. OSSPolice, on
the other hand, detects OSS code reuse in app binaries since their
sources may not be available.

Java/Dalvik bytecode clone detection. Some works have studied
similarity detection in Java bytecode code. Baker and Manber [10]
Tamada et al. [82] proposed birthmarking to detect software theft.

Techniques to detect app cloning have also been studied to
identify malicious and pirated apps. They computed similarity be-
tween apps using code-based similarity techniques [22, 38, 96] or
by extracting semantic features from program dependency graphs
[25, 26]. Other approaches have also studied third-party library
detection on Android, ranging from naïve package name based
[16, 36] whitelisting, to code clustering [26, 56, 61, 88] and machine
learning [67] based approaches. In particular, WuKong [88] auto-
matically identify third-party library uses with no prior knowledge
with code clustering techniques, LibRadar [61] extended it by gen-
erating a unique profile for each cluster identified, and LibD [56]
further adopted feature hashing algorithm to achieve scalability.
However, these approaches are either not scalable or rely on the
assumption that the third-party code is used by many apps without
modification, which might not always hold true [79].

In contrast, LibScout [7] considered unused code removal and
proposed a different feature: normalized class, as a summary of ac-
tual class to detect third-party libraries with obfuscation resiliency.
However, LibScout [7] doesn’t scale to a large number of OSS, be-
cause they iterate over all the third-party libraries to find matches
for candidate apps.

Binary clone detection. Various approaches have been proposed
to measure the similarity of two binaries [28, 30, 33, 60, 73, 90, 98].

OSSPolice, however, does not assume that the OSS binaries can be
built from sources or obtained.

There are also approaches proposed to detect OSS code reuse in
binaries [39, 50]. [50] computes signatures of functions present in
both source and binary using the size of arguments and local vari-
ables, then employs k-gram method to perform similarity analysis.
Similarly, Binary Analysis Tool (BAT) [39] extracts strings in bi-
nary files and compares them with information extracted from OSS
source repos to perform similarity measurement analysis. However,
both of them have not been designed to scale to the amount of
repos OSSPolice faces. Moreover, they suffer from low detection
accuracy due to inability to handle internal code cloning across
OSS sources §3.4.1.

Commercial services. A number of commercial services, such as
Black Duck Software’s Protex [15], OpenLogic [72], Protecode [81],
and Antelink [3] are also available that assist enterprises in manag-
ing OSS license compliance and identifying security risks. However,
they scan source code to detect OSS code clones by comparing
against their own database of OSS sources.

Third-party component security. [68] presented a threat sce-
nario that target WebView apps and [63] further found that 28%
of apps that uses embedded web browsers have at least one vul-
nerability, either due to use of insecure code or careless mistakes.
[21, 89, 97] vetted the assumptions and implementations for au-
thentication protocols in third-party SDKs and found that three
popular SDKs are vulnerable. They further verified that many apps
that relies on these SDKs are vulnerable too.

While similar in the final goal, these works actively test whether
an app violates the specified protocols/procedures whileOSSPolice
only passively test whether an app is vulnerable by inferring from
the presence of vulnerable versions of OSS components. [13] is also
a passive approach, however, given a specific vulnerable version of
OSS component, it uses dynamic driving to trigger the buggy code
while OSSPolice is purely static.

Given the wide spread of vulnerable third-party components in
mobile apps, researchers have also proposed various mechanisms
to isolate untrusted third-party code from the code originated from
app developers. [80] isolated components in native code; [76, 94]
isolated operation of ad libraries from the rest of the app; [71, 92]
provided ways to achieve access control on untrusted code. These
works are orthogonal to OSSPolice and can be used as remedy
actions for vulnerable OSS components that cannot be easily fixed
by updating to the latest version.

3 DESIGN

3.1 Goals and Assumptions

We envision OSSPolice as a webservice (or a standalone tool) for
mobile app developers that quickly compares their apps against a
database of hundreds of thousands of OSS sources in view of iden-
tifying free software license violations as well as known vulnerable
OSS being used.

Nonetheless, detection of software license violation entails both
legal and technical aspects. OSSPolice, focuses solely on the latter;

3

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2171

Languages Features OP BAT LS C

C/C++

String literal ✓ ✓

NA NAExported function ✓ ✓
Control-flow graph ✗ ✗

Java

String constant ✓ ✓ ✗ ✗
Function name ✗ ✓ ✗ ✗
Normalized class ✓ ✗ ✓ ✗
Function Centroid ✓ ✗ ✗ ✓
Control-flow graph ✗ ✗ ✗ ✗

Table 1: Comparison ofOSSPolice (OP) with state-of-the-art binary

clone detection systems, including BAT [39], LibScout (LS) [7], and

Centroid (C) [22]

its goal is to only collect statistical evidence suggesting a license
violation, not draw any legal conclusions. Similarly, OSSPolice is
not a system to discover new or existing security vulnerabilities. Its
goal is to only highlight the reuse of known vulnerable OSS versions
in apps, not to find or provide a concrete proof for vulnerabilities.
We provide detailed reasoning for these design choices in §7.

OSSPolice assumes that the violations have been caused inad-
vertently and do not constitute of deliberate software theft or piracy.
Therefore, it assumes that app binaries have not been tampered
with to defeat code reuse detection.

To this end, we set the following specific goals:

• Accurate detection of OSS versions being used in app bina-
ries,
• Collection of evidence suggesting license violations and pres-
ence of known vulnerable OSS versions,
• Efficient use of hardware resources, and
• Scalability to search against hundreds of thousands of OSS
sources (billions of lines of code).

3.2 Apps vs OSS

Android apps mainly contain two kinds of binaries: dalvik exe-
cutable (dex) files and native libraries. OSSPolice separately ana-
lyzes each binary type in an Android app and compares it against
OSS sources to detect specific versions being used.

Native Libraries. Native libraries are built directly for machine
architecture, such as ARM and x86 from C/C++ sources and loaded
on demand at runtime. App developers use native libraries in An-
droid apps for various reasons, such as code reuse, better perfor-
mance, or cross-platform development. One way to detect OSS
reuse in an app native library is to first build a native library from
subject OSS sources, which can then be compared with the tar-
get app library leveraging existing binary similarity measurement
techniques [23, 73, 98]. However, this approach suffers from the
following limitations. First, it implies automating the build of OSS
sources in order to be scalable, which is nontrivial if not impossible.
OSS written in low-level languages, such as C/C++ demand special-
ized build environment, including all dependencies, build tools, and
target-specific configuration. For example, native libraries present
in Android apps must be built using Android Native Development
Kit (NDK) toolchain. Consequently, automatically building a binary
from C/C++ OSS sources is not a one-step procedure; instead one
must follow complex build instructions to create the required build
environment. However, such specific build instructions may not be

available from the OSS developer as a part of the sources. Second,
even if we are able to successfully build OSS sources, the generated
OSS library may differ significantly from the target app library
because of different compilation flags (e.g., optimizations) or mis-
matching system configuration. For instance, system configuration
headers created during compilation time that capture the type (e.g.,
architecture data types, etc.) of the host system would be different
on disparate systems. To avoid such pitfalls, we directly compare
app native libraries to OSS sources.

Java Dex Files. Compared to native libraries, Android dex files
are built from Java sources and executed under a sandboxed Java
Virtual Machine runtime. Being amenable to reverse engineer-
ing, dex files are commonly obfuscated to hide proprietary de-
tails. In fact, the official Android development IDE, Android Studio
[35] is shipped with a built-in obfuscation tool, called ProGuard
[54], that removes unused code and renames classes, including
any fields and functions with semantically obscure names to hide
proprietary implementation details. For example, package name
com.google.android is renamed to a.g.c. OSSPolice is designed to
be resilient against common obfuscation techniques, such as identi-
fier renaming and control-flow randomization for analyzing Java
dex binaries. Although app developers can also adopt advanced
code obfuscation methods, such as string or class encryption and
reflection-based API hiding, we found such cases to be rare in our
dataset, possibly because such mechanisms incur high runtime
overhead.

3.3 Feature Selection

OSSPolice employs software similarity comparison to detect OSS
reuse. Specifically, when analyzing mobile app binaries, OSSPolice
uses software birthmarks [37] to compare their similarity to OSS
sources to accurately detect usage of OSS versions. A software
birthmark is a set of inherent features of a software that can be
used to identify it. In other words, if software X and Y have the same
or statistically similar birthmarks, then they, with high probability,
are copies of each other.

Selecting birthmarks (a.k.a. features) entails balancing perfor-
mance, scalability, and accuracy of software similarity detection;
depending upon the design goals, appropriate trade offs can be
made. For example, syntactic features, such as string literals are
easy to extract and are preserved in the binary, but can also be obfus-
cated (e.g., string encryption) to defeat detection. Simple syntactic
features are not reliable when applied to the problem of malware
clone detection and app repackaging detection. Past works targeting
such adversarial problems have, therefore, often employed program
dependency graph or dynamic analysis to defeat advanced evasion
techniques [17, 46, 90, 93, 95]. However, such semantic features are
not only difficult to extract correctly, but also consume overwhelm-
ingly high amount of CPU and memory resources, limiting system
scalability.

OSSPolice is neither a tool to find malware in apps nor does
it aim to detect deliberate software theft or piracy. We, therefore,
trade accuracy against code transformations to gain performance
and scalability in the design space. In particular, we assume that
app binaries have not been tampered with to evade OSS detection

4

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2172

and rely on simple syntactical features, such as string literals and
functions for the purposes of comparing Android native binaries
against C/C++ OSS sources. Table 1 shows the list of all features
used by OSSPolice. The reasons for selecting them are many-fold.
Besides being easy to extract, we found these features to be stable
against code refactoring, precise enough to distinguish between
different OSS versions, and preserved (ASCII readable) even across
stripped libraries. During our analysis of 1.6 million free Google
Play Store Android apps, consisting of 271K native ARM libraries
(98.9% stripped) and we found that 85% of native libraries have more
than 50 features (strings and functions) preserved. We further found
that for most native libraries, the number of functions increases
linearly as the library size grows, which indicates that most of
the apps do not strip or hide functions in native libraries. In fact,
there are only 11.6% libraries that are larger than 40KB in size, but
have less than 50 visible functions. Finally, these features have been
widely used and proven effective in various binary clone detection
schemes [39, 50].

Similar syntactical features are used by OSSPolice to match app
dex files against Java OSS sources, namely string constants and class
signatures. However, to be resilient against common obfuscation
techniques, such as identifier renaming, we normalize classes before
producing their signatures in a way that they lose all user-defined
(custom) details, but retain their interactions with the common
framework API. Normalized classes have been proven to survive
ProGuard obfuscation process [7]. The signatures are derived in
two steps. First, all functions in a class are normalized by removing
everything except their argument list and return types and further
replacing non-framework types with a placeholder. Next, the re-
sulting normalized functions are sorted and hashed to get their
class signature. However, our analysis revealed that while string
constants and normalized class signatures can detect OSS reuse
in Java dex files, they are too weak to accurately detect Java OSS
versions. Thus, we also use function centroids [22] for additional
entropy. Centroid of a function is generated through a deterministic
traversal of its intra-procedural graph. It captures the control flow
characteristics of a function and generates its signature as a three
dimensional data point, representing basic block index, outgoing
degree, and loop depth. Computing and comparing function cen-
troids are, however, computationally expensive tasks. Therefore,
we defer them until the later phase of similarity detection and use
only to pinpoint OSS versions (§4).

To determine how unique these features are across OSS versions,
we also analyzed cross-version uniqueness of these features for
OSS collected by OSSCollector in §4, which contains 3K C++ and
5K Java software, totaling to 60K C/C++ and 77K Java versions, re-
spectively. We find that 83% of C/C++ and 41% of Java OSS versions
can be uniquely identified using the aforementioned features.

3.4 Similarly Detection

Given sets of features from app binaries (denoted by BIN) and OSS
sources (denoted by OSS), a typical software similarity detection
scheme is to compare the two feature sets and compute a ratio-
based (|OSS∩BIN |

|OSS | or |BIN∩OSS |
|BIN |) similarity score to detect OSS

usage. However, designing a large-scale similarity measurement

repo
dir
file

LibJPEG LibPNG

MuPDF OpenCV

source thirdparty 3rdparty modules/core

test-dev.cpppdf-lex.c opengl.cpp test-io.cpp

pdf fitz testsrc

jpeglib.h
pngtest.c

png.c
…… … … …

Figure 1: Real-world examples illustrating third-party code clones

across OSS source repos. Various node types are highlighted using

different colors.

system to accurately detect OSS reuse in app binaries presents its
own set of challenges.

3.4.1 Challenges. Here we first identify all the challenges we
faced and follow up with the mechanisms we introduced for ad-
dressing them.

Internal code clones. A known advantage of using OSS is code
reuse. OSS developers frequently reuse third-party OSS sources to
leverage existing functionality. Reused code is often cloned and
maintained internally, as a part of the OSS development sources
(e.g., to allow easy customizations, to ensure compatibility, etc.).
We refer to such nested third-party OSS clones as internal code
clones. Internal code cloning results in high code duplication across
OSS sources [62]. Therefore, a naïve database of OSS sources for
similarity search will not only impose high hardware requirements,
thereby hurting the system scalability, but also cause OSSPolice to
report false positive matches against the internal third-party code
clones. To understand why, let us look at source layouts of two
popular C/C++ OSS sources, namely MuPDF and OpenCV as depicted
in Figure 1. Both the repos contain code clones of LibPNG as a part
of their source trees. Consequently, when trying to match features
from LibPNG binary against LibPNG,MuPDF,OpenCV sources, all three
of them will be reported as matches, although LibPNG is the only
true positive match. Such false positives can result into incorrect
license violations if the true and the reported matched repos are
under different software licenses.

Partial OSS Builds. App developers may also choose to include
only partial functionality from an OSS. For example, sources that
are specific to one machine architecture (e.g., say x86) will not be
compiled into a binary targeted for a different architecture (e.g.,
arm). Many C/C++ OSS sources provide configure options to selec-
tively enable/disable architecture-specific functionality. Similarly,
some OSS sources may also contain source files and directories
that are not compiled into the target binary, such as examples and
testsuite. While such unused sources could potentially be identi-
fied by analyzing build scripts (e.g., gradle, Makefile, etc.), there
exists a number of build automation tools that will have to be sup-
ported by OSSPolice in order to correctly parse the build scripts
and filter out unused parts; yet, the process may remain error-prone.
Moreover, commonly used app shrinking tools, such as ProGuard
analyze Java dex bytecode and remove unused classes, fields, and
methods. While the binary remains functionally equivalent in such
cases, number of features preserved from source to binary may,
however, decrease significantly. We call these binaries partially built
binaries. When comparing features from such a binary (BIN) with
features (OSS) from the corresponding OSS sources, the matching
ratio (|BIN∩OSS |

|OSS |) can be arbitrarily low even if all the elements
5

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2173

from BIN are found in OSS . In fact, the more number of unused
features are detected, the lower is the matching score, indicating a
false negative match.

Fused app binaries. During the app build process, multiple bi-
naries from disparate OSS sources could be tightly coupled together
to generate a single app binary. For example, all Java class files in
Android app, including any imported OSS jars are compiled into a
single dex bytecode file (classes.dex). Similarly, multiple native
libraries built from various C/C++ OSS sources, could be statically
linked into a single shared library, thus blurring the boundaries
between them. In such multi-binary files, features across multiple
OSS components are effectively fused into a superset. We refer to
them as fused binaries. As such, in the example depicted by Figure 1,
MuPDF binary will also contain features from LibJPEG. As a result,
when matching fused feature set (BIN) against a set of features
(OSS) from a single OSS, the matching ratio (|BIN∩OSS |

|BIN |) will be
arbitrarily low even though BIN includes all the elements of OSS .
In fact, the more number of disparate binaries are fused together,
the lower is the matching score, resulting into false negatives.

3.4.2 Mechanisms. For efficient and scalable lookup during
similarity comparison, OSSPolice maintains an indexing database
of features extracted from OSS sources. An intuitive approach to
indexing OSS sources is to consider each OSS as a document and
its features as words, and create a direct (inverted) mapping of
features to the target OSS (document). Figure 2a depicts the layout
of such an indexing database. BAT [39] uses a similar scheme to
maintain a database of features (string literals) extracted from OSS
sources. However, this approach assumes that each OSS (document)
is unique, and fails to consider large code duplication across OSS
sources due to internal code cloning (§3.4.1). Consequently, such a
naïve indexing scheme not only causes high false positives matches
against internally cloned third-party OSS sources, but also imposes
high storage requirements and does not scale as number of OSS
to be indexed grows. Indexing multiple versions of OSS to enable
version pinpointing further adds to the problem of code duplication.

We address the aforementioned challenges by tapping into the
structurally rich tree-like layout of OSS sources. We will use the
OSS source repo layouts in Figure 1 throughout this section for
illustration purposes. The key observation that we make is that
OSS developers typically follow the best practices of software de-
velopment to improve collaboration and allow faster development.
Hence, OSS sources are well organized in a modular and hierarchi-
cal fashion for easy maintainability. For instance, source files (e.g.,
a C/C++ or Java class file) typically encapsulates related functions.
Directory (dir) nodes at each level of the source tree cluster all re-
lated child files and dirs together. Referring to our example layout in
Figure 1, we can see that src and source dirs in OpenCV and MuPDF,
respectively group all related source files and dirs under them.
Similarly, internal code clones of third-party OSS (e.g., LibPNG and
LibJPEG) are maintained in separate dirs (thirdparty and 3rdparty,
respectively).We utilize this property to perform ratio-based feature
matching against each file or dir node (i.e., |BIN∩NODE |

|NODE |) along
the OSS source tree hierarchy as opposed to matching against the
entire OSS repo (i.e., |BIN∩OSS |

|OSS |), which may result in low accuracy
in case of partial OSS reuse (§3.4.1). Specifically, if the ratio-based

feature matching reports a high score against a node n (e.g., LibPNG)
at a particular level l in the OSS source tree hierarchy, but reports a
low aggregated score when matched against one ofn’s parent nodes
p (e.g., OpenCV) at level > l , then we only report a match against
node n (i.e., LibPNG), but not against the parent p (i.e., OpenCV) or
any siblings at the same level. In this example, the matched OSS
path reported by OSSPolice would be OpenCV/LibPNG.

To detect internal clones and filter out spurious matches against
them, we apply multiple additional heuristics that leverage the
modularized layout of OSS sources. During indexing we visit each
dir node n in OSS sources and check for the presence of common
software development files, such as LICENSE or COPYING (OSS licens-
ing terms), CREDITS (acknowledgements), and CHANGELOG (software
change history). These files are typically placed in the top-level
source dir of OSS project repos. C/C++ OSS sources also typically
host build automation scripts (e.g., configure and autogen in top-
level source dirs. As such, cloned third-party OSS sources are likely
to retain these files, which can be used to identify internal OSS
clones. However, since someOSS sources may not be well organized,
we further leverage the large code duplication across OSS sources
resulting from OSS reuse to identify such internal clones. The obser-
vation we make is that due to OSS reuse, dir nodes (n) of commonly
reused OSS sources will have multiple parents p in our database in
contrast to unique OSS source dirs (e.g., MuPDF/source/pdf). This
helps us identify all popular OSS clones in our database. All iden-
tified clones are further annotated so that they can be filtered out
during matching phase in order to minimize false positives (see
matching rules in §3.4.4).

3.4.3 Hierarchical Indexing. We devise a novel hierarchical
indexing scheme that retains the structured hierarchical layout of
OSS sources (depicted in Algorithm 1). Specifically, instead of creat-
ing a direct mapping of features to the target OSS (i.e. the top-level
dir in the OSS source tree), we map features to their immediate
parent nodes (i.e., files and middle-level dirs). Figure 2 shows the
layout of our indexing database constructed from OSS sources in
Figure 1. We use this figure to walk through the steps to index an
OSS. We populate an OSS in our indexing database, by separately
processing each node (feature, file, or dir) in its source tree in a
bottom-up fashion, starting from the leaf nodes that represent fea-
tures (e.g., strings, functions, etc.). In order to retain the structured
layout of OSS sources, we treat identifiers of parent nodes (i.e.,
files and dirs) as features, which are further indexed for efficient
lookup. We refer to them as hierarchical features. At each level l of
OSS source hierarchy, for a given node n, we create two types of
mappings for each feature f under it: inverted mapping of f to n
(immediate parent at level l) and straight mapping of n to f . Given
a feature, the first mapping allows us to quickly find its matching
parents, whereas we use the latter to perform ratio-based similarity
detection. Our hierarchical indexing scheme efficiently captures
uniqueness of features at each level of hierarchy. For example, after
indexing we can know that features in LibPNG are contained in
source dir LibPNG, which in turn is contained in multiple nodes,
such as 3rdparty in OpenCV and thirdparty in MuPDF.

We take advantage of internal OSS clones, to perform code dedu-
plication for efficient use of hardware resources during indexing.

6

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2174

Algorithm 1 Pseudo code for hierarchical indexing algorithm

1: procedure IndexRepo(repoRoot , repoInf o)
2: f ile2Features ← ∅
3: for f ile ∈ repoRoot do
4: f ile2Features[f ile]← ClangParser(f ile)
5: path2Id ← ∅
6: dir2Features ← ∅
7: dir2Children ← ∅
8: for (f ile, f eatures) ∈ f ile2Features do
9: path2Id[f ile]← Simhash(f eatures)
10: for f eat ∈ f eatures do
11: UpdateIndexDB(MD5(f eat),path2Id[f ile])
12: UpdateVersionDB(f eatures,repoInf o)
13: child ← f ile
14: while child , repoRoot do
15: parent ← parento f (child)
16: dir2Features[parent].add (f eatures)
17: dir2Children[parent].add (child)
18: child ← parent

19: for (dir , f eatures) ∈ dir2Features do
20: path2Id[dir]← Simhash(f eatures)
21: IndexDir(repoRoot ,dir2Children,path2Id)
22: AddMappingToDB(path2Id[repoRoot],repoInf o)
23: procedure IndexDir(dir ,dir2Children,path2Id)
24: children ← dir2Children[dir]
25: for child ∈ children do

26: if ¬IsIndexed(child) then
27: IndexDir(child ,dir2Children,path2Id)
28: else

29: UpdateIndexDB(path2Id[child],path2Id[dir])
30: procedure UpdateIndexDB(f ,n)
31: parents ′ ← GetParentsFromDB(f)
32: if sizeo f (parents ′) ≥ TNp then

33: continue
34: if ∀n′ ∈ parents ′ : H (n,n′) ≥ D then

35: AddMappingToDB(f ,n)
36: AddMappingToDB(n, f)

To do so, we assign content-based identifiers to all the nodes in the
source tree. We use 128-bit md5 hash to generate such identifiers
for features (leaf) nodes and use Simhash [19] algorithm to assign
identifiers of parent (non-leaf) nodes, derived from the identifiers of
all features (leaf nodes) under them. Simhash is a Locality Sensitive
Hashing (LSH) algorithm that takes a high dimensional feature set
and maps them to a fixed size hash. Hamming distance between
hash values reveals cosine similarity between the original feature
set. Since the Hamming distance between different identifiers re-
flects their similarity, before inserting a new mapping from feature
f to parent n, we lookup whether f is already mapped to a similar
parent noden′ with Hamming distance less than a particular thresh-
oldD (i.e.H (n,n′) < D). If such a parent noden′ already exists, then
we simply skip populating our indexing table with mappings for n′.
Note that ifn happens to be a largemiddle-level dir node, containing
several source files and dirs within it (e.g., thirdparty/LibPNG) and

…

Feature i

Feature k

Feature j

Feature 1 LibJPEG

LibPNG

MuPDF OpenCV

OpenCV

MuPDF

OpenCV

(a) Inverted flat indexing table mapping features to parent OSS.

cv_root

pdf_root

…

3rdparty

thirdparty

source

png_root

pdf

…

png.c

pdf-lex.c

…

Feature j

Feature i pdf-lex.c

png.c

pdf

png_root

source

thirdparty 3rdparty

pdf_root

pdf_root

cv_root

MuPDF

OpenCV

LibPNG

(b) Inverted hierarchical indexing table mapping features to files, files
to dirs, and dirs to parent repo. Colored boxes highlight repos and their
root dirs.

Figure 2: Example illustrating OSS reuse and how hierarchical in-

dexing take its advantage to reduce storage consumption.

is similar to an existing node (i.e., 3rdparty/LibPNG in our database,
then our content-based deduplication design achieves significant
storage savings. Additionally, some features can be very popular.
For instance, commonly occurring function names, such as main or
test. Such features do not contribute to the uniqueness of an OSS.
Worse yet, their long list of parent mappings (f to n) wastes storage
space and increases search time. Therefore, we put a threshold on
the maximum number of parent nodes for each child node (TNp).

Additionally, to enable accurate version pinpointing, we track
unique features across OSS versions for each OSS in the indexing
phase. This is separately maintained using two lists (Listoverall
contains all features ever appeared in anOSS and Listunique records
unique features in each version) because with the benefit of dedu-
plication based on similarity in the indexing phase, we also lose
track of the uniqueness among similar nodes.

3.4.4 Hierarchical Matching. Our matching algorithm (de-
picted in Algorithm 2) leverages the OSS layout information pre-
served in indexing table for improving the accuracy of ratio-based
similarity detection and filtering out duplicate OSS sources. In order
to do so, we use a TF-IDF metric that assigns a higher score to the
unique part of each parent node (files and dirs) and penalizes the
non-unique part.

NormScore (p) =

∑n
1 fci × log

Np
1+Rci∑n

1 Fci × log
Np

1+Rci

(1)

TF-IDF based metric. Let c denote child nodes, p denote parent
nodes in the hierarchical indexing structure and Np denote the
total number of parent type nodes in the database. Let fci , Fci and

7

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2175

Algorithm 2 Pseudo code for hierarchical matching algorithm

1: procedure MatchBinary(binary)
2: f eatures ← ElfParser(binary)
3: repos ← ∅
4: while sizeo f (f eatures) > 0 do
5: parents ← GetParentsFromDB(f eatures)
6: for p ∈ parents do
7: if IsMatchingRepo(p) then
8: repos .add (p)

9: p2Children ← ∅
10: for p ∈ parents do
11: p2Children[p]← GetChildrenFromDB(p)
12: p2NormScore ← ∅
13: p2CumScore ← ∅
14: for (p,children) ∈ p2Children do

15: p2NormScore[p]← NormScore(p,children)
16: p2CumScore[p]← CumScore(p,children)
17: f eatures ← ∅
18: for p ∈ parents do
19: if ¬MatchingRules(p) then
20: continue
21: ns ← p2NormScore[p]
22: cs ← p2CumScore[p]
23: if ns ≥ TNormScore ∧ cs ≥ TCumScore then

24: f eatures .add (p)

25: versions ← SearchVersionDB(repos, f eatures)
26: return repos,versions

Rci denote number of matching features, number of total features
and number of matching parent nodes (references) of the i-th child
node, respectively. We then define log Np

1+Rci as IDF of the i-th child,
measuring its importance to the parent node. Finally, we weigh
each child using their IDF and define the weighted matching ratio
as NormScore in Equation 1.

When matching against the indexing table, we first query fea-
tures to get files, then query files to get dirs, and so on. After every
round of query, we use NormScore to assign higher weights to
unique parts of a parent node and filter these parent nodes for next
round of query based on NormScore . With this normalization score,
when we search binary of LibPNG, we can achieve a close to 1.0
score, but when we move up from LibPNG to 3rdparty in OpenCV,
the score significantly drops, and we can conclude a matching of
LibPNG. Additionally, we also track total number of matched fea-
tures, denoted as CumScore , to complement NormScore , since the
latter only tracks matched ratio, whereas the former showsmatched
count. With the rich information extracted in indexing phase and
the defined metrics, we apply the following matching rules to
filter out false positives:

• Skip dirs that have license, since they are likely to be third-
party OSS Clones.
• Skip source files thatmatches low ratio of functions or header
files that matches low ratio of features, since they are likely
to be tests, examples or unused code (e.g. partial builds).

ValidatorDetectorIndexerCollector

Google Play
Applications

Dalvik
bytecode
Native
Library

Java OSS
Collection

C/C++ OSS
Collection

OSS
Detector

GitHub OSS
Other OSS

Maven OSS
JCenter OSS

Validation &
Notification

Figure 3: OSSPolice architecture and workflow

• Skip popular files/dirs by checking whether they are much
more popular than the siblings, where popularity refers to
number of matching parent nodes for each node (Rci).

Based on the detected OSS, we then compare the features from
the app binary with the unique features across OSS versions to
identify the matched OSS version. However, in practice, we find
that unique features may cross match. For example, version string
“2.0.0” from OkHTTP may match the version “2.0.0” of MoPub,
while the actual matched version of MoPub is “3.0.0”. To address
this issue, we leverage co-location information preserved in the
binary and indexing table (bi-directional mapping between n and
f), and considers a unique feature as valid if all the other features
in the same file/class also matches.

4 ARCHITECTURE

OSSPolice is written mostly in Python. This allows us to reuse
existing production-quality tools within the language ecosystem.
In particular, we use Celery [18] job scheduler for distributing
work to multiple servers, Scrapy [75] for efficient crawling of OSS
repos, and Redis distributed key-value cluster [70] for storing and
querying indexing result.

Figure 3 depictsOSSPoliceworkflow. It consists of four modules,
namely OSSCollector, Indexer, Detector, and Validator. Each module
has an extensible plugin-based design to incorporate additional
functionality as need. Here we briefly describe the function of each
module.

OSSCollector. Our OSSCollector module is responsible for crawl-
ing multiple OSS hosting web services and downloading source
repos or Java artifacts. We use Scrapy [75] web crawling framework.
OSSCollector currently can only collect OSS from popular C/C++
source code hosting webservices, such as GitHub [34] and com-
monly used centralized webservices for distributing Java bytecode
(artifacts), such as Maven [83] and JCenter [14]. However, due to
an extensible design of OSSCollector, support for other hosting
services, such as Bitbucket [6], SourceForge [78], and Sonatype [77]
can be easily added.

When a new repo is discovered, OSSCollector first collects its
metadata, such as software name, unique repo identifier, repo size,
its popularity, programming languages used, number of lines of
code, and details of available release versions (e.g., version iden-
tifier, software license, date created, etc.). Collected metadata is
passed through additional filters to evaluate if an OSS repo should
be downloaded for indexing. Based on the metadata filters, OSSCol-
lector either skips the repo or downloads it and notifies Indexer to
start processing it. Our current prototype deploys filters based on

8

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2176

three constraints: OSS popularity, license type, and vulnerability
score.

We use Fossology[31], an open-source tool from HP, to extract
and identify software licenses of OSS repos by examining license-
like files in root directory of GitHub repos and project descrip-
tion file, namely pom.xml for Java artifacts. OSSCollector currently
works only with GPL/AGPL OSS sources.

OSSCollector also collects vulnerability information for each
OSS by transforming the software names into Common Platform
Enumeration (CPE) format [20] and querying cve-search [58] to get
a detailed list of all related Common Vulnerabilities and Exposures
(CVE) vulnerabilities, including CVE id, its description, Common
Vulnerability Scoring System (CVSS) score, affected versions, etc.
OSSCollector further filters out CVEs based on their CVSS score
and only retains CVEs with CVSS score higher than 4.0, which
we refer to as Severe CVEs. This is done to limit the focus of this
study to only detecting the use of OSS versions that are affected
with critical vulnerabilities.

OSSCollector only downloads software that is either popular or
is being used by at least one FDroid [29] app, which makes our
evaluation dataset (described in §5). Each GitHub repo is attrib-
uted with stargazers count and fork count, indicating approximated
number of users interested in it and number of times its copy has
been created, respectively. We use these attributes to determine
popularity of a GitHub repo. In particular, we downloaded Github
repos with more than 100 stargazers to form our C/C++ OSS Col-
lection (OSSC/C++), which consisted of 3,119 repos and 60,450 OSS
versions. Popularity information, however, is not available from
Maven and is available only for a few Java artifacts from JCenter
in the form of total number of downloads. This is because JCen-
ter OSS developers may optionally choose to hide the download
statistics1. Therefore, while compiling a list of popular Java soft-
ware, we included additional sources, such as MvnRepository [64]
AppBrain [4], and Android Studio [35]. We narrowed down to Java
software artifacts that received more than 5K downloads, result-
ing in our Java OSS Collection (OSS Java) with 4,777 artifacts and
77,308 artifact versions.

OfOSSC/C++, 896 repos were GPL/AGPL-licensed and 347 were
vulnerable with 5,611 severe CVEs, whereas of OSS Java , 110 repos
were GPL/AGPL-licensed and 83 were vulnerable with 452 severe
CVE ids. The two datasets were used for evaluating the OSSPolice
as well as reporting findings on Google Play Store apps.

AppCollector. It is responsible for crawling appstores and down-
loading app packages (apks) and their metadata, such as developer
information, download count, and app description. Our current
prototype only supports Google Play Store and borrows techniques
from PlayDrone [87]. We used AppCollector to download 1.6M free
Android mobile apps from Google Play Store in Dec, 2016.

Indexer. It extracts birthmark features from C/C++ source and
Java jar/aar files in OSS repos to create an indexing database for
1Developers may distribute multiple Java software and expose their download statistics
selectively on JCenter. For example, apache owns both commons-vfs2 and commons-
compress, but only chooses to disclose the download count for the former (13,478) and
hides it for the latter although both of them are popular.

efficient lookup. For feature extraction from C/C++ OSS, we use a
Clang-based fuzzy parser to parses all source files (including head-
ers). At first, we used a regular expression-based feature extractor.
However, it failed to correctly report features in many cases. For
instance, it failed to correctly extract strings or functions wrapped
in a preprocessing macro.

Our parser retrieves string literals and function names from
C/C++ source files. Additionally, it also extracts parameter types,
class names, and namespaces for functions while parsing C++
source files since they are preserved in native libraries. Since pars-
ing OSS files may fail due to missing configuration files and external
dependencies, we designed the parser to infer the semantic context
and insert dummy identifiers for missing data types. Further, we
skip function bodies to speed up the parsing process as we use only
function names and their arguments. To preserve the hierarchi-
cal layout of repos for content deduplication, we separately index
source and header files. As a result, we are also able to easily skip
common strings and functions defined in standard framework and
system include files that tend to dilute matching results because of
their popularity across several source repos. However, we do en-
able all #include directives, to resolve data types defined in header
files and correctly identify function names and string literals that
are wrapped in preprocessing macros, but are referenced in source
files. Conditional preprocessing directives, such as #if and #else
branch directives could also be skipped because of default config
options. We, therefore, process the code within such directives
separately, each forming a conditional group of extracted features
Sometimes developers may comment out a certain piece of code
within #if 0 or #elif 0, which may be erroneous; we detect and
skip such cases. We also skip non-Android and non-arm OS- and
arch-specific macros.

For feature extraction from Java OSS, Indexer uses a Soot-based
parser[55] for both source code and bytecode, which gives us the
flexibility to support various kinds of inputs: jar, dex, apk, and
source code. Indexer extracts features described in §3.3, including
string constants, normalized classes, and centroids.

Detector. It first extracts the same types of features (§3.3) as the
Indexer from mobile app binaries. We write a custom Python mod-
ule around pyelftools [12], to extract strings and exported function
names from native libraries, and use the same Soot-based parser
to extract string constants, normalized classes and centroids. De-
tector then queries extracted features against the indexing table
built by Indexer to find out a list of matched OSS versions. Detector
selectively report these OSS version usage to Validator based on
their license and vulnerability annotations. In particular, Detector
reports usage of GPL/AGPL-licensed OSS as potential license viola-
tions, and usage of OSS version annotated with at least one Severe
CVE as vulnerable usage.

Validator. It performs different checks based on the detected OSS
versions. In the GPL/AGPL-violation scenario, it uses developer’s
information from Google Play Store, searches through app descrip-
tion and the developer’s website for source code hosting links (e.g.
GitHub). If found, it compares the similarity of app binary with
the hosted source code to determine if the hosted code matches
indeed is a match. If the Validator fails to find hosting links or if

9

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2177

the similarity match fails, it reports the app as a potential violator
of GPL/AGPL licensing terms. In case of vulnerable OSS detection,
Validator simply retains the OSS versions that matched with unique
features, and presents vulnerability details, such as OSS version and
CVE ids to the user. If no unique features matched, it simply ranks
the detected OSS versions based on their TF-IDF score. However,
fine-grained function-level features (e.g., intra-procedural graph)
can be extracted from both OSS sources and app binaries to increase
the accuracy of version pinpointing at the cost of higher consump-
tion of system resources (CPU, memory, etc.) and increased search
time. We leave this for future work.

5 EVALUATION

In this section, we first present the performance and scalability
evaluation results ofOSSPolice to show that it can efficientlymatch
millions of app binaries against hundreds of thousands of OSS
source repos. We then follow up with the accuracy analysis of
OSSPolice using FDroid [29] open-sourced apps (for ground truth)
to demonstrate that it can accurately detect OSS versions being
used even in the presence of internal code clones, partially built
binaries, and fused binaries (§3.4.1). For comparative analysis, we
also report accuracy of BAT [39] and LibScout [7] since they are
the state-of-the-art tools for OSS reuse detection, closest to ours.

5.1 Performance and Scalability

We deployed OSSPolice on ten servers, each with 16-core Intel
Xeon CPU E5-2673 v3 @ 2.40GHz, 56GB memory, and 4TB drives.

Indexing. To evaluate the scalability of OSSPolice, we indexed
a total of 137,758 OSS repos (60,450 C/C++ and 77,308 Java). We
short-listed them because of their high popularity (§4). While index-
ing, we empirically set Simhash distance threshold (D) to 5 (§3.4.3)
and number of maximum parent nodes (TNp) for each child node to
2,000 (§3.4). We present the change in memory consumption with
the number of indexed repos in Figure 4a. As the figure demon-
strates, the memory consumption grows sub-linearly due to content
deduplication, suggesting that OSSPolice can easily be scaled to
index more OSS repos.

At the end of indexing, OSSPolice processed 13 million C/C++
source files and 31 million Java classes, which amounts to more
than 2 billion lines of C/C++ source code and 500 million lines of
Java bytecode instructions, respectively. The total number of entries
(keys) in the Redis database reached around 44 million and 9 million
and the database grew to 30GB and 9GB for C/C++ and Java OSS,
respectively. The number of entries created for C/C++ indexing
table was higher than Java because C/C++ repos are generally
larger in size and include auxiliary sources, such as tests, examples,
and third party code, whereas Java bytecode files do not contain
such auxiliary sources. On average, extracting all types of features
described in Table 1 and indexing a source repo take 1,000 and 40
seconds for C/C++ and Java OSS, respectively. For C/C++ OSS, the
majority of indexing time is spent in parsing source files for feature
extraction. This is because the current implementation of our Clang
parser is single-threaded and not optimized to include precompiled
headers. Thus, it recompiles common headers for every source

0 10 20 30 40 50 60 70 80
Number of indexed repos(Thousands)

0.00

4.66

9.31

13.97

18.63

23.28

27.94

32.60

37.25

M
em

or
y

us
ag

e
(G

B
)

C/C++ Memory Usage
Java Memory Usage

(a) Memory consumption. (b) OSS detection time.

Figure 4: OSSPolice indexing and detection scalability. (a) shows

memory consumption of indexing database over time and (b) shows

how number of features in an app affects the detection time.

file. We expect that parallelizing the parser and adding support for
precompiled headers will substantially improve its performance.
However, we leave that for future work. In comparison, indexing
time of Java OSS first increases and then remains stable because
the majority of indexing time is spent on content deduplication,
where number of similarity comparisons first grows with number
of indexing nodes, but later reaches the limit of maximum parent
nodesTNp . Our Soot-based [55] feature extractor is fast because it is
multi-threaded and works directly on the precompiled jar packages.

Detection Time. A typical phenomenon in similarity detection
schemes is that as the app grows bigger and more complex, the time
taken to detect its similarity can increase exponentially, making
these schemes unsuitable for handling large and complex apps. To
test whether this limitation applies to OSSPolice, we randomly
sampled 10,000 Android apps from Google Play Store dataset and
queried them against our OSS database. Figure 4b shows the re-
lationship between time taken by OSSPolice to analyze them for
OSS reuse and number of features found in the selected app bi-
naries (representative of app complexity). As seen from the plot,
there is a linear relationship between the number features and the
detection time; 80% of Dalvik binary and native library detection
queries finish within 100 and 200 seconds, respectively, thus making
OSSPolice suitable for analyzing apps at Google Play Store scale.

5.2 Accuracy

In order to evaluate the accuracy of OSSPolice in detecting OSS
binary clones in Android apps, one needs a labeled mapping of apps
to OSS usage for ground truth. However, no such dataset is pub-
licly available from previous works. Randomly selecting binaries
from actual dataset and labeling them for ground truth may include
obfuscated and stripped binaries, rendering the labeling process
error-prone. We, therefore, decided to use FDroid apps since their
source code and binaries are both publicly available. FDroid hosted
a total of 4469 apps at the time of collection (Feb, 2017). Of those, 579
apps contained at least one native library. We labeled C/C++ OSS
by manually analyzing the source code and subsequently validating
their presence in app binaries by collecting informative strings and
function names. For instance, LibPNG sources were confirmed by
cross-checking whether the function names in the app binaries be-
gan with prefix png_. Java OSS labels were generated by parsing the

10

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2178

OSS Labels # Uses OSSPolice BAT [39]

P(%) R(%) VM VP’(%) P(%) R(%) VM VP’(%)

FDroidC/C++ 295 82 87 55/67 82 75 61

OSS Labels # Uses OSSPolice LibScout[7]

P(%) R(%) VM VP’(%) P(%) R(%) VM VP’(%)

FDroid Java 7,055 89 92 478/520 92 92 71 295/320 92
P, R, VM, VP’ refers to Precision, Recall, Version Match Results and
Version Precision for OSS with unique feature/profile matches.

Table 2: Accuracy of OSSPolice and comparison with LibScout and

BAT.

app build scripts, such as Maven pom.xml and Gradle gradle.build
files that list app build dependencies. However, the specified build
dependencies may further depend on more libraries, making the la-
bels incomplete. For example, MoPub package is known to contain
string mopub-intent-ad-report. Therefore, we validated the labels
by checking package names and strings in the jars.

We labeled a total of 295 C/C++ OSS uses (56 distinct), denoted
as FDroidC/C++ and 7,055 Java OSS uses (279 distinct), denoted
as FDroid Java . We then queried FDroid app binaries against our
indexing database from §5.1, and adjusted thresholds representing
matched ratio (TNormScore) for NormScore in Equation 1 and fea-
ture count (TCumScore) for number of features matched to find a
sweet spot between precision and recall. Our results indicate that
OSSPolice achieves a precison of 82% and a recall of 87% when
TNormScore = 0.5 and TCumScore = 50 for C/C++ OSS detection.
Similarly, OSSPolice reported a precision of 89% and a recall of
92% when TNormScore = 0.7 and TCumScore = 100 for Java OSS
detection. In cases where the target OSS is detected correctly and
there were unique features matched, which amounted to 67 C/C++
and 520 Java OSS usage 2,OSSPolice achieved 82% and 92% version
detection accuracy, respectively.

We inspected the results reported by OSSPolice and found that
the main cause of false positives is the failure to correctly detect
and filter out internal code clones, which may happen if the target
OSS sources are not well organized (i.e., dirs containing code clones
lack license and other common top-level software development
files §3.4.2) and the cloned OSS is not popular in our database (i.e.,
it is cloned by only a few OSS repos, resulting in a small number
of parent nodes). We found that false negatives in OSSPolice are
reported only if partial functionality from an OSS is reused with
too few features intact.

Comparative Analysis. Here we present a comparison of OSS
detection accuracy results with that of BAT [39] and LibScout
[7]. To do so, we first used BAT to generate a database of OSS
in FDroidC/C++ and LibScout to build library profiles for OSS in
FDroid Java . We queried FDroid apps binaries against BAT and Lib-
Scout databases. The results are shown in Table 2. Compared to BAT,
OSSPolice reported more C/C++ OSS at a higher precision. Since
BAT does not detect OSS versions, we only report version detection
accuracy of OSSPolice in Table 2. To understand why OSSPolice
outperforms BAT, we conducted further analysis and found that
partially built libraries and internal code clones (§3.4.1) were the
2A large portion of labeled Java OSS were android support libraries (e.g. support-v4
and support-v13) whose versions are not distinguishable using features in OSSPolice.

main causes for false negatives and false positives, respectively.
Partially built libraries contain minimum part of OSS and have
few features, making the matching score in BAT lower than the
threshold. For example, all 41 uses of JPEG library were missed due
to low number of features. Internal code clones cause BAT to match
complex repos while only the reused OSS is present. For example,
all 13 reported uses of FreeType also included 5 matches against
MuPDF because FreeType is internally cloned by MuPDF, resulting in
false positives.

Similar to LibScout, OSSPolice achieves comparable OSS pre-
cision (P) and version precision (VP’), but reports more number
of OSS being used (R) and can detect more OSS versions (VM).
We investigated the differences between OSSPolice and LibScout
results and found that the main cause for false negatives of both
system is unused code removal (§3.4.1). Nonetheless, OSSPolice
outperformed LibScout. It is, however, worth noting that while
LibScout uses only normalized classes to identified Java software
reuse, we use two types of features, namely strings and normalized
classes. Thus, compared to LibScout,OSSPoliceworks with a larger
set of features, which is more indicative of OSS uses. For version
pinpointing, LibScout reports OSS versions for both complete and
incomplete profile matches. The versions returned in incomplete
profile matches were mostly inaccurate and unfit for comparison.
Hence, we only focus on results for complete profile matches (VM)
in Table 2.OSSPolice pinpoints more OSS versions for two reasons:
(1) OSSPolice extracts more features and can track uniqueness of
more OSS versions. For example, some versions of Facebook and
OkHttp can only be distinguished using version strings. (2) Version
pinpointing in LibScout cannot handle unused code removal be-
cause no unique profile, which is defined as hash of Java package
tree, will match in this case, since the package tree changes due of
code removal. OSSPolice reports some false positives in version
pinpointing as a result of cross matching of unique features (i.e.
app with PrettyTime and Joda-time binaries may falsely report
PrettyTime version using features from Joda-time).

6 FINDINGS

We used OSSPolice to conduct a large-scale OSS usage analysis
in Google Play Store apps. This section presents our findings. In
particular, we seek answers to the following questions.

• OSS Usage. What are some commonly used OSS? What are
they used for? (§6.1)
• OSS Licenses. What are some commonly used software
licenses for OSS? (§6.2).
• License violations.Howmany apps potentially violate OSS
licensing terms? In general, what is the attitude of OSS de-
velopers towards violators? (§6.3).
• Vulnerable OSS. How commonly can one find vulnerable
OSS versions in Android apps? How responsive app devel-
opers are to vulnerability disclosures? (§6.4).

Our dataset consists of 1.6 million free Android apps collected by
crawling Google Play Store in December 2016. Our OSS database
consisted of 3K popular C/C++ and 5K popular Java OSS.

11

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2179

Owner Name Type License # Uses

Square OkHttp Network Apache 100,548
Facebook Bolts Framework Utils BSD 97,350
Facebook Facebook SDK Social FB Platform 85,742
Square Picasso Image Apache 71,806
Apache Http Components Network Apache 65,457
Sergey T. Univ. Img Loader Image Apache 60,845
Square Okio Utils Apache 56,997
Twitter4J Twitter4J-Core Social BSD 54,045
Apache Common Codec Codec Apache 46,530
SignPost OAuth Library Utils Apache 43,647

Table 3: Top 10 detected Java OSS excluding Android and Google

OSS.

Owner Name Type License # Uses

JPEG Group JPEG Codec IJG 86,975
PNG Dev Group LibPNG Codec LibPNG 78,117
Cocos2d Cocos2d-X Game MIT 75,568
FreeType FreeType Font FTL 65,109
OpenSSL OpenSSL Network OpenSSL 50,489
OpenAL OpenAL Audio LGPL 37,581
Libexpat Expat Codec MIT/X 35,175
ArtifexSoftware MuPDF Viewer GPL 34,055
LibTIFF LibTIFF Codec BSD 33,721
Gailly and Adler Zlib Codec Zlib 30,762

Table 4: Top 10 detected C/C++ OSS

Permission License Java Native

Public Public Domain 0.3% 1.9%
WTFPL 0.1% 0.1%

Permissive
MIT 17.9% 28.5%
BSD 5.7% 16.7%
Apache 40.5% 7.0%

Weakly Protective LGPL 4.2% 6.4%
Strong Protective GPL 1.6% 30.8%
Network Protective AGPL 0.1% 0.3%
- Unclassified 27.2% 5.6%

Table 5: Software license distribution in Java- and native-based OSS

6.1 OSS Use in Mobile Apps

Table 3 and Table 4 list the top 10 detected usage of Java excluding
Android and Google OSS (group id prefixed with com.android,
com.google) and C/C++ OSS in Android apps, respectively. Our
findings show that OSS usage distribution in Android apps is long-
tailed; only a few OSS repos are very commonly used and a large
number of OSS repos are used by only a few apps. Table 3 shows
that various types of Java OSS are used, ranging from Utils to Social,
while Table 4 shows that native OSS are mainly used for Codec
and Game. In addition, we find that some high usage OSS is due to
frequent indirect use. This means that the app developer will be
building a library that he is not aware of the full dependency, and
may lead him into legal issues or security harzards. For example, in
Table 4, LibPNG is reused internally by Cocos2d.

6.2 Software Licenses in OSS

We first analyzed the popularity of different software licenses in
Java- and native-based OSS projects. The license popularity result
on 3K C/C++ and 5K Java OSS is shown in Table 5.

Consistent with previous research findings [86], themost popular
software license for Java-based OSS is Apache license mostly due to
the license choice of the Java programming platform and Android,
which fall under this license. In comparison, most commonly used
software licenses for C/C++ OSS are GPL and MIT. Therefore, Java-
based OSS tend to be more permissive than C/C++ OSS.

Owner Name Type # Uses

iText iTextPDF Codec 1,325
MySQL Java Connector Utils 396
greenDAO Generator Compiler 75
Proguard Proguard Compiler 27
Univ. of Waikato Weka-Dev Utils 15

Table 6: Top 5 most offended GPL/AGPL-licensed Java-based OSS

projects.

Owner Name Type # Uses

ArtifexSoftware MuPDF Codec 34,055
FFmpeg FFmpeg† Codec 4,326†
Teluu PJSIP Communication 2,113
VideoLan VLC and X264 Codec 988
Belledonne Comm. BZRTP Communication 356

Table 7: Top 5 most offended GPL/AGPL-licensed native-based OSS

projects.
†
shows only GPL uses of all FFmpeg, which can be either

LGPL or GPL

6.3 License Violations

As discussed in §5.2, we believe that a similarity score of 0.5 or
higher with more than 50 matching features would generate a
very few false positives while detecting the presence of a C/C++
OSS component in an Android app. Similarly, a score of 0.7 or
higher with more than 100 matching features would generate a
very few false positives while detecting the presence of a Java OSS
component. However, given that GPL/AGPL license violation is
a strong claim that could result in severe legal consequences, we
chose to be conservative and adjusted the similarity threshold for
NormScore (§3.4.4) to 0.7 and CumScore (§3.4.4) to 200 for C/C++
OSS, and to 0.8 and 400 for Java OSS. Under these stricter conditions,
OSSPolice detected around 40K apps using at least one GPL/AGPL-
licensed C/C++-based OSS component while 2K apps using at least
one GPL/AGPL-licensed Java-based OSS component. The Validator
filtered out only 55 apps as there are clear indications that these
apps are open-sourced, flagging most apps as potential violators
of GPL/AGPL licensing terms. The most offended Java and C/C++
OSS projects under GPL/AGPL license are shown in Table 6 and
Table 7, respectively.

Similar to the distribution of OSS usage per app, the distribution
of OSS under GPL and AGPL licenses is long-tailed, with only a
few OSS being used in many apps; whereas a large number of OSS
see only one or two violating apps. In terms of GPL/AGPL-licensed
OSS usage in apps, the maximum we saw is 1,325 iTextPDF for
Java OSS and 34,055 MuPDF for C/C++ OSS, both are PDF related
libraries. To understand why developers are using these libraries,
we collect popular PDF libraries that support both rendering and
editing over the Internet and found that most of them were either
GPL/AGPL licensed or not free. In particular, the top two PDF
libraries listed in [84], RadaeePDF SDK and PDFNet SDK both paid
PDF rendering/editing engines. Therefore, our findings suggest that
app developers use these iTextPDF and MuPDF due to lack of free
alternatives.

OSS developer responses. We emailed a few corporate develop-
ers of the OSS victims (MuPDF, PJSIP, FFmpeg, VideoLAN, and iIext),
each with a list of apps that potentially violate their copyrights.
The reason behind it is to filter out their legitimate customers be-
cause many of these companies use dual-license model for their
software, under which the open-sourced variant (e.g., GPL license)
requires any derivative work to be open-sourced, and, therefore, a

12

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2180

separate commercial license is needed for commercial use without
open-sourcing. Developers of a derivative work can choose to open
source their code under the same license or pay these companies
to avoid source code disclosure. For instance, Dropbox and HP are
licensees of MuPDF.

We received responses from these companies. PJSIP replied that
they have Non-Disclosure Agreement (NDA) with their customers
and cannot reveal their information. VideoLAN and FFmpeg both
showed interest in the list, but FFmpeg developers mentioned that
they lack resources to enforce license compliance. MuPDF requested
our list and returned a filtered list of app developers that use their
software, but are not their customers. In addition, MuPDFmentioned
that even identifying legitimate customers is not straightforward
because they sub-license MuPDF to Adobe and all Adobe licensees
are also legally permitted to use MuPDF without open-sourcing.
iText, however, did not reply to our email.

Awareness of OSS licensing issues. From the results reported
by Validator, it is difficult to draw conclusions whether developers
are violating OSS licensing terms, nor can we tell whether they are
infringing intentionally or inadvertently because developers may
display link to source code within their app or on random websites.
We notice that GPL/AGPL requires that if one distributes derivative
works of GPL/AGPL-licensed software, then they must provide
the source code upon request. Therefore, for further insights, we
randomly emailed 10 developers of the apps we found to have
violated GPL/AGPL licensing terms and requested access to their
source code. Unfortunately, at the time of writing, none of them
provided their code. One of these developer, however, had claimed
in the description on Google Play Store that their app is licensed
under GPL: 3

Weird Voice is based on CSipSimple and is licensed under
GNU GPL v3. More information in the app.

Nonetheless, when we emailed them for access to their code, the
response received redirected us to a GitHub page of another app
that they claimed to be “99%” similar and refused to release the
sources of their own app. From these cases, we can see that people
are not aware of the specific requirements of the GPL/AGPL license,
and currently there is no appropriate way to enforce GPL/AGPL
compliance.

6.4 Vulnerable OSS Versions

In order to report vulnerable OSS version usage results, we retain
a subset of the detected results with at least one unique feature
matched, which is shown to have reasonable precision in version
pinpointing in §5.2. Since Google has launched an App Security
Improvement program (ASIP) [41] to help developers improve the
security of their apps by checking vulnerable code usage, we classify
detected OSS versions as vulnerable based on ASIP description, if
the OSS is also listed by ASIP (e.g., LibPNG). For an OSS not listed by
ASIP, we classify its version as vulnerable if it is tagged with at least
one Severe CVE (defined as CVSS score greater than 4.0 in §4). We
3We found that app Voice changer calling (package com.weirdvoice) reuses PJSIP
sources, which are licensed under GPL

present six C/C++ OSS and four Java OSS with most vulnerabilities
in Table 8. Of those, LibPNG, OpenSSL and MoPub are also tracked by
ASIP. As shown in Table 8, the number of apps that use vulnerable
versions of LibPNG and OkHttp amounts to more than 40K and 39K,
respectively. To understand their impact on users, we further break
down these apps by the number of downloads. Our findings indicate
that 20% of these apps have received over 10K downloads.

From Language column in Table 8, we can see that there are
more vulnerable C/C++ OSS uses than Java, despite the fact that
Java OSS are popular as in Table 3. This is because most Java OSS
are not tagged with Server CVE ids.

Despite their measures towards security of apps, we found more
than 40K, 27K, and 2K vulnerable uses of OSS that are tracked by
ASIP, namely LibPNG, OpenSSL and MoPub, respectively.

ASIP Misses further shows number of apps that were only
detected by OSSPolice as vulnerable, but were not tracked by ASIP.
These numbers were obtained based on ASIP claim that Google
Play Store would ban future app updates if the developers do not
fix vulnerable OSS usage in their apps after the deadline, which
was set as Sep 17, 2016 for LibPNG and Jul 11, 2016 for OpenSSL and
MoPub. We assume that Google Play Store enforced the claimed
policy and simply report the number of apps (downloaded in Dec,
2016) that were still flagged as vulnerable by OSSPolice and were
updated after their respective ASIP deadlines. # ASIP Misses in
Table 8 shows that ASIP missed at least 1,244 LibPNG and 4,919
OpenSSL cases compared to OSSPolice. For MoPub, no flagged apps
were updated after the specified deadline. For further validation,
we contacted Google by sending them a comprehensive list of
vulnerable apps, including the ones missed by ASIP. Unfortunately,
by the time of this writing we did not receive a response from them
on it.

0
250
500
750

M
oP

ub

0
200
400
600
800

O
pe

nS
SL

0
800

1600
2400

O
kH

ttp

2013-05-12
2013-11-28

2014-06-16
2015-01-02

2015-07-21
2016-02-06

2016-08-24

Date

0
80

160
240

FF
m

pe
g

Vuln. Usage
Patched Usage

ASIP Deadline
ASIP Notification

Figure 5: Selected 4 popular vulnerable libraries and longitudinal

study of their usage by app developers.

Awareness of Vulnerable OSS uses. To understand how quickly
and how frequently app developers adopt the patched OSS ver-
sions, and what makes them update their apps with these patched
OSS versions, we conduct a longitudinal study of OSS usage by
app developers. We selected top 10K apps from Google Play Store,
downloaded their past versions. A total of 300K app versions were
analyzed with OSSPolice to report all cases of vulnerable OSS us-
age. To get insight into the attitude of app developers towards vul-
nerable OSS usage, in particular, whether ASIP policy enforcement

13

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2181

Owner Name Language # Vuln. Apps % Vuln. Latest Ver. Vuln. Ver. # Severe CVE # ASIP Misses

PNG Dev Group LibPNG C/C++ 40,902 52 1.6.28 1.0-1.0.65, 1.2-1.2.55, 35, ASIP [44] 1,244
1.3-1.4.18, 1.5-1.5.25

Square OkHttp Java 39,019 39 3.6.0 2.0-2.7.4 or 3.0-3.1.2 1
Libexpat Expat C/C++ 35,155 99 2.2.0 1.95.1-2.1.1 9
LibTIFF LibTIFF C 27,117 80 4.0.7 3.4-4.0.3, 4.0.6 90
OpenSSL OpenSSL C/C++ 27,103 54 1.0.2k 1.0.1-1.0.1q, 1.0.2-1.0.2e 160, ASIP [43] 4,919
FreeType FreeType C/C++ 21,762 34 2.7.1 <2.5.4 76
FFmpeg FFmpeg C/C++ 8,737 57 3.3 2.0-2.8.4 218
MoPub MoPub-SDK Java 2,594 16 4.11.0 <4.4.0 0, ASIP [42] 0
Apache Commons-Compress Java 827 48 1.14 1.0-1.4 1
Apache Commons-Collections Java 619 33 4.1 3.0-3.2.1, 4.0 1

Severe CVE refers to CVEs that have more than 4.0 Common Vulnerability Scoring System (CVSS) score.
ASIP Misses refers to number of vulnerable apps updated after App Security Improvement Program’s [41] deadline.

Table 8: Top 6 C/C++ and 4 Java vulnerable OSS.

can make them update their apps regularly, we selected two OSS
(OpenSSL and MoPub) that were reported by ASIP and two (FFmpeg
and OkHttp) that were only reported by OSSPolice as vulnerable
and carried out a comparison. The results are shown in Figure 5. For
FFmpeg and OkHttp, both patched and vulnerable usage increased
over time. In comparison, usage of vulnerable versions of OpenSSL
and MoPub kept increasing until ASIP notification date (i.e., when
the app developers received emails from ASIP, apprising them of
vulnerable OSS usage in their apps), but quickly drops after that.
Such a pattern indicates that app developers slowly adopt patched
OSS versions and even use old and vulnerable OSS in updated app
versions or newly developed apps. Nevertheless, our findings sug-
gest that ASIP can help developers identify security issues with
their apps and force them to regularly update their apps to use
patched OSS versions.

7 DISCUSSION

In this section, we discuss the limitations of OSSPolice, potential
solutions, and future research directions.

License Compliance. OSSPolice focuses only on the technical
aspects of license compliance engineering, such as OSS reuse detec-
tion, checking for a license copy in app installation package, and
validating hosted source code. Therefore, only statistical evidence
indicating potential license violation is reported to further help the
app developers quickly identify true violations, but no concrete
proof or legal conclusions are derived from the collected evidence.
The reasons for this design choice are manyfold. First, several OSS
are available under a dual license. Therefore, an app containing
the OSS could be a case of legitimate use. Second, OSSPolice may
fail to correctly detect source weblinks for an app because the
current design only inspects app description and corresponding
developer website for weblinks pointing to popular source code
hosting services, such as GitHub and Bitbucket, as an indicator of
open-sourcing. Furthermore, app developers may also choose to
generate source code links dynamically in the app or simply host
outside the checked open-source links.

App Obfuscation and Optimization. OSSPolice is designed to
be resilient against simple and common app obfuscation techniques,
such as identifier renaming in Java classes. However, advanced
obfuscation may alter or even destroy features in app binaries.
For example, string encryption will render all string constants in
a binary ineffective for similarity comparison. Nevertheless, such
techniques are generally used bymalwarewriters to evade detection

and are not common for benign apps because of their additional
runtime overhead (e.g., encryption/decryption). However, should
this become a problem, advanced obfuscation-resilient similarity
detection mechanisms, such as data-dependence [25] or program-
dependence [26] graph comparison can be used at the cost of higher
consumption of system resources (CPU, memory, etc.) and search
time.

To optimize their apps for size and faster loading, app developers
may further remove unused OSS code or hide functions in native
libraries, thereby reducing the size of the symbol table. OSSPolice
may either fail to detect OSS in such libraries or report inaccurate
results because of lack of enough syntactical features. While we
found only 11.6% cases of such libraries (§3.3), we believe the system
accuracy can be improved by augmenting with semantic features,
such as control flow [28, 30] at the cost of increased detection time.

Version Pinpointing. It is possible that OSS source code might
have very minimal changes across two releases. Given no unique
features can be used to distinguish these versions, OSSPolice will
return a sorted list of matched versions based onNormScore (§3.4.4).
We believe that OSSPolice has achieved reasonable coverage be-
cause 83% of C/C++ and 41% of Java OSS versions can be uniquely
identified using current features in OSSPolice. However, should
this becomes an issue, OSSPolice can be plugged in to use fine-
grained function-level features (e.g., intra-procedural graph) to
further distinguish these versions.

More Programming Languages. OSSPolice currently supports
only Java and C/C++-based OSS repos and app binaries because
of their popularity. However, we are also aware that mobile apps
nowadays use a more diverse set of programming languages. For
example, apps built by PhoneGap [40] and Corona[24] tend to rely
on many JavaScript and Lua libraries. We leave the support for
these programming languages for future work.

8 CONCLUSION

In this paper, we presented OSSPolice, the first large-scale tool
for mobile app developers to identify potential open-source license
violations and 1-day security risks in their apps. OSSPolice taps
into the structured and modularized layout of OSS sources and
introduces hierarchical indexing scheme to achieve high efficiency
and accuracy in comparing app binaries with hundreds of thousands
of OSS sources (billions of lines of code). We applied OSSPolice
to analyze 1.6M free Google Play Store apps and found that over

14

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2182

40K apps potentially violated GPL/AGPL licensing terms, and over
100K apps use known vulnerable versions of OSS. OSSPolice can
also be deployed by app stores, such as Google Play Store to check
and notify app developers of potential licensing issues and security
risks in their apps and enforce policies. Source code of OSSPolice
is available on GitHub (https://github.com/lingfennan/osspolice).

9 ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback. This
research was supported, in part, by the NSF under award CNS-
0831300, CNS-1017265, DGE-1500084, CNS-1563848, SFS-1565523,
CRI-1629851, and CNS-1704701, ONR under grant N00014-15-1-
2162, N00014-16-1-2710, and N00014-17-1-2895, DARPA TC (No.
DARPA FA8650-15-C-7556) andXD3 programs (No. DARPAHR0011-
16-C-0059), and ETRI IITP/KEIT [B0101-17-0644].

REFERENCES

[1] A. Aiken. 2017. Moss: a system for detecting software plagiarism. (2017).
http://theory.stanford.edu/~aiken/moss/

[2] Devdatta Akhawe. 2015. Security bug resolved in the Dropbox SDKs for
Android. (2015). https://blogs.dropbox.com/developers/2015/03/
security-bug-resolved-in-the-dropbox-sdks-for-android/

[3] Antepedia. 2017. Antepedia, Software Artifacts Knowledge Base. (2017).
http://www.antepedia.com

[4] AppBrain. 2016. Android library statistics. (2016).
http://www.appbrain.com/stats/libraries

[5] AppBrain. 2017. Number of Android applications. (2017).
https://www.appbrain.com/stats/free-and-paid-android-applications

[6] Atlassian, Inc. 2016. Code, Manage, Collaborate. (2016). https://bitbucket.org
[7] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library

Detection in Android and its Security Applications. In Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS). Vienna,
Austria.

[8] Brenda S. Baker. 1995. On Finding Duplication and Near-Duplication in Large
Software Systems. In Proceedings of the 2nd Working Conference on Reverse
Engineering (WCRE). Toronto, Ontario, Canada.

[9] Brenda S. Baker. 1997. Parameterized Duplication in Strings: Algorithms and an
Application to Software Maintenance. SIAM J. Comput. 26, 5 (Oct. 1997),
1343–1362.

[10] Brenda S. Baker and Udi Manber. 1998. Deducing Similarities in Java Sources
from Bytecodes. In Proceedings of the 1998 USENIX Annual Technical Conference
(ATC). New Orleans, Louisiana.

[11] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone Detection Using Abstract Syntax Trees. In Proceedings of the
International Conference on Software Maintenance (ICSM). Bethesda, Maryland,
USA.

[12] Eli Bendersky. 2016. Pure-python library for parsing ELF and DWARF. (2016).
https://github.com/eliben/pyelftools

[13] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:
Driving Apps to Test the Security of Third-Party Components. In Proceedings of
the 23rd USENIX Security Symposium (Security). San Diego, CA.

[14] Bintray.com. 2016. JCenter is the place to find and share popular Apache Maven
packages. (2016). https://bintray.com/bintray/jcenter

[15] Black Duck Software, Inc. 2016. Black Duck Protex Automate Open Source
Compliance. (2016). https://www.blackducksoftware.com/products/protex

[16] Theodore Book, Adam Pridgen, and Dan S. Wallach. 2013. Longitudinal Analysis
of Android Ad Library Permissions. In Proceedings of the IEEE CS Security and
Privacy Workshops (SPW). San Francisco, CA.

[17] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate
Comparison of Binary Executables. In Proceedings of the 13th ACM SIGPLAN
Program Protection and Reverse Engineering Workshop. Rome, Italy.

[18] CeleryProject. 2016. Celery: Distributed Task Queue. (2016).
http://www.celeryproject.org

[19] Moses S Charikar. 2002. Similarity estimation techniques from rounding
algorithms. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC). MontrÃľal, QuÃľbec, Canada.

[20] Brant A Cheikes, David Waltermire, and Karen Scarfone. 2011. Common
platform enumeration: Naming specification version 2.3. NIST Interagency
Report 7695, NIST-IR 7695 (2011).

[21] Eric Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. OAuth Demystified for Mobile Application Developers. In
Proceedings of the 21st ACM Conference on Computer and Communications
Security (CCS). Scottsdale, Arizona.

[22] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy and
Scalability Simultaneously in Detecting Application Clones on Android Markets.
In Proceedings of the 36th International Conference on Software Engineering (ICSE).
Hyderabad, India.

[23] Seokwoo Choi, Heewan Park, Hyun-Il Lim, and Taisook Han. 2007. A Static
Birthmark of Binary Executables Based on API Call Structure. In Proceedings of
the 12th Advances in Computer Science Conference: computer and network security.
Doha, Qatar, 2–16.

[24] Corona Labs. 2016. Cross-Platform Mobile App Development for iOS, Android.
(2016). https://coronalabs.com

[25] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the Clones:
Detecting Cloned Applications on Android Markets. In Proceedings of the 17th
European Symposium on Research in Computer Security (ESORICS). Pisa, Italy.

[26] Jonathan Crussell, Clint Gibler, and Hao Chen. 2015. AnDarwin: Scalable
Detection of Android Application Clones Based on Semantics. IEEE Transactions
on Mobile Computing 14, 10 (2015), 2007–2019.

[27] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A Language
Independent Approach for Detecting Duplicated Code. In Proceedings of the
International Conference on Software Maintenance (ICSM). Oxford, England, UK.

[28] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016.
discovre: Efficient cross-architecture identification of bugs in binary code. In
Proceedings of the 2016 Annual Network and Distributed System Security
Symposium (NDSS). San Diego, CA.

[29] F-Droid Limited and Contributors. 2016. F-Droid. (2016). https://f-droid.org
[30] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng

Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings
of the 23rd ACM Conference on Computer and Communications Security (CCS).
Vienna, Austria.

[31] FOSSology Workgroup. 2016. Open Source License Compliance by Open Source
Software. (2016). https://www.fossology.org/

[32] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong Su. 2010.
Scalable and Systematic Detection of Buggy Inconsistencies in Source Code. In
Proceedings of the 20th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). Reno/Tahoe, Nevada, USA.

[33] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In Proceedings of the 10th
International Conference on Information and Communications Security.
Birmingham, UK.

[34] GitHub, Inc. 2016. How people build software. (2016).
https://github.com/features

[35] Google Inc. 2016. Android Studio, The Official IDE for Android. (2016).
https://developer.android.com/studio/index.html

[36] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012.
Unsafe exposure analysis of mobile in-app advertisements. In Proceedings of the
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec).
Budapest, Hungary.

[37] Derrick Grover. 1989. The Protection of Computer Software—its Technology and
Applications. Cambridge University Press, New York, NY, USA. 119–150 pages.

[38] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song.
2012. Juxtapp: A Scalable System for Detecting Code Reuse Among Android
Applications. In Proceedings of the 9th Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA). Heraklion, Crete, Greece.

[39] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. 2011.
Finding Software License Violations Through Binary Code Clone Detection. In
Proceedings of the 8th Working Conference on Mining Software Repositories (MSR).
Honolulu, HI.

[40] Adobe Systems Inc. 2016. Build amazing mobile apps powered by open web tech.
(2016). http://phonegap.com

[41] Google Inc. 2016. App Security Improvement Program. (2016).
https://developer.android.com/google/play/asi.html

[42] Google Inc. 2016. How to address MoPub vulnerabilities in your apps. (2016).
https://support.google.com/faqs/answer/6345928

[43] Google Inc. 2016. How to address OpenSSL vulnerabilities in your apps. (2016).
https://support.google.com/faqs/answer/6376725

[44] Google Inc. 2016. How to fix apps containing Libpng Vulnerability. (2016).
https://support.google.com/faqs/answer/7011127

[45] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: finding
unpatched code clones in entire os distributions. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA.

[46] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. BitShred: Feature
Hashing Malware for Scalable Triage and Semantic Analysis. In Proceedings of
the 18th ACM Conference on Computer and Communications Security (CCS).
Chicago, Illinois.

15

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2183

https://github.com/lingfennan/osspolice
http://theory.stanford.edu/~aiken/moss/
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android/
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android/
http://www.antepedia.com
http://www.appbrain.com/stats/libraries
https://www.appbrain.com/stats/free-and-paid-android-applications
https://bitbucket.org
https://github.com/eliben/pyelftools
https://bintray.com/bintray/jcenter
https://www.blackducksoftware.com/products/protex
http://www.celeryproject.org
https://coronalabs.com
https://f-droid.org
https://www.fossology.org/
https://github.com/features
https://developer.android.com/studio/index.html
http://phonegap.com
https://developer.android.com/google/play/asi.html
https://support.google.com/faqs/answer/6345928
https://support.google.com/faqs/answer/6376725
https://support.google.com/faqs/answer/7011127

[47] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference on Software Engineering (ICSE).
Minneapolis, MN.

[48] J. Howard Johnson. 1993. Identifying Redundancy in Source Code Using
Fingerprints. In Proceedings of the 1993 Conference of the Centre for Advanced
Studies on Collaborative Research: Software Engineering - Volume 1. Toronto,
Ontario, Canada, 171–183.

[49] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002).

[50] Dongjin Kim, Seong je Cho, Sangchul Han, Minkyu Park, and Ilsun You. 2014.
Open Source Software Detection using Function-level Static Software Birthmark.
Journal of Internet Services and Information Security (JISIS) 4, 4 (2014), 25–37.

[51] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In Proceedings of the
38th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.

[52] Raghavan Komondoor and Susan Horwitz. 2001. Using Slicing to Identify
Duplication in Source Code. In Proceedings of the 8th International Symposium on
Static Analysis. Paris, France.

[53] Mohit Kumar. 2014. Facebook SDK vulnerability puts millions of smartphone
users’ accounts at risk. (2014).
http://thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html

[54] Eric Lafortune. 2016. ProGuard. (2016). http://proguard.sourceforge.net/
[55] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot

framework for Java program analysis: a retrospective. In Proceedings of the 2011
Cetus Users and Compiler Infrastructure Workshop. Galveston Island, TX.

[56] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. Libd: Scalable and precise third-party library detection in
Android markets. In Proceedings of the 39th International Conference on Software
Engineering (ICSE). Buenos Aires, Argentina.

[57] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in Operating System Code. In
Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). San Francisco, CA.

[58] Jason Long. 2016. cve-search - a tool to perform local searches for known
vulnerabilities. (2016). http://cve-search.github.io/cve-search/

[59] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE). Hong
Kong.

[60] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software and algorithm plagiarism detection. IEEE Transactions
on Software Engineering PP, 99 (2017).

[61] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and
Accurate Detection of Third-party Libraries in Android Apps. In Proceedings of
the 38th International Conference on Software Engineering (ICSE). Austin, TX.

[62] Audris Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In
Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development. Minneapolis, MN.

[63] Patrick Mutchler, Adam Doupe, John Mitchell, and Chris Kruegeland Giovanni
Vigna. 2015. A Large-Scale Study of Mobile Web App Security. In Proceedings of
the Mobile Security Technologies (MoST). San Jose, CA.

[64] MvnRepository. 2016. Maven Repository: Search/Browse/Explore. (2016).
https://mvnrepository.com

[65] Ginger Myles and Christian Collberg. 2004. Detecting software theft via whole
program path birthmarks. In International Conference on Information Security.
Palo Alto, California.

[66] Ginger Myles and Christian Collberg. 2005. K-gram Based Software Birthmarks.
In Proceedings of the 2005 ACM Symposium on Applied Computing (SAC). Santa
Fe, New Mexico.

[67] Annamalai Narayanan, Lihui Chen, and Chee Keong Chan. 2014. Addetect:
Automated detection of android ad libraries using semantic analysis. In
Proceedings of the 9th Intelligent Sensors, Sensor Networks and Information
Processing. Singapore, Singapore.

[68] Matthias Neugschwandtner, Martina Lindorfer, and Christian Platzer. 2013. A
View To A Kill: WebView Exploitation. In Proceedings of the 6th USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET). Washington, D.C.

[69] Ryan Paul. 2009. Cisco settles FSF GPL lawsuit, appoints compliance officer.
(2009). http://arstechnica.com/information-technology/2009/05/
cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer

[70] RedisLabs. 2016. Redis Cluster Specification. (2016).
http://redis.io/topics/cluster-spec

[71] Franziska Roesner and Tadayoshi Kohno. 2013. Securing Embedded User
Interfaces: Android and Beyond. In Proceedings of the 22th USENIX Security

Symposium (Security). Washington, DC.
[72] Inc Rogue Wave Software. 2016. Solve open source issues with full-stack

enterprise support. (2016).
http://www.roguewave.com/products-services/open-source-support

[73] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and
Zhendong Su. 2009. Detecting Code Clones in Binary Executables. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA). Chicago, IL.

[74] David Schuler and Valentin Dallmeier. 2006. Detecting software theft with api
call sequence sets. In Workshop Software Reengineering (WSR 2006). Bad-Honnef,
Germany.

[75] ScrapingHub. 2016. Scrapy, A Fast and Powerful Scraping and Web Crawling
Framework. (2016). https://scrapy.org

[76] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Separating
Smartphone Advertising from Applications. In Proceedings of the 21st USENIX
Security Symposium (Security). Bellevue, WA.

[77] Inc Sonatype. 2016. Sonatype Releases. (2016).
https://oss.sonatype.org/content/repositories/releases/

[78] SourceForge.net. 2016. Find, Create, and Publish Open Source software for free.
(2016). https://sourceforge.net

[79] Android Studio. 2016. Shrink Your Code and Resources. (2016).
https://developer.android.com/studio/build/shrink-code.html

[80] Mengtao Sun and Gang Tan. 2014. NativeGuard: Protecting Android
Applications from Third-Party Native Libraries. In Proceedings of the ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec).
Oxford, UK.

[81] Synopsys. 2017. Software Composition Analysis - Protecode. (2017).
https://www.synopsys.com/software-integrity/products/
software-composition-analysis.html

[82] Haruaki Tamada, Masahide Nakamura, and Akito Monden. 2004. Design and
evaluation of birthmarks for detecting theft of Java programs. In Proceedings of
the IASTED IASTED International Conference on Software Engineering. Innsbruck,
Austria.

[83] The Apache Software Foundation. 2016. Apache Maven Project. (2016).
https://maven.apache.org/index.html

[84] ToughDev. 2015. Comparison of popular PDF libraries on iOS and Android.
(2015). http://www.toughdev.com/content/2015/02/
comparison-of-popular-pdf-libraries-on-ios-and-android/

[85] Steven Vaughan. 2015. VMware sued for failure to comply with Linux license.
(2015). http://www.zdnet.com/article/
vmware-sued-for-failure-to-comply-with-linuxs-license

[86] Christopher Vendome. 2015. A Large Scale Study of License Usage on GitHub. In
Proceedings of the 37th International Conference on Software Engineering (ICSE).
Florence, Italy.

[87] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study of
Google Play. In Proceedings of the 2014 ACM SIGMETRICS Conference. Austin, TX.

[88] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. WuKong: A
Scalable and Accurate Two-Phase Approach to Android App Clone Detection. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA). Baltimore, MA.

[89] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri
Gurevich. 2013. Explicating SDKs: Uncovering Assumptions Underlying Secure
Authentication and Authorization. In Proceedings of the 22th USENIX Security
Symposium (Security). Washington, DC.

[90] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2009. Behavior Based
Software Theft Detection. In Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS). Chicago, IL.

[91] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2009. Detecting
software theft via system call based birthmarks. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC). Honolulu, Hawaii, USA.

[92] Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du.
2014. Compac: Enforce Component-level Access Control in Android. In
Proceedings of the 4th Annual ACM Conference on Data and Applications Security
and Privacy (CODASPY). San Antonio, TX.

[93] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.
ViewDroid: Towards Obfuscation-Resilient Mobile Application Repackaging
Detection. In Proceedings of the ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). Oxford, UK.

[94] Xiao Zhang, Amit Ahlawat, and Wenliang Du. 2013. AFrame: Isolating
Advertisements from Mobile Applications in Android. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC). New Orleans, LA.

[95] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013.
Fast, Scalable Detection of âĂĲPiggybackedâĂİ Mobile Applications. In
Proceedings of the 3rd Annual ACM Conference on Data and Applications Security
and Privacy (CODASPY). San Antonio, TX.

16

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2184

http://thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html
http://proguard.sourceforge.net/
http://cve-search.github.io/cve-search/
https://mvnrepository.com
http://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer
http://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer
http://redis.io/topics/cluster-spec
http://www.roguewave.com/products-services/open-source-support
https://scrapy.org
https://oss.sonatype.org/content/repositories/releases/
https://sourceforge.net
https://developer.android.com/studio/build/shrink-code.html
https://www.synopsys.com/software-integrity/products/software-composition-analysis.html
https://www.synopsys.com/software-integrity/products/software-composition-analysis.html
https://maven.apache.org/index.html
http://www.toughdev.com/content/2015/02/comparison-of-popular-pdf-libraries-on-ios-and-android/
http://www.toughdev.com/content/2015/02/comparison-of-popular-pdf-libraries-on-ios-and-android/
http://www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license
http://www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license

[96] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting
Repackaged Smartphone Applications in Third-Party Android Marketplaces. In
Proceedings of the 2nd Annual ACM Conference on Data and Applications Security
and Privacy (CODASPY). San Antonio, TX.

[97] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web
Applications for Single Sign-On Vulnerabilities. In Proceedings of the 23rd
USENIX Security Symposium (Security). San Diego, CA.

[98] Zynamics. 2017. zynamics.com - BinDiff. (2017).
https://www.zynamics.com/bindiff.html

17

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2185

https://www.zynamics.com/bindiff.html

	Abstract
	1 Introduction
	2 Related work
	3 Design
	3.1 Goals and Assumptions
	3.2 Apps vs OSS
	3.3 Feature Selection
	3.4 Similarly Detection

	4 Architecture
	5 Evaluation
	5.1 Performance and Scalability
	5.2 Accuracy

	6 Findings
	6.1 OSS Use in Mobile Apps
	6.2 Software Licenses in OSS
	6.3 License Violations
	6.4 Vulnerable OSS Versions

	7 Discussion
	8 Conclusion
	9 Acknowledgment
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 295.76, 29.67 Width 20.50 Height 48.80 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 295.7568 29.6698 20.498 48.8048

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 17
 16
 17

 1

 HistoryList_V1
 qi2base

