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Abstract
Control-Flow Integrity (CFI), as a means to prevent
control-flow hijacking attacks, enforces that each instruc-
tion transfers control to an address in a set of valid targets.
The security guarantee of CFI thus depends on the defi-
nition of valid targets, which conventionally are defined
as the result of a static analysis. Unfortunately, previous
research has demonstrated that such a definition, and thus
any implementation that enforces it, still allows practical
control-flow attacks.

In this work, we present a path-sensitive variation of
CFI that utilizes runtime path-sensitive point-to analysis
to compute the legitimate control transfer targets. We
have designed and implemented a runtime environment,
PITTYPAT, that enforces path-sensitive CFI efficiently by
combining commodity, low-overhead hardware monitor-
ing and a novel runtime points-to analysis. Our formal
analysis and empirical evaluation demonstrate that, com-
pared to CFI based on static analysis, PITTYPAT ensures
that applications satisfy stronger security guarantees, with
acceptable overhead for security-critical contexts.

1 Introduction

Attacks that compromise the control-flow of a program,
such as return-oriented programming [33], have criti-
cal consequences for the security of a computer system.
Control-Flow Integrity (CFI) [1] has been proposed as a
restriction on the control-flow transfers that a program
should be allowed to take at runtime, with the goals of
both ruling out control-flow hijacking attacks and being
enforced efficiently.

A CFI implementation can be modeled as program
rewriter that (1) before a target program P is executed, de-
termines feasible targets for each indirect control transfer
location in P, typically done by performing an analysis
that computes a sound over-approximation of the set of
all memory cells that may be stored in each code pointer

(i.e., a static points-to analysis [2, 34]). The rewriter then
(2) rewrites P to check at runtime before performing each
indirect control transfer that the target is allowed by the
static analysis performed in step (1).

A significant body of work [1, 21, 41] has introduced
approaches to implement step (2) for a variety of exe-
cution platforms and perform it more efficiently. Unfor-
tunately, the end-to-end security guarantees of such ap-
proaches are founded on the assumption that if an attacker
can only cause a program to execute control branches
determined to be feasible by step (1), then critical appli-
cation security will be preserved. However, recent work
has introduced new attacks that demonstrate that such an
assumption does not hold in practice [5, 12, 32]. The lim-
itations of existing CFI solutions in blocking such attacks
are inherent to any defense that uses static points-to infor-
mation computed per control location in a program. Cur-
rently, if a developer wants to ensure that a program only
chooses valid control targets, they must resort to ensure
that the program satisfies data integrity, a significantly
stronger property whose enforcement typically incurs pro-
hibitively large overhead and/or has deployment issues,
such as requiring the protected program being recompiled
together with all dependent libraries and cannot be ap-
plied to programs that perform particular combinations of
memory operations [17, 22–24].

In this work, we propose a novel, path-sensitive vari-
ation of CFI that is stronger than conventional CFI (i.e.,
CFI that relies on static points-to analysis). A program
satisfies path-sensitive CFI if each control transfer taken
by the program is consistent with the program’s entire
executed control path. Path-sensitive CFI is a stronger
security property than conventional CFI, both in principle
and in practice. However, because it does not place any
requirements on the correctness of data operations, which
happen much more frequently, it can be enforced much
more efficiently than data integrity. To demonstrate this,
we present a runtime environment, named PITTYPAT, that
enforces path-sensitive efficiently using a combination of
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commodity, low-overhead hardware-based monitoring
and a new runtime points-to analysis.

PITTYPAT addressed two key challenges in building an
efficient path-sensitive CFI solution. The first challenge
is how to efficiently collect the path information about a
program’s execution so as to perform the analysis and de-
termine if the program has taken only valid control targets.
Collecting such information is not straightforward for dy-
namic analysis. An approach that maintains information
inside the same process address space of the monitored
program (e.g., [17]) must carefully protect the informa-
tion; otherwise it would be vulnerable to attacks [11]. On
the other hand, an approach that maintains information in
a separate process address space must efficiently replicate
genuine and sufficient data from the monitored program.

The second key challenge is how to use collected infor-
mation to precisely and efficiently compute the points-to
relationship. Niu et al. [26] have proposed leveraging
execution history to dynamically activate control transfer
targets. However, since the activation is still performed
over the statically computed control-flow graph, its accu-
racy can degrade to the same as pure static-analysis-based
approach. We compare PITTYPAT to such approaches in
detail in §6.

PITTYPAT applies two key techniques in addressing
these two challenges. First, PITTYPAT uses an event-
driven kernel module that collects all chosen control-
transfer targets from the Processor Tracing (PT) feature
available on recent Intel processors [31]. PT is a hardware
feature that efficiently records conditional and indirect
branches taken by a program. While PT was originally in-
troduced to enable detailed debugging through complete
tracing, our work demonstrates that it can also be ap-
plied as an effective tool for performing precise, efficient
program analysis for security.

The second technique is an abstract-interpretation-
based incremental points-to analysis. Our analysis embod-
ies two key innovations. First, raw PT trace is highly com-
pressed (see §3 for details). As a result, reconstructing the
control-flow (i.e., source address to destination address)
itself is time consuming and previous work has utilized
multiple threads to reduce the decoding latency [13]. Our
insight to solve this problem is to sync up our analysis
with the execution, so that our analysis only needs to
know what basic blocks being executed, not the control
transfer history. Therefore, we can directly map the PT
trace to basic blocks using the control-flow graph (CFG).
The second optimization is based on the observation that
static points-to analyses collect and solve a system of
constraints over all pairs of pointer variables in the pro-
gram [2, 15]. While this approach has good throughput,
it introduces unacceptable latency for online analysis. At
the same time, to enforce CFI, we only need to know the
points-to information of code pointers. Based on this ob-

servation, our analysis eagerly evaluates control relevant
points-to constraints as they are generated.

We implemented PITTYPAT as an instrumenting com-
piler for the LLVM compiler [20] and a tool for Linux;
the instrumenting compiler is an artifact of the current
version of our prototype: PITTYPAT does not fundamen-
tally rely on the ability to compile and instrument a target
program. To evaluate PITTYPAT, we used it to enforce
path-sensitive CFI for a set of security benchmarks devel-
oped in independent work. The results demonstrate that
PITTYPAT can detect recent attacks on the control flow
of benign benchmarks [5], as well as subversion of con-
trol flow in programs explicitly crafted to contain control
vulnerabilities that are difficult to detect [12, 32]. In com-
mon cases where CFI allows a program to choose from
tens of control transfer targets, PITTYPAT typically deter-
mines that only a single target is valid, based on the pro-
gram’s executed control path. On even compute-intensive
benchmarks, PITTYPAT incurs reasonable performance
overhead: a geometric mean of 12.73% over all SPEC
CPU2006 benchmarks, whereas techniques that enforce
data integrity incur 122.60%.

The rest of this paper is organized as follows. In §2,
we illustrate PITTYPAT by example. In §3, we review
previous work on which PITTYPAT is based. In §4, we
present the security guarantees that PITTYPAT establishes,
and describe the design of PITTYPAT. In §5, we describe
the implementation of PITTYPAT in detail. In §6, we
present an empirical evaluation of PITTYPAT. In §7, we
compare PITTYPAT to related work. In §8, we conclude
our work.

2 Overview

In this section, we present PITTYPAT by introducing a
running example. In §2.1, we present a program dispatch
that contains a control-flow vulnerability. In §2.2, we
use dispatch to illustrate that any defense that enforces
conventional CFI allows effective attacks on control-flow.
In §2.3, we illustrate that path-sensitive CFI enforced by
PITTYPAT does not allow the attack introduced in §2.2. In
§2.4, we illustrate how PITTYPAT enforces path-sensitive
CFI.

2.1 Subverting control flow

Figure 1 contains a C program, named dispatch, that
we will use to illustrate PITTYPAT. dispatch declares a
pointer handler (line L7) to a function that takes an argu-
ment of a struct request (defined at line L1–L4), which
has two fields: auth_user represents a user’s identity, and
args stores the arguments. dispatch contains a loop (line
L10–L23) that continuously accepts requests from users,
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1 struct request {
2 int auth_user;
3 char args[100];
4 };
5

6 void dispatch() {
7 void (*handler)(struct request *) = 0;
8 struct request req;
9

10 while(1) {
11 // parse the next request
12 parse_request(&req);
13 if (req.auth_user == ADMIN) {
14 handler = priv;
15 } else {
16 handler = unpriv;
17 // NOTE. buffer overflow, which can overwrite
18 // the handler variable
19 strip_args(req.args);
20 }
21 // invoke the hanlder
22 handler(&req);
23 }
24 }

Figure 1: A motivating example that illustrates the advan-
tages of control-path validity.

and calls parse_request (line 12) to parse the next re-
quest. If the request is an administrator (line L13), the
function pointer handler will be assigned with priv. Oth-
erwise, handler is assigned to unpriv (line L16), and
dispatch will call strip_args (line L19) to strip the re-
quest’s arguments. At last, dispatch calls handler to
perform relevant behaviors.

However, the procedure strip_args contains a buffer-
overflow vulnerability, which allows an attacker with con-
trol over input to strip_args to potentially subvert the
control flow of a run of dispatch by using well-known
techniques [28]. In particular, the attacker can provide
inputs that overwrite memory outside of the fixed-size
buffer pointed to by req.args in order to overwrite the
address stored in handler to be the address of a function
of their choosing, such as execve.

2.2 Limitations of existing CFI

Protecting dispatch so that it satisfies conventional
control-flow integrity (CFI) [1] does not provide strong
end-to-end security guarantees. An implementation of
CFI attempts to protect a given program P in two steps. In
the first step, the CFI implementation computes possible
targets of each indirect control transfer in P by running
a flow-sensitive points-to analysis1 [2, 15, 34]. Such an
approach, when protecting dispatch, would determine
that when the execution reaches each of the following
control locations L, the variable handler may store the

1Some implementations of CFI [25, 41, 42] use a type-based alias
analysis to compute valid targets, but such approaches are even less
precise.

following addresses p(L):

p(L7) ={0} p(L14) ={priv}
p(L16) ={unpriv} p(L22) ={priv,unpriv}

While flow-sensitive points-to analysis may implement
various algorithms, the key property of each such analy-
sis is that it computes points-to information per control
location. If there is any run of the program that may reach
control location L with a pointer variable p storing a par-
ticular address a, then the result of the points-to analysis
must reflect that p may point to a at L. In the case of
dispatch, any flow-sensitive points-to analysis can only
determine that at line L22, handler may point to either
priv or unpriv.

After computing points-to sets p for program P, the
second step of a CFI implementation rewrites P so that at
each indirect control-transfer instruction in each run, the
rewritten P can only transfer control to a control location
that is a points-to target in the target register according
to p. Various implementations have been proposed for
encoding points-to sets and validating control transfers
efficiently [1, 9, 41].

However, all such schemes are fundamentally limited
by the fact that they can only validate if a transfer target
is allowed by checking its membership in a flow-sensitive
points-to set, computed per control location. dispatch
and the points-to sets p illustrate a case in which any
such scheme must allow an attacker to subvert control
flow. In particular, an attacker can send a request with
the identity of anonymous user. When dispatch accepts
such a request, it will store unpriv in handler, and then
strip the arguments. The attacker can provide arguments
crafted to overwrite handler to store priv, and allow
execution to continue. When dispatch calls the function
stored in handler (line L22), it will attempt to transfer
control to priv, a member of the points-to set for L22.
Thus, dispatch rewritten to enforce CFI must allow the
call. Let the sequence of key control locations visited in
the above attack be denoted p0 = [L7,L16,L22].

Although PathArmor [37] enforces context-sensitive
CFI by inspecting the history of branches taken at run-
time before allowing the monitored execution to perform a
security-sensitive operation, it decides to allow execution
to continue if the path contains a sequence of control trans-
fers that are feasible according to a static, flow-sensitive
points-to analysis computed before the program is run.
As a result, PathArmor is susceptible to a similar attack.

Per-input CFI (denoted π-CFI) [26] avoids some of the
vulnerabilities in CFI inherent to its use of flow-sensitive
points-to sets, such as the vulnerability described above
for dispatch. π-CFI updates the set of valid targets of
control transfers of each instruction dynamically, based
on operations performed during the current program ex-
ecution. For example, π-CFI only allows a program to
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perform an indirect call to a function whose address was
taken during an earlier program operation. In particular, if
dispatch were rewritten to enforce π-CFI, then it would
block the attack described above: in the execution of π-
CFI described, the only instruction that takes the address
of handler (line L14) is never executed, but the indirect
call at L22 uses priv as the target of an indirect call.

However, in order for π-CFI to enforce per-input CFI
efficiently, it updates valid points-to targets dynamically
using simple, approximate heuristics, rather than a precise
program analysis that accurately models the semantics of
instructions executed. For example, if a function f ap-
pears in the static points-to set of a given control location
L and has its address taken at any point in an execution,
then f remains in the points-to set of L for the rest of
the execution, even if f is no longer a valid target as the
result of program operations executed later. In the case of
dispatch, once dispatch takes the address of priv, priv
remains in the points-to set of control location L22 for the
remainder of the execution.

An attacker can thus subvert the control flow of
dispatch rewritten to enforce π-CFI by performing the
following steps. (1) An administrator sends a request,
which causes dispatch to store priv in handler, call it,
and complete an iteration of its loop. (2) The attacker
sends an anonymous request, which causes dispatch to
set unpriv in handler. (3) The attacker provides argu-
ments that, when handled by strip_args, overwrite the
address in handler to be priv, which causes dispatch to
call priv with arguments provided by the attacker.

Because priv will be enabled as a control target as
a result of the operations performed in step (1), priv
will be a valid transfer target at line L22 in step (3).
Thus, the attacker will successfully subvert control flow.
Let the key control locations in the control path along
which the above attack is performed be denoted p1 =
[L7,L14,L22,L16,L22].

2.3 Path-sensitive CFI
In this paper, we introduce a path-sensitive version of
CFI that addresses the limitations of conventional CFI
illustrated in §2.2. A program satisfies path-sensitive
CFI if at each indirect control transfer, the program only
transfers control to an instruction address that is in the
points-to set of the target register according to a points-to
analysis of the whole executed control path.
dispatch rewritten to satisfy path-sensitive CFI would

successfully detect the attacks given in §2.2 on existing
CFI. One collection of valid points-to sets for handler
for each control location in subpath p0 (§2.2) are the
following:

(L7,{0}),(16,{unpriv}),(L22,{unpriv})

Ring
Buffer Analyzer

Meta 
Data

LLVM 
IR

fp1 f1
fp2 f2
… …

P
Point-To
Table

read update

query

DriverOS

PTCPU
dump trace

writeintercept
restore wait notify

2
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4

0
1
2

3
45

…
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Figure 2: The architecture of PITTYPAT. P denotes a
target program. The analyzer and driver modules of
PITTYPAT are described in §2.4.

When execution reaches L22, priv is not in the points-to
set of handler, and the program halts.

Furthermore, dispatch rewritten to satisfy path-
sensitive CFI would block the attack given in §2.2 on
π-CFI. One collection of valid points-to sets for handler
for each control location in subpath p1 are the following:

(L7,{0}) (L14,{priv}) (L22,{priv})
(L16,{unpriv}) (L22,{unpriv})

When execution reaches L22 in the second iteration of
the loop in dispatch, priv is not in the points-to set of
handler, and the program determines that the control-
flow has been subverted.

2.4 Enforcing path-sensitive CFI efficiently
The points-to sets for control paths considered in §2.3
illustrate that if a program can be rewritten to satisfy path-
sensitive CFI, it can potentially satisfy a strong security
guarantee. However, ensuring that a program satisfies
path-sensitive CFI is non-trivial, because the program
must be extended to dynamically compute the results
of sophisticated semantic constraints [2] over the exact
control path that it has executed.

A key contribution of our work is the design of a run-
time environment, PITTYPAT, that enforces path-sensitive
CFI efficiently. PITTYPAT’s architecture is depicted in
Figure 2. For program P, the state and code of PITTYPAT
consist of the following modules, which execute concur-
rently: (1) a user-space process in which P executes, (2)
a user-space analysis module that maintains points-to in-
formation for the control-path executed by P, and (3) a
kernel-space driver that sends control branches taken by
P to the analyzer and validates system calls invoked by P
using the analyzer’s results.

Before a program P is monitored, the analysis mod-
ule is given (1) an intermediate representation of P and
(2) meta data including a map from each instruction ad-
dress in the binary representation of P to the instruction
in the intermediate representation of P. We believe that it
would also be feasible to implement PITTYPAT to protect
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a program given only as a binary, given that the analyzer
module only must perform points-to analysis on the se-
quence of executed instructions, as opposed to inferring
the program’s complete control-flow graph.

As P executes a sequence of binary instructions, the
driver module copies the targets of control branches taken
by P from PT’s storage to a ring buffer shared with the
analyzer. PT’s storage is privileged: it can only be written
by hardware and flushed by privileged code, and cannot
be tampered with by P or any other malicious user-space
process. The analyzer module reads taken branches from
the ring buffer, uses them to reconstruct the sequence
of IR instructions executed by P since the last branch
received, and updates the points-to information in a table
that it maintains for P’s current state by running a points-
to analysis on the reconstructed sequence.

When P invokes a system call, the driver first intercepts
P (➊), while waiting for the analyzer module to determine
in parallel if P has taken a valid sequence of control targets
over the entire execution up to the current invocation (➋
and ➌). The analyzer validates the invocation only if P has
taken a valid sequence, and the driver allows execution of
P to continue only if the invocation is validated (➍).

There are two key challenges we must address to make
PITTYPAT efficient. First, trace information generated
by PT is highly compressed; e.g., for each conditional
branch that a program executes, PT provides only a sin-
gle bit denoting the value of the condition tested in the
branch. Therefore additional post-processing is necessary
to recover transfer targets from such information. The ap-
proach used by the perf tool of Linux is to parse the next
branch instruction, extract the offset information, then
calculate the target by adding the offset (if the branch is
taken) or the length of instruction (if branch is not taken).
However, because parsing x86 instructions is non-trivial,
such an approach is too slow to reconstruct a path online.

Our insight to solve this problem is that, to reconstruct
the executed path, an analysis only needs to know the
basic blocks executed. We have applied this insight by
designing the analysis to maintain the current basic block
executed by the program. The analysis can maintain such
information using the compressed information that PT
provides. E.g., if PT provides only a bit denoting the value
of a condition tested in a branch, then the analysis inspects
the conditional branch at the end of the maintained block,
and from the branch, updates its information about the
current block executed.

The second key challenge in designing PITTYPAT is to
design a points-to analysis that can compute accurate
points-to information while imposing sufficiently low
overhead. Precise points-to analyses solve a system of
constraints over all pairs of pointer variables in the pro-
gram [2, 15]; solving such constraints uses a significant
amount of time that is often acceptable in the context of

Packet Description

TIP.PGE IP at which the tracing begin
TIP.PGD Marks the ending of tracing
TNT Taken/non-taken decisions of conditional branches
TIP Target addresses of indirect branches
FUP The source addresses of asynchronous events

Table 1: Control-relevant trace packets from Intel PT.

an offline static analysis, but would impose unacceptable
overhead if used by PITTYPAT’s online analysis process.
Other analyses bound analysis time to be nearly linear
with increasing number of pointer variables, but gener-
ate results that are often too imprecise to provide strong
security guarantees if used to enforce CFI [34].

To address the limitations of conventional points-to
analysis, we have designed an online points-to analysis
that achieves the precision of precise analysis at high per-
formance. The analysis eagerly evaluates control relevant
points-to constraints as they are generated, while updating
the points-to relations table used for future control trans-
fer validation. The analysis enables PITTYPAT, when
analyzing runs of dispatch that execute paths p0 and p1,
to compute the accurate points-to information given in
§2.3. On practical benchmarks, it allows significantly
smaller sets of control targets to be taken at each control
branch, and detects attacks on control flow not detected
by state-of-the-art defenses. Combined with our efficient
path-reconstruction process, it also enables PITTYPAT to
execute with an average of 12.73% overhead (geometric
mean) on even compute-intensive benchmarks, such as
SPEC CPU2006 (see §6).

3 Background

3.1 Intel Processor Trace

Intel PT is a commodity, low-overhead hardware designed
for debugging by collecting complete execution traces of
monitored programs. PT captures information about pro-
gram execution on each hardware thread using dedicated
hardware facilities so that after execution completes, the
captured trace data can be reconstructed to represent the
exact program flow.

The captured control flow information from PT is pre-
sented in encoded data packets. The control relevant
packet types are shown in Table 1. PT records the begin-
ning and the end of tracing through TIP.PGE and TIP.PGD
packets, respectively. Because the recorded control flow
needs to be highly compressed in order to achieve the
efficiency, PT employs several techniques to achieve this
goal. In particular, PT only records the taken/non-taken
decision of each conditional branches through TNT, along
with the target of each indirect branches through TIP. A
direct branch does not trigger a PT packet because the
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control target of a direct branch is fixed.
Besides the limited packet types necessary for recov-

ering complete execution traces, PT also adopts compact
packet format to reduce the data throughput aggressively.
For instance, TNT packets use one bit to indicate the di-
rection of each conditional branches. TIP packets, on the
other hand, contain compressed target address if the upper
address bytes match the previous address logged. Thus
on average, PT tracing incurs less than 5% overhead [13].

When configured appropriately, PT monitors a single
program as well as its descendants based on CR3 filter-
ing, and outputs all collected packets to physical memory
allocated by its kernel driver. In the current implemen-
tation of PITTYPAT, a ring buffer is allocated so that it
can be reused throughout execution. The details of its
implementation are described in §5.1.

3.2 Conventional CFI

A control analysis, given program P, computes a sound
over-approximation of the instruction pointers that may
be stored in each pointer when P executes each instruc-
tion. An abstract domain D [8] consists of a set of abstract
states, a concretization relation from abstract states to the
program states that they represent, and for each program
instruction i, an abstract transformer τD[i] : D → D that
describes how each abstract state is updated by a program.
Each abstract domain defines a transition relation ρD of
steps valid according to D. In particular, for each instruc-
tion i, domain element D, and all states σ and σ ′, if σ

represented by D and σ ′ is represented by τD[i](D), then
(σ ,i,σ ′) ∈ ρD. A control-analysis domain D is an ab-
stract domain extended with a relation from each abstract
domain element and instruction pointer to code pointers
in states represented by D.

A valid flow-sensitive description in D of a program
P is a map from each program point in P to an element
in D that is consistent with the semantics of program
instructions. There is always a most-precise valid flow-
sensitive description in D, denoted µ[D].

Definition 1 For control domain D, program P satisfies
(conventional) CFI modulo D if, in each run of P, at each
indirect branch point L, P transfers control to a control
target in µ[D](L).

We provide a complete formal definition of conventional
CFI in §C.1.

An analysis that computes such a description is a con-
trol analysis. Control analyses conventionally are imple-
mented as points-to analyses, such as Andersen’s analy-
sis [2] or Steensgard’s analysis [34].

4 Design

A program P satisfies path-sensitive CFI under control
domain D if each step of P is valid according to D (as
described in §3.2).

Definition 2 For control domain D, program P satisfies
path-sensitive CFI modulo D if, in each run of P consist-
ing of states σ0, . . . ,σn, for each 0 ≤ j < n where σ j steps
to σ j+1 on instruction i, (σ j,i,σ j+1) ∈ ρD.

A formal definition of path-sensitive CFI, along with
results establishing that path-sensitive CFI is strictly
stronger than conventional CFI, are given in §C.2.

PITTYPAT enforces path-sensitive CFI by maintaining
a shadow execution/analysis that only examines control
relevant data, while running concurrently with the mon-
itored process. Using the complete traces reconstructed
from Intel PT, only control-relevant data are computed
and maintained as points-to relations throughout the exe-
cution, using an online points-to analysis. Analyzing only
control-relevant data satisfies the need to validate control-
transfer targets but significantly optimizes the analysis,
because only parts of the program will be examined in the
shadow execution/analysis. Such an analysis, along with
the low overhead incurred by commodity hardware, allow
PITTYPAT to achieve path-sensitive CFI with practical
runtime overhead.

The architecture of PITTYPAT is depicted in §2.4, Fig-
ure 2. PITTYPAT consists of two modules. The first
module executes a given program P in a designated mon-
itor process and collects the targets of control transfers
taken by P. We describe the operation of this module in
§4.1 and give the details of its implementation in §5.1.
The second module receives control-branch targets taken
by P from the first module, reconstructs the control path
executed by P from the received targets, and performs a
points-to analysis along the reconstructed control path of
P. We describe the operation of the analysis module in
§4.2 and describe details of its implementation in §5.2.

4.1 Sharing taken branches efficiently
PITTYPAT uses the PT extension for Intel processors [31]
to collect the control branches taken by P. A naive im-
plementation of PITTYPAT would receive from the moni-
toring module the complete target address of each branch
taken by P in encoded packets and decode the traces of-
fline for analysis. PITTYPAT, given only Boolean flags
from PT, decodes complete branch targets on the fly.

To do so, PITTYPAT maintains a copy of the current
control location of P. For example, in Figure 1, when
dispatch steps through the path [L10,L16,L22], the rele-
vant PT trace contains only two TNT packets and one TIP
packet. A TNT packet is a two-bit stream: 10. The first
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bit, 1, represents the conditional branch at L10 is taken
(i.e., the execution enters into the loop). The second bit, 0,
indicates the conditional branch at L13 is not taken, and
the executed location is now in the else branch. The TIP
packet contains the address of function unpriv, which
shows an indirect jump to unpriv.

PITTYPAT uses the Linux perf infrastructure to extract
the execution trace of P. In particular, PITTYPAT uses the
perf kernel driver to (1) allocate a ring buffer shared by
the hardware and itself and (2) mark the process in which
the target program executes (and any descendant process
and thread) as traced so as to enable tracing when context
switching into a descendant and disable tracing when
context switching out of a descendant. The driver then
transfers the recorded PT packets, together with thread ID
and process ID, to the analyzer module through the shared
buffer. This sharing mechanism has proved to be efficient
on all performance benchmarks on which we evaluated
PITTYPAT, typically incurring less than 5% overhead.

PITTYPAT intercepts the execution of a program at
security-sensitive system calls in the kernel and does not
allow the program to proceed until the analyzer validates
all control branches taken by the program. The list of inter-
cepted system calls can be easily configured; the current
implementation checks write, mmap, mprotect, mremap,
sendmsg, sendto, execve, remap_file_pages, sendmmsg,
and execveat. The above system calls are intercepted be-
cause they can either disable DEP/W⊕X, directly execute
an unintended command, write to files on the local host,
or send traffic over a network.

4.2 Online points-to analysis

The analyzer module executes in a process distinct from
the process in which the monitored process executes. Be-
fore monitoring a run of the program, the analyzer is given
the monitored program’s LLVM IR and meta information
about mapping between IR and binary code. At runtime,
the analyzer receives the next control-transfer target taken
by the protected program from the monitor module, and
either chooses to raise an alarm signaling that the con-
trol transfer taken would violate path-sensitive CFI, or
updates its state and allows the original program to take
its next step of execution.

The updated states contain two components: (1) the
callstack of instructions being executed (i.e., the pc’s) and
(2) points-to relations over models of memory cells that
are control relevant only. The online points-to analysis
addresses the limitations of conventional points-to anal-
yses. In particular, it reasons precisely about the calling
context of the monitored program by maintaining a stack
of register frames. It avoids maintaining constraints over
pairs of pointer variables by eagerly evaluating the sets of
cells and instruction addresses that may be stored in each

register and cell. It updates this information efficiently in
response to program actions by performing updates on a
single register frame and removing register frames when
variables leave scope on return from a function call.

In general, a program may store function pointers in
arbitrarily, dynamically allocated data structures before
eventually loading the pointer and using it as the target
of an indirect control transfer. If the analyzer were to
maintain precise information about the points-to relation
of all heap cells, then it would maintain a large amount
of information never used and incur a significant cost to
performance. We have significantly optimized PITTYPAT
by performing aggressive analyses of a given program P
offline, before monitoring the execution of P on a given
input. PITTYPAT runs an analyzer developed in previous
work on code-pointer integrity (CPI) [17] to collect a
sound over-approximation of the instructions in a program
that may affect a code pointer used as the target of a
control transfer. At runtime, the analyzer only analyzes
instructions that are control relevant as determined by its
offline phase.

A program may contain many functions that perform
no operations on data structures that indirectly contain
code pointers, and do not call any functions that perform
such operations. We optimized PITTYPAT by applying
an offline analysis based on a sound approximation of
the program’s call graph to identify all such functions.
At runtime, PITTYPAT only analyzes functions that may
indirectly perform relevant operations.

To illustrate the analyzer’s workflow, consider the exe-
cution path [L10,L12,L16,19,L22] in Figure 1 as an exam-
ple. Initially, the analyzer knows that the current instruc-
tion being executed is L10, and the points-to table is empty.
The analyzer then receives a taken TNT packet, and so it
updates the pc to L12, which calls a non-sensitive function
parse_request. However instead of tracing instructions
in parse_request, the analyzer waits until receiving a
TIP packet signaling the return from parse_request be-
fore continue its analysis. Next, it updates the pc to L16
after receiving a non-taken TNT packet, which indicates
that the else branch is taken. Here, the analyzer updates
the points-to table to allow handler to point to unpriv
when it handles L16. Because the program also calls a
non-sensitive function at L19, the analyzer waits again
and updates the pc to L22 only after receiving another
TIP packet. Finally, at L22, the analyzer waits for a TIP
packet at the indirect call, and checks whether the target
address collected by the monitor module is consistent
with the value pointed by handler in the points-to table.
In this case, if the address in the received TIP packet is
not unpriv, the analyzer throws an alarm.

We have described the analyzer as validating taken con-
trol branches and eagerly throwing alarms when it detects
an incorrect branch in order to simplify its description.
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The actual implementation of the analyzer only provides
such an alarm in response to a request from PITTYPAT’s
kernel module when a monitored process attempts to in-
voke a system call, as described in §5.1.

5 Implementation

5.1 Monitor module

PITTYPAT controls the Intel PT extension and collects an
execution trace from a monitored program by adapting
the Linux v4.4 perf infrastructure. Because perf was
originally designed to aid debugging, the original version
provided with Linux 4.4 only supports decoding and pro-
cessing traces offline. In the original implementation, the
perf kernel module continuously outputs packets of PT
trace information to the file system in user space as a log
file to be consumed later by a userspace program. Such
a mechanism obviously cannot be used directly within
PITTYPAT, which must share branch information at a
speed that allows it to be run as an online monitor.

We modified the kernel module of perf, which be-
gins and ends collection of control targets taken after
setting a target process to trace, allocates a ring buffer
in which it shares control branches taken with the ana-
lyzer, and monitors the amount of space remaining in
the shared buffer. The module also notifies the analyzer
when taken branches are available in its buffer, along with
how many chosen control targets are available. The no-
tification mechanism reuses the pseudo-file interface of
the perf kernel module. The analyzer creates one thread
to wait (i.e., poll) on this file handler for new trace data.
Once woken up by the kernel, it fetches branches from
the shared ring buffer with minimal latency.

System calls are intercepted by a modified version of
the system-call mechanism provided by the Linux ker-
nel. When the monitored process is created, it—along
with each of its sub-processes and threads created later—
is flagged with a true value in a PT_CPV field of its
task_struct in kernel space. When the kernel receives a
request for a system call, the kernel checks if the request-
ing process is flagged. If so, the kernel inspects the value
in register rax to determine if it belongs to the configured
list of marked system calls as described in §4.1. The
interception mechanism is implemented as a semaphore,
which blocks the system call from executing further code
in kernel space until the analyzer validates all branches
taken by the monitored process and signals the kernel.

The driver module and modifications to the kernel con-
sist of approximately 400 lines of C code.

5.2 Analyzer module

PITTYPAT’s analyzer module is implemented as two core
components. The first component consists of a LLVM
compiler pass, implemented in 500 lines, that inserts an
instruction at the beginning of each basic block before the
IR is translated to binary instructions. Such instructions
are used to generate a map from binary basic blocks to
LLVM IR basic blocks. Thus when PITTYPAT receives
a TNT packet for certain conditional branch, it knows the
corresponding IR basic block that is the target of the
control transfer. The inserted instructions are removed
when generating binary instructions; therefore no extra
overhead is introduced to the running program.

The second component, implemented in 5,800 lines
C++ code, performs a path-sensitive points-to analysis
over the control path taken by the monitored process, and
raises an error if the monitored process ever attempts to
transfer control to a branch not allowed by path-sensitive
CFI. Although the analysis inspects only low-level code,
it directly addresses several challenges in analyzing code
compiled from high-level languages. First, to analyze
exception-handling by a C++ program, which unwinds
stack frames without explicit calls to return instructions,
the analyzer simply consumes the received TNT packets
generated when the program compares the exception type
and updates the pc to the relevant exception handler.

To analyze a dynamic dispatch performed by a C++
program, the analyzer uses its points-to analysis to deter-
mine the set of possible objects that contain the vtable at
each dynamic-dispatch callsite. The analyzer validates
the dispatch if the requested control target stored in a
given TIP packet is one of the members of the object from
which the call target is loaded. At each call to setjmp, the
analyzer stores all possible setjmp buffer cells that may
be used as arguments to setjmp, along with the instruction
pointer at which setjmp is called, in the top stack frame.
At each call to longjmp, the analyzer inspects the target
T of the indirect call and unwinds its stack until it finds a
frame in which setjmp was called at T, with the argument
buffer of longjmp may have been the buffer passed as an
argument to setjmp.

6 Evaluation

We performed an empirical evaluation to answer the fol-
lowing experimental questions. (1) Are benign applica-
tions transformed to satisfy path-sensitive CFI less sus-
ceptible to an attack that subverts their control security?
(2) Do applications that are explicitly written to perform
malicious actions that satisfy weaker versions of CFI fail
to satisfy path-sensitive CFI? (3) Can PITTYPAT enforce
path-sensitive CFI efficiently?

To answer these questions, we used PITTYPAT to en-
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force path-sensitive CFI on a set of benchmark programs
and workloads, including both standard benign applica-
tions and applications written explicitly to conceal ma-
licious behavior from conventional CFI frameworks. In
summary, our results indicate that path-sensitive CFI pro-
vides a stronger security guarantee than state-of-the-art
CFI mechanisms, and that PITTYPAT can enforce path-
sensitive CFI while incurring overhead that is acceptable
in security-critical contexts.

6.1 Methodology
We collected a set of benchmarks, each described in detail
in §6.2. We compiled each benchmark with LLVM 3.6.0,
and ran them on a set of standard workloads. During
each run of the benchmark, we measured the time used by
the program to process the workload. If a program con-
tained a known vulnerability that subverted conventional
CFI, then we ran the program on inputs that triggered
such a vulnerability as well, and observed if PITTYPAT
determined that control-flow was subverted along the exe-
cution. Over a separate run, at each control branch taken
by the program, we measured the size of the points-to set
of the register that stored the target of the control transfer.

We then built each benchmark to run under a state-of-
the-art CFI framework implemented in previous work,
π-CFI [26]. While π-CFI validates control targets per
control location, it instruments a subject program so that
control edges of the program are disabled by default, and
are only enabled as the program executes particular trig-
gering actions (e.g., a function can only be called after its
address is taken). It thus allows sets of transfer targets that
are no larger than those allowed by conventional imple-
mentations of CFI, and are often significantly smaller [26].
For each benchmark program and workload, we observed
whether π-CFI determined that the control-flow integrity
of the program was subverted while executing the work-
load and measured the runtime of the program while ex-
ecuted under π-CFI. We compared PITTYPAT to π-CFI
because it is the framework most similar to PITTYPAT
in concept: it validates control-transfer targets based not
only on the results of a static points-to analysis, but col-
lecting information about the program’s dynamic trace.

6.2 Benchmarks
To evaluate the ability of PITTYPAT to protect long-
running, benign applications, and to evaluate the over-
head that it incurs at runtime, we evaluated it on the
SPEC CPU2006 benchmark suite, which consists of 162

C/C++ benchmarks. We ran each benchmark three times
2We don’t include 447.dealII, 471.omnetpp, and

483.xalancbmk because their LLVM IR cannot be completely
mapped to the binary code.

over its provided reference workload. For each run, we
measured the runtime overhead imposed by PITTYPAT
and the number of control targets allowed at each indirect
control transfer, including both indirect calls and returns.
We also evaluated PITTYPAT on the NGINX server—a
common performance macro benchmark, configured to
run with multiple processes.

To evaluate PITTYPAT’s ability to enforce end-to-end
control security, we evaluated it on a set of programs ex-
plicitly crafted to contain control vulnerabilities, both as
analysis benchmarks and in order to mount attacks on crit-
ical applications. In particular, we evaluated PITTYPAT
on programs in the RIPE benchmark suite [39], each
of which contains various vulnerabilities that can be
exploited to subvert correct control flow (e.g. Return-
Oriented Programming (ROP) or Jump-oriented Program-
ming (JOP)). We compiled 264 of its benchmarks in our
x64 Linux test environment and evaluated PITTYPAT on
each. We also evaluated PITTYPAT on a program that im-
plements a proof-of-concept COOP attack [32], a novel
class of attacks on the control-flow of programs written in
object-oriented languages that has been used to success-
fully mount attacks on the Internet Explorer and Firefox
browsers. We determined if PITTYPAT could block the
attack that the program attempted to perform.

6.3 Results

6.3.1 Protecting benign applications

Figure 3 contains plots of the control-transfer targets al-
lowed by π-CFI and PITTYPAT over runs of example
benchmarks selected from §6.2. In the plots, each point
on the x-axis corresponds to an indirect control transfer in
the run. The corresponding value on the y-axis contains
the number of control targets allowed for the transfer.

Previous work on CFI typically reports the average
indirect-target reduction (AIR) of a CFI implementation;
we computed the AIR of PITTYPAT. However, the re-
sulting data does not clearly illustrate the difference be-
tween PITTYPAT and alternative approaches, because all
achieve a reduction in branch targets greater than 99%
out of all branch targets in the program. This is consistent
with issues with AIR as a metric established in previous
work [4]. Figure 3, instead, provides the absolute mag-
nitudes of points-to sets at each indirect control transfer
over an execution.

Figure 3a contains a Cumulative Distribution Graph
(CDF) of all points-to sets at forward (i.e., jumps and
calls) indirect control transfers of size no greater than
40 when running 403.gcc under π-CFI and PITTYPAT.
We used a CDF over a portion of the points-to sets in or-
der to display the difference between the two approaches
in the presence of a small number of large points-to sets,
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(a) Partial CDF of allowed targets on forward edges taken by 403.gcc.
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(b) π-CFI points-to set of backward edges taken by 403.gcc.
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(c) π-CFI and PITTYPAT points-to sets for forward edges taken by
444.namd.
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(d) π-CFI points-to sets for backward edges taken by 444.namd.

Figure 3: Control-transfer targets allowed by π-CFI and PITTYPAT over 403.gcc and 444.namd.

explained below. Figure 3a shows that PITTYPAT can con-
sistently maintain significantly smaller points-to sets for
forward edges than that of π-CFI, leading to a stronger
security guarantee. Figure 3a indicates that when pro-
tecting practical programs, an approach such as π-CFI
that validates per location allows a significant number of
transfer targets at each indirect callsite, even using dy-
namic information. In comparison, PITTYPAT uses the
entire history of branches taken to determine that at the
vast majority of callsites, only a single address is a valid
target. The difference in the number of allowed targets
can be explained by the different heuristics adopted in π-
CFI, which monotonically accumulates allowed points-to
targets without any disabling schemes once targets are
taken, and the precise, context-sensitive points-to analysis
implemented in PITTYPAT. Similar difference between
π-CFI and PITTYPAT can also be found in all other C
benchmarks from SPEC CPU2006.

For the remaining 4% of transfers not included in Fig-

ure 3a, both π-CFI and PITTYPAT allowed up to 218
transfer targets; for each callsite, PITTYPAT allowed no
more targets than π-CFI. The targets at such callsites
are loaded from vectors and arrays of function pointers,
which PITTYPAT’s current points-to analysis does not
reason about precisely. It is possible that future work on
a points-to analysis specifically designed for reasoning
precisely about such data structures over a single path
of execution—a context not introduced by any previous
work on program analysis for security—could produce
significantly smaller points-to sets.

A similar difference between π-CFI and PITTYPAT is
demonstrated by the number of transfer targets allowed
for other benchmarks. In particular, Figure 3c contains
similar data for the 444.namd benchmark. 444.namd, a
C++ program, contains many calls to functions loaded
from vtables, a source of imprecision for implementations
of CFI that can be exploited by attackers [32]. PITTYPAT
allows a single transfer target for all forward edges as
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a result of its online points-to analysis. The difference
between π-CFI and PITTYPAT are also found for other
C++ benchmarks, such as 450.soplex, 453.povray and
473.astar.

π-CFI and PITTYPAT consistently allow dramatically
different numbers of transfer targets for return instruc-
tions. While monitoring 403.gcc, π-CFI allows, for some
return instructions, over 1,400 return targets (Figure 3b).
While monitoring 444.namd, π-CFI allows, for some re-
turn instructions, more than 46 transfer targets (Figure 3d).
Because PITTYPAT maintains a stack of points-to infor-
mation during its analysis, it will always allow only a
single transfer target for each return instruction, over all
programs and workloads. PITTYPAT thus significantly
improves defense against ROP attacks, which are still one
of the most popular attacks software.

6.3.2 Mitigating malicious applications

To determine if PITTYPAT can detect common attacks
on control, we used it to monitor selected RIPE bench-
marks [39]. For each of the 264 benchmarks that ran in
our experimental setup, PITTYPAT was able to success-
fully detect attacks on the benchmark’s control security.

We constructed a proof-of-concept program vulnera-
ble to a COOP [32] attack that corrupts virtual-function
pointers to perform a sequence of method calls not pos-
sible by a well-defined run of the program. In Figure 4,
the program defines two derived classes of SchoolMember
(line L1–L4), Student (line L5–L10) and Teacher (line
L11–L16). Both Student and Teacher define their own
implementation of the virtual function registration()
(lines L7–9 and L13–15, respectively). set_buf() (line
L17–L21) allocates a buffer buf on the stack of size 4 (line
L18), but does not bound the amount of data that it reads
into buf (line L20). The main function (line L22–L37)
constructs instances of Student and Teacher (lines L23
and L24, respectively), and stores them in SchoolMember
pointers (lines L26 and 27 respectively). main then calls
the registration() method of each instance (lines L29–
L31), reads input from a user by calling set_buf() (line
L33), and calls Student::registration() a second time
(line L35). A malicious user can subvert control flow of
the program by exploiting the buffer overflow vulnerabil-
ity in set_buf to overwrite the vptr of Student to that of
Teacher and run Teacher::registration() at line L35.

Previous work introducing COOP attacks [32] estab-
lished such an attack cannot be detected by CFI. π-CFI
was not able to detect an attack on the above program be-
cause it allows a dynamic method as a call target once its
address is taken. However, PITTYPAT detected the attack
because its analyzer module accurately models the effect
of each load of a function pointer used to implement the
dynamic calls over the program’s well-defined runs.

1 class SchoolMember {
2 public:
3 virtual void registration(void){}
4 };
5 class Student : public SchoolMember{
6 public:
7 void registration(void){
8 cout << "I am a Student\n";
9 }

10 };
11 class Teacher : public SchoolMember{
12 public:
13 void registration(void){
14 cout << "This is sensitive!\n";
15 }
16 };
17 void set_buf(void){
18 char buf[4];
19 //change vptr to that of Teacher’s sensitive func
20 gets(buf);
21 }
22 int main(int argc, char *argv[]){
23 Student st;
24 Teacher te;
25 SchoolMember *member_1, *member_2;
26 member_1 = &te;
27 member_2 = &st;
28 //Teacher calling its virtual functions
29 member_1->registration();
30 //Student calling its virtual functions
31 member_2->registration();
32 //buffer overflow to overwrite the vptr
33 set_buf();
34 //Student calling its virtual functions again
35 member_2->registration();
36 return 0;
37 }

Figure 4: A program vulnerable to a COOP attack.

6.3.3 Enforcing path-sensitive CFI efficiently

Table 2 contains measurements of our experiments that
evaluate performance of PITTYPAT when monitoring
benchmarks from SPEC CPU2006 and NGINX server,
along with the performance results replicated from the
paper that presented π-CFI [26]. A key feature observable
from Table 2 is that PITTYPAT induces overhead that is
consistently larger than, but often comparable to, the over-
head induced by π-CFI. The results show that PITTYPAT
incurs a geometric mean of 12.73% overhead across the
16 SPEC CPU2006 benchmarks, along with a 11.9% in-
creased response time for NGINX server over one million
requests with concurrency level of 50. Overhead of shar-
ing branch targets taken is consistently less than 5%. The
remaining overhead, incurred by the analysis module, is
proportional to the number of memory operations (e.g.,
loads, stores, and copies) performed on memory cells that
transitively point to a target of an indirect call, as well
as the number of child processes/threads spawned during
execution of multi-process/-threading benchmarks.

Another key observation from Table 2 is that PITTYPAT
induces much smaller overhead than CETS [23] and Soft-
Bound [22], which can only be applied to a small selec-
tion of the SPEC CPU2006 benchmarks. CETS provides
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Program Features Payload Features π-CFI Features PITTYPAT Features CETS+SB Features
Name KLoC Exp Tm (sec) Alarm Overhd (%) Alarm Overhd (%) Alarm Overhd (%)

400.perlbench 128 No 332 No 8.7% No 47.3% Yes –
401.bzip2 6 No 317 No 1.3% No 17.7% No 91.4%
403.gcc 383 No 179 No 6.2% No 34.1% Yes –
429.mcf 2 No 211 No 4.3% No 32.2% Yes –
433.milc 10 No 514 No 1.9% No 1.8% Yes –
444.namd 4 No 556 No -0.3% No 28.8% Yes –
445.gobmk 158 No 328 No 11.4% No 4.0% Yes –
450.soplex 28 No 167 No -1.1% No 27.5% Yes –
453.povray 79 No 100 No 11.9% No 16.0% Yes –
456.hmmer 21 No 258 No 0.2% No 20.2% Yes –
458.sjeng 11 No 359 No 8.5% No 6.7% No 80.1%
462.libquantum 3 No 234 No -1.5% No 14.1% Yes –
464.h264ref 36 No 339 No 8.0% No 11.8% No 251.7%
470.lbm 1 No 429 No 1.4% No 0.7% Yes –
473.astar 4 No 289 No 2.2% No 22.5% Yes –
482.sphinx3 13 No 338 No 1.7% No 16.0% Yes –
Geo. Mean 15 – 285 – 3.30% – 12.73% – 122.60%
nginx-1.10.2 122 No 25.41 No 2.7% No 11.9% Yes –

Table 2: “Name” contains the name of the benchmark. “KLoC” contains the number of lines of code in the benchmark.
Under “Payload Features,” “Exp” shows if the benchmark contains an exploit and “Tm (sec)” contains the amount of
time used by the program, when given the payload. Under “π-CFI Featues”, “PITTYPAT Features,” and “CETS+SB
Features,” “Alarm” contains a flag denoting if a given framework determined that the payload was an attack and aborted;
“Overhd (%)” contains the time taken by the framework, expressed as the ratio over the baseline time.

temporal memory safety and SoftBound provides spa-
tial memory safety; both enforce full data integrity for
C benchmarks, which entails control security. However,
both approaches induce significant overhead, and cannot
be applied to programs that perform particular combi-
nations of memory-unsafe operation [17]. Our results
thus indicate a continuous tradeoff between security and
performance among exisiting CFI solution, PITTYPAT,
and data protection. PITTYPAT offers control security
that is close to ideal, i.e. what would result from data
integrity, but with a small percentage of the overhead of
data-integrity protection.

7 Related Work

The original work on CFI [1] defined control-flow in-
tegrity in terms of the results of a static, flow-sensitive
points-to analysis. A significant body of work has adapted
the original definition for complex language features and
developed sophisticated implementations that enforce it.
While CFI is conventionally enforced by validating the
target of a control transfer before the transfer, control-
flow locking [3] validates the target after the transfer to
enable more efficient use of system caches. Compact
Control Flow Integrity and Randomization (CCFIR) [41]
optimizes the performance of validating a transfer target
by randomizing the layout of allowable transfer targets
at each jump. Opaque CFI (O-CFI) [21] ensures that
an attacker who can inspect the rewritten code cannot
learn additional information about the targets of control
jumps that are admitted as valid by the rewritten code.

All of the above approaches enforce security defined by
the results of a flow-sensitive points-to analysis; previous
work has produced attacks [5, 12, 32] that are allowed by
any approach that relies on such information. PITTYPAT
is distinct from all of the above approaches because it
computes and uses the results of a points-to analysis com-
puted for the exact control path executed. As a result, it
successfully detects known attacks, such as COOP [32]
(see §6.3.2).

Previous work has explored the tradeoffs of implement-
ing CFI at distinct points in a program’s lifecycle. CF
restrictor [30] performs CFI analysis and instrumenta-
tion completely at the source level in an instrumenting
compiler, and further work developed CFI integrated into
production compilers [36]. BinCFI [42] implements CFI
without access to the program source, but only access
to a stripped binary. Modular CFI [25] implements CFI
for programs constructed from separate compilation units.
Unlike each of the above approaches, PITTYPAT consists
of a background process that performs an online analysis
of the program path executed.

Recent work on control-flow bending has established
limitations on the security of any framework that enforces
only conventional CFI [5], and proposes that future work
explore CFI frameworks that validate branch targets us-
ing an auxiliary structure, such as a shadow stack. The
conclusions of work on control-flow bending are strongly
consistent with the motivation of PITTYPAT: the key con-
tribution of PITTYPAT is that it enforces path-sensitive
CFI, provably stronger than conventional CFI, and does so
not only by maintaining a shadow stack of points-to infor-
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mation, but by validating the targets of indirect branches
using path-sensitive points-to analysis. Per-input CFI (π-
CFI) [26] only enables control transfers to targets that
are enabled depending on previous operations taken by a
program in a given run; §6 contains a detailed comparison
of π-CFI to PITTYPAT.

Several implementations of CFI use hardware features
that efficiently record control targets chosen by a program.
CFIMon [40] collects the transfer targets chosen by the
program from the processor’s branch tracing store, and
validates the chosen target against the results of a flow-
sensitive points-to analysis. Previous work has also pro-
posed customized architectures with extended instruction
sets that directly implement primitive operations required
in order to enforce CFI [9]. Such approaches are thus
distinct from our approach for the same reason as all ap-
proaches that use the results of a flow-sensitive analysis.
kBouncer [29] interposes when a program attempts to ex-
ecute a system call and inspects the Last Branch Record
(LBR) provided on Intel processors to detect patterns of
transfer targets that indicate an ROP attack. ROPecker [7]
similarly interposes at key security events and inspects the
LBR, but combines information from inspecting the his-
tory of chosen branches with a forward analysis. PathAr-
mor [37] interposes key system calls, collects the last
transfer targets collected in the LBR, and determines if
there is a feasible path through the program’s control-flow
graph that reaches each transfer target. Further work [6]
introduced counterattacks against such defenses that ex-
ploit the fact that each of the defenses only inspects the
LBR to analyze a bounded number of transfer targets
chosen immediately before a system call.

The above approaches are similar to PITTYPAT in that
they inspect the results of hardware features that collect
some subset of the control targets taken by a program at
runtime. However, they are all distinct from PITTYPAT
because PITTYPAT uses hardware features to maintain ac-
curate points-to information by inspecting all branch tar-
gets chosen by a program over its execution. Recent work
has proposed approaches that leverage Intel PT. Most such
approaches use PT to debug programs [16, 35], whereas
PITTYPAT uses PT to protect their control security. Some
approaches [13, 14, 19] use PT to enforce that an appli-
cation satisfies CFI as defined by a static flow-sensitive
analysis; PITTYPAT uses PT to ensure that a program
satisfies a stronger, path-sensitive variation of CFI.

Points-to analysis is a classic problem in static pro-
gram analysis, with different approaches that achieve dis-
tinct tradeoffs in either higher precision [2] or scalabil-
ity [34]. Points-to analyses are characterized on multiple
dimensions, including flow-sensitivity [2, 34] and context-
sensitivity [10, 18, 27, 38, 43]. However, a key property
of all such analyses is that they are performed statically,
and thus compute information either per program point

or per group of stack configurations [15]. PITTYPAT
uses a points-to analysis to compute points-to informa-
tion based on the exact program path executed. As a
result, PITTYPAT does not merge points-to information
over multiple paths that reach a given control location
or stack configuration, which heavily influenced the de-
sign of the novel points-to analysis that it uses. Recent
work [17] has introduced Code-Pointer Integrity (CPI),
which protects the integrity of all addresses that indirectly
affect the value of a function pointer used as the target of
an indirect branch. A key finding of the original work on
CPI is that CPI is relatively expensive to enforce for pro-
grams that contain a large number of code pointers, such
as binaries compiled from programs in object-oriented
languages. As a result, CPI was proposed along with
code-pointer separation (CPS), in which the values of
code pointers are protected, but pointers to cells con-
taining code pointers are left unprotected. Subsequent
work on counterfeit object-oriented programming [32]
demonstrated that CPS is insufficiently strong to block
code-reuse attacks on object-oriented programs.

PITTYPAT, along with all approaches for enforcing
various versions of CFI, differs fundamentally from CPI
in that it does not attempt to protect any segment of
a program’s data at runtime. Instead, PITTYPAT vali-
dates candidate targets of indirect control transfers based
only on the history of control branches taken. CPI and
PITTYPAT have complementary strengths and should be
applied in complementary security settings. In particular,
CPI often incurs slightly lower overhead, but can only
be applied in scenarios in which the source code of the
entire program to be protected is available to be analyzed
and instrumented. Such conditions are not satisfied in
cases in which a program relies on large, untrusted third-
party or shared libraries. PITTYPAT can potentially incur
larger performance overhead than CPI. However, because
it performs an points-to analysis that can be easily run on
sequences of low-level instructions, it can be applied to
protect program modules that are only available as bina-
ries. It also need not instrument any code of a protected
application. Our current implementation of PITTYPAT
uses an analysis proposed in the work on CPI only to
optimize the points-to analysis performed at runtime to
validate branch targets.

8 Conclusion

We introduced a path-sensitive variation of CFI and an
efficient runtime enforcement system, PITTYPAT. Our
formal analysis and empirical evaluation demonstrate
that, PITTYPAT provides strictly stronger security guaran-
tees than conventional CFI, while incurring an acceptable
amount of runtime overhead.
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instrs := ops REGS, REGS, REGS | alloc REGS (1)
| ld REGS,REGS | store REGS,REGS (2)
| br REGS,REGS | call REGS | return (3)

Figure 5: A space of instructions, Instrs, in a target lan-
guage. Instrs is defined over registers Regs and data oper-
ations Ops.

Appendix

A Language definition

In this section, we define the syntax (§A.1) and semantics (§A.2)
of programs in PITTYPAT’s target language.

A.1 Syntax
Figure 5 contains the syntax of a space of program instructions,
Instrs. An instruction may compute the value of an operation
in ops over values stored in registers and store the result in a
register, may allocate a fresh memory cell (Eqn. 1), may load a
value stored in the address in one operand register into a target
register, may store a value in an operand register at the address
stored in a target register (Eqn. 2), may test if the value in a
register is non-zero and if so transfer control to an instruction
at the address stored in an operand register, may perform an
indirect call to a target address stored in an operand, or may
return from a call (Eqn. 3). Although all operations are assumed
to be binary, when convenient we will depict operations as using
fewer registers (e.g., a copy instruction copy r0,r1 in §4.2).

A program is a map from instruction addresses to instructions.
That is, for space of instruction addresses IAddrs containing a
designated initial address ι ∈ IAddrs, the language of programs
is Lang = IAddrs→ Instrs.

Instrs does not contain instructions similar to those in an
architecture with a complex instruction-set, which may, e.g., per-
form operations directly on memory. The design of PITTYPAT

directly generalizes to analyze programs that use such an instruc-
tion set. In particular, the actual implementation of PITTYPAT

monitors programs compiled for x86.

A.2 Semantics
Each program P ∈ Lang defines a language of sequences of
program states, called runs, that are generated by executing a
sequence of instructions in P from an initial state. In particular,
each program P defines two languages of runs. The first is
the language of well-defined runs, in which each step from the
current state is defined by the semantics of the next instruction
in P. The second is the language of feasible runs contain some
state q from which P executes an instruction that is not defined at
q (e.g., dereferencing an invalid address). When the successive
state of q is not defined and the program takes a step of execution,
the program may potentially perform an operation that subverts
security.
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A state is a stack of assignments from registers to values and a
memory, which maps each memory cell to a value. Let Words be
a space of data words and let Cells be a space of memory cells. A
value is an instruction address (§A.1), a data word, or a memory
cell; i.e., Values = IAddrs∪Words∪Cells. Let the space of
registers be denoted Regs. A register frame is the address of the
current instruction and a map from each register to a value; i.e.,
the space of register frames, for RegMaps= Regs→ Values, is
denoted

Frames= IAddrs×RegMaps

For each register frame f ∈ Frames, the instruction address of
f is denoted as ip[ f ].

A cell memory is a map from each memory cell to a value;
i.e., the space of cell memories is Mems= Cells→ Values. A
state is a pair of a non-empty stack of register frames and a cell
memory; i.e., the space of states is denoted

States= Frames+×Mems

For each state q, the instruction address of the top frame of q
is denoted ip[q]. For each sequence of states r ∈ States∗, the
sequence of corresponding instruction pointers of each state in
r is denoted IPs(r) ∈ IAddrs∗. The states consisting of a single
stack frame whose instruction pointer is ι are the initial states,
denoted States0 ⊆ States.

A transition relation relates each pre-state and instruction to
their resulting post-states. I.e., the space of transition relations
is TransRels = (States× Instrs)×States. The semantics of
Lang is defined by the well-defined transition relation of Lang,
denoted ρ[WellDef] ∈ TransRels. Each step of execution that
is safe is a step in ρ[WellDef]. The definition of ρ[WellDef] is
standard, and we omit a complete definition.

For each transition relation ρ ∈ TransRels, the runs of ρ in
P are the sequences of states r in which each state in r steps to
the successive state in r under ρ in P; the language of all such
runs is denoted Runs[ρ,P]. The runs of P under ρ[WellDef] are
the well-defined runs of P, denoted

Runs[WellDef,P] = Runs[ρ[WellDef],P]

The feasible transition relation of Lang is ρ[WellDef] ex-
tended to relate each pre-state and instruction undefined in
ρ[WellDef] to each post-state. The feasible transition relation
thus includes safe steps of execution that a program may take,
along with unsafe steps taken when the program executes an
instruction from a state in which the instruction is not defined
(i.e., loading from an address that does not point to allocated
memory). The feasible transition relation of Lang is denoted

ρ[Feasible] = ρ[WellDef]∪
((States× Instrs)\Dom(ρ[WellDef]))×States

where Dom(ρ[WellDef]) denotes the domain of ρ[WellDef].
The runs of P under ρ[Feasible] are the feasible runs of P,

denoted Runs[Feasible,P] = Runs[ρ[Feasible],P].

B Formal definition of points-to analysis

A control analysis takes a program P and computes a sound over-
approximation of the instruction pointers that may be stored in

each register when P executes a given instruction over a well-
defined run. A control-analysis domain is an abstract domain [8]
consisting of a set of abstract states, a concretization relation
from abstract states to the program states that they represent,
and an abstract transformer that describes how each abstract
state is updated by a program.

Definition 3 A control-analysis domain is a triple (A,γ,τ),
with: (1) An abstract domain A. (2)A concretization rela-
tion γ ⊆ A × States. There must be initial and empty ele-
ments Init,Empty ∈ A such that (a) {Init}×States0 ⊆ γ and
(b) {Empty} × States∩ γ = /0. (3) An abstract transformer
τ : A× Instrs× IAddrs→ A, where for each abstract state a ∈ A,
each state q ∈ States such that (a,q) ∈ γ , and each instruction
i∈ Instrs and state q′ ∈ States such that (q,i,q′)∈ ρ[WellDef],
it holds that (τ(a,i, ip[q′]),q′) ∈ γ .

For each control domain D, we refer to the abstract states, con-
cretization relation, and abstract transformer of D as A[D], γ[D],
and τ[D], respectively. The space of control-analysis domains is
denoted Doms.

The initial and empty elements in A[D] are denoted Init[D]
and None[D]. The binary relation ⊑D⊆ A[D]×A[D] is defined
as follows. For all abstract states a0,a1 ∈ A[D], if for each
concrete state q ∈ States such that (a0,q) ∈ γ[D] it holds that
(a1,q) ∈ γ[D], then a0 ⊑D a1.

C Formal definitions of control security

C.1 Conventional CFI
For each control domain D and program P, a valid description
of P in D over-approximates the control targets stored bound to
registers and memory when control reaches each of instruction
address of P. In particular, a valid description δ maps each
instruction address to an abstract state of D that such that (1)
δ maps ι to Init[D] and (2) δ is consistent with the abstract
transformers of each instruction over D.

Definition 4 For each control domain D ∈Doms and program
P ∈ Lang, let δ : IAddrs→ A[D] be such that (1) δ (ι) = Init[D];
(2) for all instruction addresses a0,a1 ∈ IAddrs and instruction
i ∈ Instrs, it holds that τ[D](δ (a0),i,a1)⊑D δ (a1). Then δ is
a valid description of P in D.

For each control domain D ∈ Doms and program P ∈
Lang, the space of valid descriptions of P in D is denoted
ValidDescs[D,P].

For each control domain D ∈Doms and program P ∈ Lang
the most precise description of P in D, denoted µ[D,P] ∈
ValidDescs[D,P], is the valid description of P in D such that
for all valid descriptions δ ′ ∈ ValidDescs[D,P] and each in-
struction address a ∈ IAddrs, µ[D,P](a)⊑D δ ′(a). Under well-
understood conditions [8], D has a most-precise description for
each program P that can be computed efficiently [2, 34].

Example 1 For program dispatch (§2.1) and any control do-
main D that maps each instruction pointer to a set of instruction
addresses, the most precise description of dispatch restricted
to function pointers is given in §2.2.

146    26th USENIX Security Symposium USENIX Association



Each program P and domain D define a transition relation in
which at each step from each instruction address a, the program
only transfers control to an instruction address that is feasible in
the most precise description of P under D at a.

Definition 5 For each program P ∈ Lang and control do-
main D ∈ Doms, let ρ ∈ TransRels be such that for all in-
struction addresses a,a′ ∈ Addrs, each instruction i ∈ Instrs
with τ[D](µ[D,P](a),i,a′) ̸= None[D] and all states q,q′ ∈
States with (µ[D,P](a),q) and (µ[D,P](a′),q′), it holds that
((q,i),q′) ∈ ρ . Then ρ is the flow-sensitive transition relation
of D and P.

For each domain D and program P, the flow-sensitive transition
relation of D and P is denoted FS[D,P].

For each control domain D and program P, the most precise
flow-sensitive description of P in D (Appendix D) defines an
instance of generalized control security that is equivalent to
CFI [1].

Definition 6 For all programs P,P′ ∈ Lang and each control-
analysis domain D ∈ Doms, if P′ satisfies generalized control
security under FS[D,P] (Appendix D, Defn. 5) with respect to
P, then P′ satisfies CFI modulo D with respect to P.

Defn. 6 is equivalent to “ideal” CFI as defined in previous work
to establish fundamental limitations on CFI [5].

C.2 Path-sensitive CFI
The problem of enforcing CFI is typically expressed as instru-
menting a given program P to form a new program P′ that
allows each indirect control transfer in each of its executions
only if the target of the transfer is valid according to a flow-
sensitive description of the control-flow graph of P. To present
our definition of path-sensitive CFI, we will introduce a general
definition of control security parameterized on a given transition
relation ρ . P′ satisfies generalized control security under ρ with
respect to P if (1) P′ preserves each well-defined run of P and
(2) each feasible run of P′ has instruction addresses identical to
the instruction addresses of some run of P under ρ .

Definition 7 For each transition relation ρ ∈ TransRels, let
programs P,P′ ∈ Lang be such that (1) Runs[WellDef,P] ⊆
Runs[WellDef,P′]; (2) for each run r′ ∈ Runs[Feasible,P′],
there is some run r ∈ Runs[ρ,P] such that IPs(r) = IPs(r′).
Then P′ satisfies generalized control security under ρ with re-
spect to P.

We now define path-sensitive CFI, an instance of generalized
control security that is strictly stronger than CFI. Each control
domain D defines a transition relation over program states that
are described by abstract states of D connected by the abstract
transformer of D.

Definition 8 For each control domain D ∈ Doms (§3.2,
Defn. 3), let ρ[D] ∈ TransRels, be such that for each abstract
state a ∈ A[D], each state q ∈ States such that (a,q) ∈ γ[D],
and each instruction i ∈ Instrs and state q′ ∈ States such that
(τ[D](a,i, ip[q′]),q′)∈ γ[D], it holds that (q,i,q′)∈ ρ[D]. Then
ρ[D] is the transition relation modulo D.

For all programs P and P′ and each control domain D, P′

satisfies path-sensitive CFI modulo D with respect to P if each
step of each run of P′ corresponds to a step of P over states with
the same description under D.

Definition 9 For all programs P,P′ ∈ Lang and each control
domain D ∈ Doms, if P′ satisfies control security under ρ[D]
(Defn. 8) with respect to P, then P′ satisfies path-sensitive CFI
modulo D with respect to P.

Path-sensitive CFI is conceptually similar to, but stronger
than, context-sensitive CFI [37], which places a condition on
only bounded suffixes of a program’s control path before the
program attempts to execute a critical security event, such as a
system call.

Path-sensitive CFI is as strong as CFI.

Lemma 1 For each control domain D and all programs P,P′ ∈
Lang such that P′ satisfies path-sensitive CFI modulo D with
respect to P, P′ satisfies CFI modulo D with respect to P.

Lemma 1 follows immediately from the fact that any control-
transfer target that is along a given control path must be a valid
target in a meet-over-all-paths solution.

Path-sensitive CFI is in fact strictly stronger than CFI.

Lemma 2 For some control domain D and programs P,P′ ∈
Lang, P′ satisfies CFI with respect to P modulo D but P′ does
not satisfy path-sensitive CFI with modulo D respect to P.

Lemma 2 is immediately proven using any domain D that is
sufficiently accurate between two control states and a program
P that generates state with either control configuration at a
particular program point.

D Formal definition of online analysis

The behavior of the analyzer module is determined by a
fixed control-analysis domain D (§3.2, Defn. 3). We refer to
PITTYPAT instantiated to use control domain D for points-to
analysis as PITTYPAT[D].

As the analyzer module executes, it maintains a control-
domain abstract state d ∈ A[D]. In each step of execution, the
analyzer module receives from the monitor process the next
control-transfer target taken by the monitored program P, and
either chooses to raise an alarm that transferring control to the
target would cause P to break path-sensitive CFI modulo D, or
updates its state and allows P to take its next step of execution.

In each step of execution, the analyzer module receives the
next control target a ∈ IAddrs taken by the monitored program,
and either raises an alarm or updates its maintained control
description d as a result. If a is not a feasible target from d over
the next sequence of non-branch instructions, then the analyzer
module throws an alarm signaling that control flow has been
subverted, and aborts.

Theorem 1 For D ∈Doms and P ∈ Lang, the program P′ sim-
ulated by running P in PITTYPAT[D] satisfies path-sensitive
CFI modulo D with respect to P (Defn. 9).
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We have given the design of an analyzer module that uses an
arbitrary control domain generically; i.e., the analyzer can use
any control-analysis domain that satisfies the definition given in
§3.2, Defn. 3. However, we have found that the performance of
the analyzer module can be improved significantly by using a
control domain that takes advantage of the particular context of
online path-sensitive analysis by maintaining points-to informa-
tion about exactly the variables that are live in each live stack
frame in the program state. We now define in detail the control
domain used by our analysis, OnlinePtsTo= (A,γ,τ).

Each element in the space A is either None[A], which repre-
sents no states, or a tuple consisting of (1) a stack in which each
entry is a map from each register r to a set of memory cells and
instruction pointer that r may store and (2) a map from each cell
to the cells and instruction pointers that it may store. I.e., for

Addrs= IAddrs∪Cells
RegPtsMaps= Regs→ P(Addrs)
FramePtsTo= IAddrs×RegPtsMaps

CellPtsTo= Cells→ P(Addrs)

with P(Addrs) the powerset of addresses, the abstract states are
A = FramePtsTo+×CellPtsTo. The stack containing a single
frame that maps each register to the empty set of addresses,
paired with an empty memory map, is the initial element of A.

Example 2 §2.3 contains examples of elements of A. In order
to simplify the presentation, in §2.3, only bindings to the function
pointer handler are shown, because these bindings are the only
ones that need to be inspected to determine the security of a
given run of dispatch.

Concretization relation γ ⊆ A × States relates each stack
and memory of points-to information to each concrete state
with a similarly structured stack and heap. For each n ∈ N, let
a0, . . . ,an ∈ IAddrs, R0, . . . ,Rn ∈ RegMaps, and R′

0, . . . ,R
′
n ∈

RegPtsMaps be such that for each i ≤ n and each register r ∈
Regs, if Ri(r) ∈ Addrs, then Ri(r) ∈ R′

i(r). Let m ∈Mems and
m′ ∈ CellPtsTo be such that for each cell c ∈ Cells, m(c) ∈
m′(c). Then:

(([(i0,R′
0), . . . ,(in,R′

n)],m
′),

([(i0,R0), . . . ,(in,Rn)],m)) ∈ γ

The abstract transformer τ : A× Instrs× IAddrs→ A is de-
fined as follows. For each set of memory cells C ⊆ Cells, let
fresh(C) ∈ Cells \C be a fresh memory cell not in C. For all
register frames f0, . . . , fn ∈ FramePtsTo, each register map m∈
RegPtsTo, each cell points-to map c ∈ CellPtsTo, all registers
r0,r1,r2 ∈ Regs, and all instruction addresses a,a′ ∈ IAddrs, a
store instruction store r0, r1 updates the cell map so that each
cell bound to r1 points to each cell points to each cell bound to
r0. I.e., for c0, . . . ,cn ∈ R(r1),

τ(((a,R) :: F,m),store r0, r1,a′) =
((a′,R) :: F,m[c0 7→ R(r0), . . . ,cn 7→ R(r0)])

A branch instruction requires that the target instruction address
is in the points-to set of the target register of the branch. I.e., if
a′ ∈ R(r0), then

τ(((a,R) :: F,m),br r0,a′) = ((a′,R) :: F,m)

Otherwise, τ maps the abstract state to None[A]. A call instruc-
tion increments the instruction pointer in the top frame and
pushes onto the stack a frame with an empty register map. I.e.,
if a′ ∈ R(r),

τ(((a,R) :: F,m),call r0,a′) =
((a′, /0) :: (a+1,R) :: F,m)

Otherwise, τ maps the abstract state to None[A]. A return
instruction pops the top register frame from the stack. I.e.,
τ(((a,R) :: F,m),return,a′) = (F,m) A data operation updates
only the instruction address:

τ(((a,R) :: F,m),op r0,r1,r2,a′) = ((a′,R) :: F,m)

An allocation alloc r0 updates the register map in the top frame
of the stack so that r0 points to a fresh memory cell. I.e.,

τ(((a,R) :: F,m),alloc r0,a′) =
((a′,R[r0 7→ fresh(Rng(m))]) :: F,m)

where (a,R) :: F denotes (a,R) prepended to F and Rng(m)
denotes the range of m. A copy instruction copy r0, r1 updates
the register map so that each cell that may be stored in r0 may
be stored in r1. I.e.,

τ(((a,R) :: F,m),copy r0, r1,a′) =
((a′,R[r1 7→ R(r0)]) :: F,m)

A load instruction load r0, r1 updates the register map in the
top frame so that each cell that may be pointed to by a cell bound
to r0 is bound to r1:

τ(((a,R) :: F,m),ld r0, r1,a′) =
((a′,R[r1 7→

⋃
c∈R(r0)

m(c)]) :: F,m)

The abstract transformers for other instructions, such as data
operations that perform pointer arithmetic, are defined similarly,
and we do not give explicit definitions here in order to simplify
the presentation.

Example 3 Consider descriptions of states of dispatch and its
instruction call handler (§2.1). For abstract state

A0 = ([(L22, [handler 7→ {priv}])], /0)

τ(A0,call handler,priv) consists of a fresh stack frame for
priv pushed onto the stack [(L22,handler 7→ priv)]. For ab-
stract state

A1 = ([(L22, [handler 7→ {unpriv}]), /0)

τ(A1,call handler,priv) is None[A].

We have given an online points-to analysis for a simple lan-
guage with only calls and returns. Practical languages typically
support additional interprocedural control instructions that, e.g.,
resolve calls targets through dynamic dispatch or unwind the
callstack. Our complete implementation handles each such in-
struction using an appropriate abstract transformer.

The fact that (D,γ,τ) defines a sound analysis can be proven
using standard techniques from abstract interpretation [8].
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