
OSSPolice - Identifying	Open-Source	License	
Violation	and	1-day	Security	Risk	at	Large	Scale

Ruian Duan,	Ashish	Bijlani,	Meng Xu
Taesoo Kim,	Wenke Lee

ACM	CCS	2017

1

Background

• Open	Source	Software	(OSS)	is	gaining	popularity,	e.g.	GitHub	
reported	20M	users	and	57M	repos

• Mobile	app	market	grows	fast	with	over	2M	apps	on	Play	Store

• Developers	reuse	OSS	as	is	for	lots	of	benefits

• Legal	risks	and	security	risks	arise

2

Risks	in	OSS	use

• OSS	licenses	have	constraints	(e.g.	
GNU	GPL	requires	derivative	works	
to	open	source)

• 1-day	vulnerabilities	in	stale	OSS	
versions	are	exploited	by	hackers

3

For	now,	GNU	GPL	is	an	
enforceable	contract,	says	US	
federal	judge!

Artifex Slaps	Palm	with	PDF	
Reader	Copyright	Suit

Equifax	blames	open-source	
software	for	its	record-breaking	
security	breach

Community	Health	Systems	
Breach	Possible	due	to	
Heartbleed	Vulnerability

Goal

• Design	a	tool,	OSSPolice,	to	analyze	Android	apps	for	open-source	
license	violation	and	1-day	security	risk	by	detecting	reuse	of	OSS	and	
their	versions	at	large	scale

• Requirements
• Accurate	detection	for	hundreds	of	thousands	of	OSS
• Accurate	version	pinpointing
• Efficient	resource	usage
• Fast	search	to	support	vetting	a	large	number	of	Android	apps

4

Overview	and	challenges

• Feature	selection
• Source	vs	binary:	automatically	building	source	code	is	hard,	due	to	
dependencies,	various	build	configs etc.

• Compare	App	against	OSS
• Fused	app	binaries:	multiple	OSS	can	be	linked	or	compiled	into	a	single	file
• Partial	builds	and	internal	code	clones:	not	all	OSS	features	are	built	into	
libraries	and	OSS	reuses	other	OSS

• Identify	OSS	versions
• Cross-match	of	unique	version	features:	fused	app	binaries	and	internal	code	
clones	can	confuse	the	provenance	of	unique	features

5

Source	vs	binary

• C/C++	OSS	are	built	into	stripped	native	shared	libraries	(so	files)

• Java	OSS	are	built	into	obfuscated	dalvik executables	(dex files)

6

Source	Code Shared	Library Stripped	Shared	
LibraryFoo.c

void	foo()	{
w=“hello”…
}

.text
.dynsym

.rodata
.symtab

.debug_info

Bar.c
static	bar()	{
w=“world”
}

.text
.dynsym

.rodata

Source	code Dalvik Bytecode Obfuscated	Dalvik
Bytecode.class	edu/gatech/Foo

.method	bar
const-string	v1,"Hello	World”
invoke-virtual	{v0,v1},println

package		edu.gatech;
class	Foo	{	
bar(){println(“hello	world”)};
}

.class	a	 										.method	a
const-string	v1,"Hello	World”
invoke-virtual	{v0,v1},println

Feature	selection

• C/C++	OSS	vs	so	files
• String	literal

• Clang-based	lexer for	OSS	and	.rodata for	libraries
• Exported	function

• Clang-based	parser	for	OSS	and	.dynsym for	libraries

• Java	OSS	vs	dex files
• String	constant
• Normalized	class

• Captures	interaction	with	framework
• Function	centroid

• Captures	intra-procedural	control	flow 7

Fused	app	binaries

• An	app	uses	multiple	OSS
• !"#∩%&&

!"#

• %&&∩!"#
%&&

• Iterate	𝑁 OSS	has	𝑂(𝑁) time	complexity

• Flag	all	OSS	being	used	at	the	same	time
• Index	OSS	and	their	versions!

8

edu.gatech.example

MuPDF
OpenCV

OpenSSL OkHttp
MoPub
Log4j

Flat	indexing	and	matching

• Indexing:	Maps	features	to	OSS
• Matching:	Lookup	feature	->	OSS	mapping	to	identify	OSS	reuse

• Flat	indexing	blow	up	table	to	90G	after	indexing	7K	OSS
• Indexing	multiple	versions	of	OSS	further	adds	to	the	problem
• Given	𝑁 OSS	with	𝐹 features	and	𝑉 versions,	𝑂(𝑁𝐹𝑉) space	complexity

9

feature	1

feature	2

feature	3

MuPDF

OpenCV
edu.gatech.example

Partial	builds	and	internal	code	clones

10

repo
dir
file

LibJPEG LibPNG

MuPDF OpenCV

source thirdparty 3rdparty modules/core

test-dev.cpppdf-lex.c opengl.cpp test-io.cpp

pdf fitz testsrc

jpeglib.h
pngtest.c

png.c
…… … … …

Internal	code	clones	confuses	
third-party	with	core	and	

requires	high	match	ratio	to	filter

Partial	builds	(e.g.	
examples,	tests)	causes	
the	match	ratio	to	be	low

Hierarchical	indexing	and	matching

• Hierarchical	Indexing
• Records	source	hierarchy	to	track	internal	clones
• Uses	Simhash algorithm	to	generate	ids	for	non-leaf	nodes	for	deduplication
• Record	unique	features	across	versions	via	separate	lists

• Hierarchical	Matching
• NormScore (TF-IDF	based)	to	promote	unique	parts	when	computing	
matching	ratio	of	a	node
• Allow partial	builds	by	skipping	nodes	with	low	ratio
• Drop internal	code	clones	by	skipping	nodes	likely	to	be	third-party

11

feature	1

feature	2

feature	3

file	1

file	2

file	3

dir 1

dir 2

dir 3

dir 4

dir 5
MuPDF
OpenCV
LibPNG

edu.gatech.example

Cross-match	of	unique	version	features

12

1.5.0

1.6.0

1.2.46

foo_string

int bar_func()

MuPDF
V 1.5

V	1.6

LibPNG
V 1.2.46

V	1.6.0

edu.gatech.example
MuPDF V1.6

LibPNG V1.2.46

Collocation-based	filtering

• Leverage	collocation	information	in	the	indexing	table	and	binaries
• Use	NormScore to	assign	different	weights	to	features

13

MuPDF V1.6

LibPNG V1.6.0

pdf.c

1.6.0

int pdf_read()

png.c

1.6.0

int png_read()

edu.gatech.example
MuPDF V1.6

LibPNG V1.2.46

Implementation

• Data	Collection
• Scrapy for	crawling	of	OSS	repos
• PlayDrone for	crawling	Android	apps

• Feature	Extraction
• Clang-based	lexer and	parser	for	C/C++	source
• Pyelftools for	native	binaries
• Soot-based	parser	for	Java	bytecode	and	Dex bytecode

• OSS	Detection
• Redis key-value	cluster	for	storing	and	querying	indexing	results
• Celery	job	scheduler	for	distributing	work	to	multiple	servers

14

Evaluation

• FDroid Apps
• 4,469	apps,	579	with	native	libraries
• 295	C/C++	OSS	uses,	7,055	Java	OSS	uses

• BAT:	internal	code	clones
• LibScout:	partial	builds	(code	removal)

15

55
matches

0
20
40
60
80
100

Precision	(%) Recall	(%) Version	
Precision	(%)

C/C++	OSS	Evaluation	Results

OSSPolice BAT

478	
matches

295	
matches

0
20
40
60
80
100

Precision	(%) Recall	(%) Version	
Precision	(%)

Java	OSS	Evaluation	Results

OSSPolice LibScout

Measurement	Dataset

• C/C++	OSS	from	GitHub
• 3,119	popular	repos	and	60,450	OSS	versions
• 29%	repos	are	GPL/AGPL
• 11%	repos	are	vulnerable	with	5,611	severe	CVEs	(𝐶𝑉𝑆𝑆 ≥ 4.0)

• Java	OSS	from	Maven	and	JCenter
• 4,777	popular	artifacts,	77,308	artifact	versions
• 2.3%	artifacts	are	GPL/AGPL
• 1.7%	artifacts	are	vulnerable	with	452	severe	CVE	ids

• Android	Apps	from	Google	Play
• 1.6M	apps,	515,812	with	native	libraries

16

Performance	and	Scalability

• Indexing
• 60,450	C/C++	repos and 77,308	Java	repos
• Time	cost is 1000s	vs.	40s	on	average
• Memory	grows sublinearly to 30GB	and 9GB

• Matching
• Sampled	10,000	Google	Play	apps
• 80%	of	dex and	so	files	finish	within	100s	and	200s

17

0 10 20 30 40 50 60 70 80
Number of indexed repos(Thousands)

0.00
4.66
9.31

13.97
18.63
23.28
27.94
32.60
37.25

M
em

or
y

us
ag

e
(G

B
)

C/C++ Memory Usage
Java Memory Usage

Popular	libraries

• Long-tailed	distribution	of	OSS	uses

18

0
20000
40000
60000
80000
100000
120000

Top	10	detected	Java	OSS	excluding	
Android	and	Google	OSS

Utils Network Social

Image Codec

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000

Top	10	detected	C/C++	OSS

Codec Game Font

Network Audio Viewer

Legal	Risks

• More	than	40K	potential	GPL	violators
• More	violators	using	C/C++	than	Java	and	encoding	libraries	dominate

19

0
200
400
600
800
1000
1200
1400

Top	5	offended	Java	OSS

0

5000

10000

15000

20000

25000

30000

35000

40000

MuPDF FFmpeg	 PJSIP VLC	and	
X264

BZRTP

Top	5	offended	C/C++	OSS

Codec Utils Compiler Codec Communication

Legal	Risks

• Why	violating	GPL/AGPL?
• MuPDF and	iTextPDF are	used	due	to	lack	of	free	alternatives

• OSS	developers	responses
• MuPDF got	new	customers		J
• FFmpeg and	VideoLANhave	interest,	but	FFmpeg cannot	enforce		J
• PJSIP	not	interested	due	to	NDA,	iText did	not	reply		L

• Awareness	of	OSS	licensing	terms
• None	of	the	app	developers	provided	source	code	yet	L

20

Security	Risks

• More	than	100K	apps	using	vulnerable	OSS	versions
• More	apps	using	vulnerable	C/C++	OSS	than	Java

21

0
5000
10000
15000
20000
25000
30000
35000
40000
45000

Top	6	C/C++	and	4	Java	vulnerable	OSS

C/C++ Java

1,244	LibPNG and	4,919	OpenSSL	
uses	are	not	detected	by	App	Security	
Improvement	Program	(ASIP)

Security	Risks

• Which	versions	of	OSS	do	new	
app	developers	choose?
• Both	vulnerable	and	patched	
OSS	are	being	used

• When	do	developers	update	
OSS	versions?
• ASIP	mitigates	vulnerable	OSS	
usage,	but	still	remains	a	
problem

22

0
250
500
750

M
oP

ub

0
200
400
600
800

O
pe

nS
SL

0
800

1600
2400

O
kH

ttp

2013-05-12
2013-11-28

2014-06-16
2015-01-02

2015-07-21
2016-02-06

2016-08-24

Date

0
80

160
240

FF
m

pe
g

Vuln. Usage
Patched Usage

ASIP Deadline
ASIP Notification

Timeline	of	OSS	usage	for	the	top	10K	apps,	300K	app	versions

Discussion

• Checking	license	compliance	requires	manual	efforts

• Obfuscation	and	optimization
• String	encryption	in	dex files
• Function	hiding	in	so	files

• Version	pinpointing
• Not	all	versions	can	be	uniquely	identified

• More	programming	languages	(i.e.	JS,	Python)	and	platforms	(i.e.	iOS)
23

Conclusion

• OSSPolice:	an	accurate	and	scalable	tool	to	identify	license	violations	and	
1-day	security	risks
• Hierarchical	indexing	and	matching	scheme
• Collocation-based	unique	feature	filtering

• A	large	scale	measurement
• 1.6M	free	Google	Play	Store	apps
• 40K	cases	of	potential	GPL/AGPL	violations	and	100K	apps	using	vulnerable	OSS

• Interesting	insights
• App	developers	violate	GPL/AGPL	due	to	lack	of	free	alternatives
• App	developers	use	vulnerable	OSS	versions	despite	efforts	from	Google

24

