
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

APISAN: Sanitizing API Usages through
Semantic Cross-Checking

Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik,
Georgia Institute of Technology

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun

USENIX Association 25th USENIX Security Symposium 363

APISAN: Sanitizing API Usages through Semantic Cross-checking

Insu Yun Changwoo Min Xujie Si Yeongjin Jang Taesoo Kim Mayur Naik
Georgia Institute of Technology

Abstract
API misuse is a well-known source of bugs. Some of
them (e.g., incorrect use of SSL API, and integer overflow
of memory allocation size) can cause serious security
vulnerabilities (e.g., man-in-the-middle (MITM) attack,
and privilege escalation). Moreover, modern APIs, which
are large, complex, and fast evolving, are error-prone.
However, existing techniques to help finding bugs require
manual effort by developers (e.g., providing specification
or model) or are not scalable to large real-world software
comprising millions of lines of code.

In this paper, we present APISAN, a tool that automat-
ically infers correct API usages from source code without
manual effort. The key idea in APISAN is to extract
likely correct usage patterns in four different aspects (e.g.,
causal relation, and semantic relation on arguments) by
considering semantic constraints. APISAN is tailored
to check various properties with security implications.
We applied APISAN to 92 million lines of code, includ-
ing Linux Kernel, and OpenSSL, found 76 previously
unknown bugs, and provided patches for all the bugs.

1 Introduction

Today, large and complex software is built with many
components integrated using APIs. While APIs encap-
sulate the internal state of components, they also expose
rich semantic information, which renders them challeng-
ing to use correctly in practice. Misuse of APIs in turn
leads to incorrect results and more critically, can have
serious security implications. For example, a misuse of
OpenSSL API can result in man-in-the-middle (MITM)
attacks [22, 26], and seemingly benign incorrect error
handling in Linux (e.g., missing a check on kmalloc())
can allow DoS or even privilege escalation attacks [12].
This problem, in fact, is not limited to API usage, but
pervades the usage of all functions, which we generally
refer to as APIs in this paper.

Many different tools, techniques, and methodologies
have been proposed to address the problem of finding
or preventing API usage errors. Broadly, all existing
techniques either require (1) manual effort—API-specific
specifications (e.g., SSL in SSLint [26], setuid [10, 15]),
code annotations (e.g., lock operations in Sparse [41]),

correct models (e.g., file system in WOODPECKER [11]),
or (2) an accurate analysis of source code [6, 7], which
is hard to scale to complex, real-world system software
written in C/C++.

We present a fully automated system, called APISAN
for finding API usage errors. Unlike traditional ap-
proaches that require API-specific specifications or mod-
els, APISAN infers the correct usage of an API from
other uses of the API, regarding the majority usage pat-
tern as a semantic belief, i.e., the likely correct use. Also,
instead of relying on whole-program analysis, APISAN
represents correct API usage in a probabilistic manner,
which makes it scalable beyond tens of millions of lines of
low-level system code like the Linux kernel. In APISAN,
the higher the observed number of API uses, potentially
even from different programs, the stronger is the belief
in the inferred correct use. Once APISAN extracts such
semantic beliefs, it reports deviations from the beliefs as
potential errors together with a probabilistic ranking that
reflects their likelihood.

A hallmark of APISAN compared to existing ap-
proaches [1, 18, 28, 29] for finding bugs by detecting
contradictions in source code is that it achieves preci-
sion by considering semantic constraints in API usage
patterns. APISAN infers such constraints in the form of
symbolic contexts that it computes using a symbolic ex-
ecution based technique. The technique, called relaxed
symbolic execution, circumvents the path-explosion prob-
lem by limiting exploration to a bounded number of intra-
procedural paths that suffice in practice for the purpose
of inferring semantic beliefs.

APISAN computes a database of symbolic contexts
from the source code of different programs, and infers
semantic beliefs from the database by checking four key
aspects: implications of function return values, relations
between function arguments, causal relationships between
functions, and implicit pre- and post-conditions of func-
tions. These four aspects are specialized to incorporate
API-specific knowledge for more precise ranking and
deeper semantic analysis. We describe eight such cases in
APISAN that are tailored to check a variety of properties
with security implications, such as cryptographic proto-
col API misuses, integer overflow, improper locking, and
NULL dereference.

Our evaluation shows that APISAN’s approach is scal-

1

364 25th USENIX Security Symposium USENIX Association

// @apps/req.c:1332
// in OpenSSL v1.1.0-pre3-dev
EVP_PKEY_CTX *set_keygen_ctx() {
 gctx = EVP_PKEY_CTX_new();
 if (EVP_PKEY_keygen_init(gctx) <= 0) {
 BIO_puts(err, "Error...");
 ERR_print_errors(err);

 return NULL;
 }
}

APISan: Missing EVP_PKEY_CTX_free()
@FUNC: EVP_PKEY_keygen_init
@CONS: <= 0
@POST: EVP_PKEY_CTX_free

// @apps/genpkey.c:289
// in OpenSSL v1.1.0-pre3-dev
int init_gen_str() {
 if (EVP_PKEY_keygen_init(ctx) <= 0)
 goto err;
err:
 EVP_PKEY_CTX_free(ctx);
 return 0;
}

// @crypto/cms/cms_kari.c:302
// in OpenSSL v1.1.0-pre3-dev
int cms_kari_create_ephemeral_key() {
 rv = 0;
 if (EVP_PKEY_keygen_init(pctx) <= 0)
 goto err;
err:
 if (!rv)
 EVP_PKEY_CTX_free(pctx);
 return rv;
}(a) New bug in OpenSSL 1.1.0-pre3-dev (b) Collection of API uses

(%)

semantic
belief

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 1: (a) A memory leak vulnerability found by APISAN in OpenSSL 1.1.0-pre3-dev. When a crypto key fails to initialize, the
allocated context (i.e., gctx) should be freed. Otherwise, a memory leak will occur. APISAN first infers correct semantic usage of
the API from (b) other uses of the API, and extracts a checkable rule, called a semantic belief, under the proper context (e.g., state:
EVP_PKEY_keygen_init()→ rv <= 0 && EVP_PKEY_CTX_free()). This newly found vulnerability has been reported and fixed in the
mainstream with the patch we provided. In the above report, @FUNC indicates a target API, @CONS is a return value constraint, and
@POST shows an expected post-action following the API.

able and effective in finding API misuses that result in
critical security problems such as code execution, system
hangs, or crashes. In total, we analyzed 92 million lines
of code (LoC) and found 76 previously unknown bugs in
Linux, OpenSSL, PHP, Python, and debian packages us-
ing OpenSSL (see Table 2). More importantly, we created
patches for all these bugs and sent them to the mainline
developers of each project. Of these, 69 bugs have been
confirmed, and most have already been applied to the
mainstream repositories. We are awaiting responses for
the remaining reported bugs.

In short, our paper makes the following contributions:

• New methodology. We develop a fully automated
way of finding API misuses that infers semantic be-
liefs from existing API uses and probabilistically
ranks deviant API usages as bugs. We also formalize
our approach thoroughly.

• Practical impact. APISAN found 76 new bugs
in system software and libraries, including Linux,
OpenSSL, PHP, and Python, which are 92 million
LoC in total. We created patches for all bugs and
most of them have already been fixed in the main-
stream repositories of each project.

• Open source tool. We will make the APISAN
framework and all its checkers publicly available
online for others to readily build custom checkers on
top of APISAN.

The rest of this paper is organized as follows. §2 pro-
vides an overview of APISAN. §3 describes APISAN’s
design. §4 presents various checkers of APISAN. §5 de-
scribes APISAN’s implementation. §6 explains the bugs
we found. §7 discusses APISAN’s limitations and poten-
tial future directions. §8 compares APISAN to previous
work and §9 concludes.

2 Overview

In this section, we present an overview of APISAN, our
system for finding API usage errors. These errors often
have security implications, although APISAN and the
principles underlying it apply to general-purpose APIs
and are not limited to finding security errors in them. To
find API usage errors, APISAN automatically infers se-
mantic correctness, called semantic beliefs, by analyzing
the source code of different uses of the API.

We motivate our approach by means of an example
that illustrates an API usage error. We outline the chal-
lenges faced by existing techniques in finding the error
and describe how APISAN addresses those challenges.

2.1 Running Example
Figure 1(a) shows an example of misusing the API of
OpenSSL. The allocated context of a public key algorithm
(gctx on Line 3) must be initialized for a key generation
operation (EVP_PKEY_keygen_init() on Line 4). If the
initialization fails, the allocated context should be freed
by calling EVP_PKEY_CTX_free(). Otherwise, it results in
a memory leak.

To find such errors automatically, a checker has to know
the correct usage of the API. Instead of manually encod-
ing semantic correctness, APISAN automatically infers
the correct usage of an API from other uses of the API, re-
garding the majority usage pattern as the likely correct use.
For example, considering the use of the OpenSSL API in
Figure 1(a) together with other uses of the API shown in
Figure 1(b), APISAN infers the majority pattern as free-
ing the allocated context after initialization failure (i.e.,
EVP_PKEY_keygen_init() <= 0), and thereby reports the
use in Figure 1(a) as an error.

2

USENIX Association 25th USENIX Security Symposium 365

2.2 Challenges

We describe three key challenges that hinder existing
approaches in finding the error in the above example.

1. Lack of specifications. A large body of work focuses
on checking semantic correctness, notably dataflow anal-
ysis and model checking approaches [3, 4, 14, 17, 21, 46].
A major obstacle to these approaches is that developers
should manually describe “what is correct,” and this ef-
fort is sometimes prohibitive in practice. To alleviate this
burden, many of the above approaches check lightweight
specifications, notably type-state properties [42]. These
specifications are not expressive enough to capture correct
API uses inferred by APISAN; for example, type-state
specifications can capture finite-state rules but not rules in-
volving a more complex state, such as the rule in the box
in Figure 1(a), which states that EVP_PKEY_CTX_free()
must be called if EVP_PKEY_CTX_init() <= 0. Moreover,
techniques for checking such rules must track the con-
text of the API use in order to be precise, which limits
their scalability. For instance, the second example in
Figure 1(b) has a constraint on !rv, whose tracking is
necessary for precision but complicated by the presence
of goto routines in the example.

2. Missing constraints. Engler et al. [18] find potential
bugs by detecting contradictions in software in the ab-
sence of correctness semantics specified by developers.
For instance, if most occurrences of a lock release oper-
ation are preceded by a lock acquire operation, then in-
stances where the lock is released without being acquired
are flagged as bugs. The premise of APISAN is similar
in that the majority occurrence of an API usage pattern is
regarded as likely the correct usage, and deviations are re-
ported as bugs. However, Engler et al.’s approach does not
consider semantic constraints, which can lead it to miss
bugs that occur under subtle constraints, such as the one in
Figure 1(a), which states that EVP_PKEY_CTX_free()must
be called only when EVP_PKEY_keygen_init() fails.

3. Complex constraints. KLEE [7] symbolically exe-
cutes all possible program paths to find bugs. While it
is capable of tracking semantic constraints, however, it
suffers from the notorious path-explosion problem; its
successor, UC-KLEE [37], performs under-constrained
symbolic execution that checks individual functions rather
than whole programs. However, functions such as
EVP_PKEY_keygen_init() in Figure 1 contain a function
pointer, which is hard to resolve in static analysis, and
cryptographic functions have extremely complex path
constraints that pose scalability challenges to symbolic
execution based approaches.

❶ Building
symbolic contexts

Source code

Reports
(ranked)

§ 3.1

❷ Inferring
semantic beliefs

§ 3.2

as a part of
building process

❸ Locating
API misuses

§ 3.3

Checkers
§ 4

$ apisan -- make $ apisan --db=dir1,dir2 --checker=cpair

e.g., a group of programs
using OpenSSL

...

DB

Figure 2: Overview of APISAN’s architecture and workflow.
APISAN first builds symbolic contexts from existing programs’
source code and creates a database (§3.1); then APISAN in-
fers correct usages of APIs, so-called semantic beliefs, in four
aspects (§3.2). The inferred beliefs are used to find and rank
potential API misuses to be reported as bugs (§3.3). Specific
checkers are built by using the inferred beliefs and symbolic
context database. If necessary, checkers incorporate domain-
specific knowledge to find and rank bugs more precisely (§4).

2.3 Our Approach
APISAN’s workflow consists of three basic steps as
shown in Figure 2. It first builds symbolic contexts us-
ing symbolic execution techniques on existing programs’
source code and creates a database of symbolic traces
(§3.1). Then, it statistically infers correct API usages,
called semantic beliefs, using the database (§3.2). Finally,
it locates API misuses in the programs’ source code us-
ing the inferred beliefs and domain-specific knowledge if
necessary (§3.3, §4).

We formalize our approach as a general framework,
shown in Figure 5, which can be tuned using two pa-
rameters: the context checking function, which enables
tailoring the checking of symbolic contexts to different
API usage aspects, and an optional hint ranking function,
which allows customizing the ranking of bug reports. As
we will discuss shortly, our framework provides several
built-in context checking functions, allowing common
developers to use APISAN without modification.

Below, we describe how APISAN tackles the chal-
lenges outlined in the previous section.
1. Complete automation. In large and complex pro-
grams, it is prohibitive to rely on manual effort to check
semantic correctness, such as manually provided spec-
ifications, models, or formal proofs. Instead, APISAN
follows a fully automated approach, inferring semantic
beliefs, i.e., correct API usages, from source code.
2. Building symbolic contexts. To precisely capture API
usages involving a complex state, APISAN infers seman-
tic beliefs from the results of symbolic execution. These
results, represented in the form of symbolic constraints,
on one hand contain precise semantic information about
each individual use of an API, and on the other hand are
abstract enough to compare across uses of the API even
in different programs.
3. Relaxed symbolic execution. To prevent the path

3

366 25th USENIX Security Symposium USENIX Association

explosion problem and achieve scalability, we perform
relaxed symbolic execution. Unlike previous approaches,
which try to explore as many paths as possible, APISAN
explores as few paths as possible so as to suffice for
the purpose of inferring semantic beliefs. In particular,
our relaxed symbolic execution does not perform inter-
procedural analysis, and unrolls loops.
4. Probabilistic ranking. To allow to prioritize de-
velopers’ inspection effort, APISAN ranks more likely
bug reports proportionately higher. More specifically,
APISAN’s ranking is probabilistic, denoting a confidence
in each potential API misuse that is derived from a pro-
portionate number of occurrences of the majority usage
pattern, which itself is decided based on a large number
of uses of the API in different programs. The ranking is
easily extensible with domain-specific ranking policies
for different API checkers.

3 Design of APISAN

The key insight behind our approach is that the “correct-
ness” of API usages can be probabilistically measured
from existing uses of APIs: that is, the more API pat-
terns developers use in similar contexts, the more con-
fidence we have about the correct API usage. APISAN
automatically infers correct API usage patterns from ex-
isting source code without any human intervention (e.g.,
manual annotation or providing an API list), and ranks
potential API misuses based on the extent to which they
deviate from the observed usage pattern. To process com-
plex, real-world software, APISAN’s underlying mech-
anisms for inferring, comparing, and contrasting API
usages should be scalable, yet without sacrificing accu-
racy. In this section, we elaborate on our static analysis
techniques based on relaxed symbolic execution (§3.1),
methodologies to infer semantically correct API usages
(§3.2), and a probabilistic method for ranking potential
API misuses (§3.3).

3.1 Building Symbolic Contexts
APISAN performs symbolic execution to build symbolic
contexts that capture rich semantic information for each
function call. The key challenge of building symbolic
contexts in large and complex programs is to overcome
the path-explosion problem in symbolic execution.

We made two important design decisions for our sym-
bolic execution to achieve scalability yet extract accu-
rate enough information about symbolic contexts. First,
APISAN localizes symbolic execution within a function
boundary. Second, APISAN unrolls each loop once so
that the results of symbolic execution can be efficiently
represented as a symbolic execution tree with no back-
ward edges. In this section, we provide justifications for

1 // @drivers/tty/synclink_gt.c:2363
2 // in Linux v4.5-rc4
3 static irqreturn_t slgt_interrupt(int dummy, void *dev_id) {
4 struct slgt_info *d = dev_id;
5 ...
6 for (i = 0; i < d->count; i++) {
7 if (d->ports[i] == NULL)
8 continue;
9 ⋆ spin_lock(&d->ports[i]->lock);

10 ...
11 ⋆ spin_unlock(&d->ports[i]->lock);
12 }
13 ...
14 return IRQ_HANDLED;
15 }

symbolic variables

return IRQ_HANDLED

d→count <= 0 0 < d→count

slgt_interrupt(..., dev_id)
...

d→ports[0] != NULLd→ports[0] == NULL

return IRQ_HANDLED spin_lock(&lock)

external call
symbolic constraints

spin_unlock(&lock)

...

return IRQ_HANDLED

...
simplifed path

Figure 3: A typical API usage inside a loop. This code snip-
pet comes from a tty device driver in the Linux v4.5-rc1.
spin_lock() and spin_unlock() are used in a pair inside the
loop. APISAN represents its symbolic context as a tree that
contains function calls and symbolic constraints by unrolling its
outer loop, as depicted at the bottom of the code snippet. Note
that we use lock for d->ports[0]->lock due to space limitation.

these two design decisions within the context of finding
API misuses, and provide a performance optimization that
memoizes the predominant symbolic states. Finally, we
precisely define the structure of symbolic execution traces
computed by APISAN.

Limiting inter-procedural analysis. In APISAN, we
perform symbolic execution intra-procedurally for each
function. We use a fresh symbolic variable to represent
each formal argument of the function, as well as the return
value of each function called in its body. The symbolic
constraints track C/C++ expressions over such symbolic
variables, as described below. In our experience with
APISAN, limiting inter-procedural analysis is reasonable
for accuracy and code coverage, since most API usages
can be captured within a caller function without knowing
API internals.

Unrolling a loop. APISAN unrolls each loop only once
to reduce the number of paths explored. While this can
limit the accuracy of our symbolic execution, it does
not noticeably affect the accuracy of APISAN. This is
because most API usages in practice do not tend to be
related to loop variables. Figure 3 (top) shows such an
example in a Linux device driver. Although the symbolic
context changes while executing the loop, API usages

4

USENIX Association 25th USENIX Security Symposium 367

(function) f ∈ F
(integer) n ∈ Z, (natural) i ∈ N

(symbolic variable) α ::= ⟨arg, i⟩ | ⟨ret, i⟩
(symbolic expression) e ::= n | α | uop e | e1 bop e2

(integer range) r ::= [n1,n2]
(event in trace) a ::= call f (ē) | assume(e, r̄)

(trace) t ::= ā
(database of traces) D ::= { t1, t2, · · · }

Figure 4: Abstract syntax of symbolic execution traces.

of spin_lock() and spin_unlock() can be precisely cap-
tured even by unrolling the loop once. While this may
not always be the case, however, we compensate for the
incurred accuracy loss by collecting a larger number of
API uses.
Memoizing predominant symbolic states. Another ad-
vantage of loop unrolling is that all symbolic execution
traces of a function can be efficiently represented as a tree,
namely, a symbolic execution tree, without having back-
ward edges. This helps scalability because APISAN can
deterministically explore the symbolic execution tree, and
all intermediate results can be cached in interior nodes;
most importantly, the cached results (i.e., predominant
symbolic contexts) can be safely re-used because there
is no control flow from a child to its ancestors. Figure 3
(bottom) shows the corresponding symbolic execution
tree for the function slgt_interrupt shown above it.
Structure of symbolic execution traces. Figure 4
formally describes the structure of traces computed by
APISAN using symbolic execution. Each trace t con-
sists of a sequence of events. We refer to the ith event
by t[i], where 1 ≤ i ≤ |t|. Each event a is either a call
to a function f with a sequence of symbolic expressions
ē as arguments, or an assume constraint, which is a pair
consisting of a symbolic expression e and its possible
value ranges r̄. A symbolic expression e can be a constant
n, a symbolic variable α , or the result of an unary (uop)
or binary (bop) operation on other symbolic expressions.
Each symbolic variable α is either the return result of
a function called at the ith event in the trace, denoted
⟨ret, i⟩, or the ith formal parameter of the function being
symbolically executed, denoted ⟨arg, i⟩.

The following three traces are computed by APISAN
for the code snippet in Figure 3 (ignoring unseen parts)1:

t1 : assume(d→count, [MIN,0])
t2 : assume(d→count, [1,MAX]);

assume(d→ports[0], [0,0])
t3 : assume(d→count, [1,MAX]);

assume(d→ports[0], [[MIN,−1], [1,MAX]]);
call spin_lock(&d→ports[0]→lock);
call spin_unlock(&d→ports[0]→lock)

1MIN and MAX stand for the minimum and maximum possible
values of a related type, respectively.

3.2 Inferring Semantic Beliefs

The key challenge is to infer (most likely) correct API
usages that are implicitly embedded in a large number of
existing implementations. We call the inferred API usages
“semantic beliefs,” not only because they are believed to
be correct by a dominant number of implementations, but
also because they are used in semantically similar contexts
(e.g., certain state or conditions). Therefore, the more fre-
quent the API usage patterns we observe, the stronger
is the semantic belief about the correctness of API us-
ages. APISAN infers semantic beliefs by analyzing the
surrounding symbolic contexts (§3.1) without developers’
manual annotations or providing an API list.

In particular, APISAN focuses on exploring four com-
mon API context patterns.
• Return value: Not only does a function return the

result of its computation, but it often implicates the
status of the computation through the return value;
for example, non-zero value in glibc and PTR_ERR()
in the Linux kernel.

• Argument: There are semantic relations among ar-
guments of an API; for example, the memory copy
size should be smaller or equal to the buffer size.

• Causality: Two APIs can be causally related; for
example, an acquired lock should be released at the
end of critical section.

• Conditions: API semantics can imply certain pre-
or post-conditions; for example, verifying a peer
certificate is valid only if the peer certificate exists.

We give a formal description of these four patterns in
Figure 6 and elaborate upon them in the rest of this section.
Since APISAN infers semantic beliefs, which are prob-
abilistic in nature, there could be false positives in bug
reports. APISAN addresses this problem by providing a
ranking scheme for developers to check the most probable
bug reports first. Figure 5 formalizes this computation
and §3.3 presents it in further detail.

3.2.1 Implication of Return Values

Return value is usually used to return the computation
result (e.g. pointer to an object) or execution status
(e.g., errno) of a function. Especially for system pro-
gramming in C, certain values are conventionally used
to represent execution status. In such cases, checking
the return value (execution status) properly before pro-
ceeding is critical to avoid security flaws. For instance,
if a program ignores checking the return value of mem-
ory allocation (e.g., malloc()), it might crash later due
to NULL pointer dereference. In the OpenSSL library,
since the result of establishing a secure connection is
passed by a return value, programs that fail to check the
return value properly are vulnerable to MITM attacks [22].

5

368 25th USENIX Security Symposium USENIX Association

SymbolicContexts(f) = { (t, i,C) | t ∈ D ∧ i ∈ [1..|t|] ∧ t[i]≡ call f (∗) ∧ C = CONTEXTS(t, i) }
Frequency(f ,c) = { (t, i) | ∃C : c ∈C ∧ (t, i,C) ∈ SymbolicContexts(f) }

Majority(f) = { c | |Frequency(f ,c)| / |SymbolicContexts(f)| ≥ θ }
BugReports(f) = { (t, i,C) | (t, i,C) ∈ SymbolicContexts(f) ∧ C ∩ Majority(f) = /0 }

BugReportScore(f) = 1−|BugReports(f)| / |SymbolicContexts(f)| + HINT(f)

Figure 5: The general framework of APISAN. Threshold ratio θ is used to decide whether a context c is a correct or buggy API
usage. Procedures CONTEXTS and HINT are abstract; Figure 6 shows concrete instances of these procedures implemented in APISAN.

returnValueContexts = λ (t, i). { r̄ | ∃ j : t[j]≡ assume(e, r̄) ∧ ⟨ret, i⟩ ∈ retvars(e) }
argRelationContexts = λ (t, i). { (u,v) | t[i]≡ call∗ (ē) ∧ argvars(ē[u], t) ∩ argvars(ē[v], t) ̸= /0 }
causalityContexts⟨r̄⟩ = λ (t, i). { g | ∃ j : t[j]≡ assume(e, r̄) ∧ ⟨ret, i⟩ ∈ retvars(e) ∧ ∃k > j : t[k]≡ callg(∗) }
conditionContexts⟨r̄⟩ = λ (t, i). { (g, r̄′) | ∃ j : t[j]≡ assume(e, r̄) ∧ ⟨ret, i⟩ ∈ retvars(e) ∧ ∃k > j : t[k]≡ callg(∗) ∧

∃l : t[l]≡ assume(e′, r̄′) ∧ ⟨ret,k⟩ ∈ retvars(e′) }
defaultHint = λ f . 0 nullDerefHint = λ f . if (f ’s name contains alloc) then 0.3 else 0

Figure 6: Concrete instances of the CONTEXTS and HINT procedures implemented in APISAN. Function retvars(e) returns all ⟨ret, i⟩
variables in e. Function argvars(e, t) returns all ⟨arg, i⟩ variables in e, consulting t to recursively replace each ⟨ret, i⟩ variable by its
associated function call symbolic expression. Both these functions are formally described in Appendix A.

Moreover, missing return value checks can lead to priv-
ilege escalation like CVE-2014-4113 [12]. Because of
such critical scenarios, gcc provides a special pragma,
__attribute__((warn_unused_result)), to enforce the
checking of return values. However, it does not guarantee
if a return value check is proper or not [24].

Properly checking return values seems trivial at the
outset, but it is not in reality; since each API uses return
values differently (e.g., 0 can be used to denote either
success or failure), it is error-prone. Figure 7 shows such
an example found by APISAN in Linux. In this case,
kthread_run() returns a new task_struct or a non-zero
error code, so the check against 0 is incorrect (Line 12).

Instead of analyzing API internals, APISAN analyzes
how return values are checked in different contexts to infer
proper checking of return values of an API. For an API
function f, APISAN extracts all symbolic constraints on
f’s return values from symbolic execution traces. After
extracting all such constraints, APISAN calculates the
probability of correct usage for each constraint based on
occurrence count. For example, APISAN extracts how
frequently the return value of kthread_run() is compared
with 0 or IS_ERR(p). APISAN reports such cases that the
probability of constraints is below a certain threshold as
potential bugs; the lower the probability of correctness,
the more likely those cases are to be bugs.

Our framework can be easily instantiated to capture
return value context by defining the context function
returnValueContexts(t, i), as shown in Figure 6, which ex-
tracts all checks on the return value of the function called
at t[i] (i.e., the ith event in trace t).

3.2.2 Relations on Arguments

In many APIs, arguments are semantically inter-related.
Typical examples are memory copy APIs, such as
strncpy(d,s,n) and memcpy(d,s,n); for correct opera-
tion without buffer overrun, the size of the destination

buffer d should be larger or equal to the copy length n.
APISAN uses a simple heuristic to capture possible

relations between arguments. APISAN decides that
two arguments are related at a function call if their
symbolic expressions share a common symbolic vari-
able. For example, the first and third arguments of
strncpy(malloc(n+1),s,n) are considered to be related.
After deciding whether a pair of arguments are related or
not at each call to a function, APISAN calculates the prob-
ability of the pair of arguments being related. APISAN
then classifies the calls where the probability is lower than
a certain threshold as potential bugs.

Another important type of relation on arguments is the
constraint on a single argument, e.g., an argument is ex-
pected to be a format string. When such constraints exist
on well-known APIs like printf(), they can be checked
by compilers. However, a compiler cannot check user-
defined functions that expect a format string argument.

To capture relations on arguments, we define the con-
text function argRelationContexts as shown in Figure 6. It
is also straightforward to handle the format string check
by extending the definition with a format check as a pair
relation, such as (−1, i), where -1 indicates that the pair
is a special check and i denotes the ith argument that is
under consideration for a format check.

3.2.3 Constrained Causal Relationships

Causal relationships, also known as the a-b pattern,
are common in API usage, such as lock/unlock and
malloc/free. Past research [18, 29] only focuses on find-
ing “direct” causal relationships, that is, no context con-
straint between two API calls. In practice, however, there
are many constrained causal relationships as well. The
conditional synchronization primitives shown in Figure 8
are one such example. In this case, there is a causal rela-
tionship between mutex_trylock() and mutex_unlock()
only when mutex_trylock() returns a non-zero value.

6

USENIX Association 25th USENIX Security Symposium 369

1 // @drivers/media/usb/pvrusb2/pvrusb2-context.c:194
2 // in Linux v4.5-rc4
3 int pvr2_context_global_init(void) {
4 pvr2_context_thread_ptr = \
5 kthread_run(pvr2_context_thread_func,
6 NULL,
7 "pvrusb2-context");
8 // APISan: Incorrect return value check
9 // @FUNC: kthread_run

10 // @CONS: >= (unsigned long)-4095
11 // < (unsigned long)-4095
12 ⋆ return (pvr2_context_thread_ptr ? 0 : -ENOMEM);
13 }

Figure 7: Incorrect handling of a return value in Linux found
by APISAN. kthread_run() returns a pointer to task_struct
upon success or returns an error code upon failure. Because of
incorrect handling of return values, this function always returns
0, i.e., success, even in the case of error.

Both direct and constrained causality relationships can
be effectively captured in the APISAN framework by
defining a parametric context function causalityContexts⟨r̄⟩
shown in Figure 6, which extracts all pairs of API calls
with r̄ as the context constraints between them. Concep-
tually, the parameter r̄ is obtained by enumerating all
constraints on return values from all symbolic execution
traces. In practice, however, we only check r̄ when neces-
sary, for example, we only check constraints on the return
value of f() after a call to f().

3.2.4 Implicit Pre- and Post-Conditions

In many cases, there are hidden assumptions before
or after calling APIs, namely, implicit pre- and post-
conditions. For example, the memory allocation APIs
assume that there is no integer overflow on the argu-
ment passed as allocation size, which implies that there
should be a proper check before the call. Similarly,
SSL_get_verify_result(), an OpenSSL API which ver-
ifies the certificate presented by the peer, is meaning-
ful only when SSL_get_peer_certificate() returns a
non-NULL certificate of a peer, though which could
happen either before or after SSL_get_verify_result().
So the validity check of a peer certificate returned by
SSL_get_peer_certificate() is an implicit pre- or post-
condition of SSL_get_verify_result().

Similar to the context checking of causal relationships,
we define a parametric context function conditionContexts⟨r̄⟩
shown in Figure 6, to capture implicit pre- and post-
conditions of an API call. Here, the parameter r̄ serves
as the pre-condition, and the post-condition is extracted
along with the called API.

3.3 Ranking Semantic Disbeliefs
After collecting the API usage patterns discussed above,
APISAN statistically infers the majority usage patterns
for each API function under each context. This com-
putation is described in detail in Figure 5. Intuitively,

1 // @kernel/workqueue.c:1977
2 // in Linux v4.5-rc4
3 static bool manage_workers(struct worker *worker)
4 {
5 struct worker_pool *pool = worker->pool;
6 if (!mutex_trylock(&pool->manager_arb))
7 return false;
8 pool->manager = worker;
9 maybe_create_worker(pool);

10 pool->manager = NULL;
11 mutex_unlock(&pool->manager_arb);
12 return true;
13 }

Figure 8: An example usage of conditional locking in Linux.
mutex_trylock() returns non-zero value when a lock is ac-
quired. So mutex_unlock() is necessary only in this case.

APISAN labels an API usage pattern as majority (i.e.,
likely correct usage) if its occurrence ratio is larger than
a threshold θ . In our experience, this simple approach is
quite effective, though more sophisticated statistical ap-
proaches could be further applied. Each call to a function
that deviates from its majority usage pattern is reported
as a potential bug.

Since our approach is probabilistic in nature, a bug re-
port found by APISAN might be a false alarm. APISAN
ranks bug reports in decreasing order of their likelihood of
being bugs, so that the most likely bugs have the highest
priority to be investigated. Based on the observation that
the more the majority patterns repeat, the more confident
we are that these majority patterns are correct specifica-
tions, APISAN uses the ratio of majority patterns over
“buggy” patterns as a measure of the likelihood. In addi-
tion, APISAN can also adjust the ranking with domain-
specific knowledge about APIs. For example, if an API
name contains a sub-string alloc, which indicates that it
is very likely to handle memory allocation, we can cus-
tomize APISAN to give more weight for its misuse in the
return value checking.

4 Checking API Misuses

In this section, we demonstrate how inferred semantic
beliefs described in the previous section can be used to
find API misuses. In particular, we introduce eight cases,
which use API-specific knowledge for more precise rank-
ing and deeper semantic analysis.

4.1 Checking SSL/TLS APIs
A recent study shows that SSL/TLS APIs are very error-
prone—especially, validating SSL certificates is “the most
dangerous code in the world” [22]. To detect their incor-
rect use, specialized checkers that rely on hand-coded
semantic correctness have been proposed [22, 26].

In APISAN, we easily created a SSL/TLS checker
based on the constraints of return values and implicit
pre- and post-conditions without manually coding seman-

7

370 25th USENIX Security Symposium USENIX Association

1 // @librabbitmq/amqp_openssl.c:180
2 // in librabbitmq v0.8
3 static int
4 amqp_ssl_socket_open(void *base, const char *host,
5 int port, struct timeval *timeout) {
6 // APISan: Missing implicit condition
7 // @FUNC : SSL_get_verify_result
8 // @CONS : == X509_V_OK
9 // @COND : SSL_get_peer_certificate != NULL

10 + cert = SSL_get_peer_certificate(self->ssl);
11 result = SSL_get_verify_result(self->ssl);
12 - if (X509_V_OK != result) {
13 + if (!cert || X509_V_OK != result) {
14 goto error_out3;
15 }
16 }

Figure 9: Incorrect use of OpenSSL API found in
librabbitmq, a message queuing protocol library, by
APISAN. SSL_get_verify_result() always returns
X509_V_OK if there is no certificate (i.e., !cert). So
SSL_get_peer_certificate() needs to be validated before or
after calling SSL_get_verify_result().

tic correctness. In practice, as we described in §3.2.4,
the sequence of API calls and relevant constraints to
validate SSL certificates can be captured by using im-
plicit pre- and post-conditions. For example, Figure 9
shows that APISAN successfully inferred valid usage of
SSL_get_verify_result() and discovered a bug.

4.2 Checking Integer Overflow
Integer overflows remain a very important threat despite
extensive research efforts for checking them. Checkers
have to deal with two problems: (1) whether there is a
potential integer overflow, and (2) whether such a po-
tential integer overflow is exploitable. KINT [45], the
state-of-the-art integer security checker, relies on scal-
able static analysis to find potential integer overflows. To
decide exploitability, KINT relies on users’ annotations
on untrusted data source and performs taint analysis to
decide whether untrusted sources are related to an integer
overflow. But if annotations are missing, KINT may miss
some bugs.

Instead of annotating untrusted sources, APISAN in-
fers untrusted sinks to decide that an integer overflow has
security implications. The background belief is “check-
ing sinks implies that such sinks are untrusted.” APISAN
considers APIs with arguments that are untrusted sinks as
integer overflow-sensitive APIs. To infer whether an API
is integer overflow-sensitive, the checker extracts all func-
tion calls whose arguments have arithmetic operations
that can result in integer overflow. The checker classi-
fies such function calls into three categories: (1) correct
check, (2) incorrect check, and (3) missing check. If an
argument has a constraint that prevents integer overflow,
then it is a correct check. Determining potential integer
overflow is straightforward because APISAN maintains
a numerical range for each symbolic variable. If such a
constraint cannot prevent integer overflow, then it is an

1 // @fs/ext4/resize.c:193
2 // in Linux v4.5-rc4
3 static struct ext4_new_flex_group_data
4 *alloc_flex_gd(unsigned long flexbg_size)
5 {
6 if (flexbg_size >=
7 UINT_MAX / sizeof(struct ext4_new_flex_group_data))
8 goto out2;
9 flex_gd->count = flexbg_size;

10 // APISan: Incorrect integer overflow check
11 // @CONS: flexbg_size < UINT_MAX / 20
12 // @EXPR: flexbg_size * 40
13 flex_gd->groups =
14 kmalloc(sizeof(struct ext4_new_group_data) *
15 flexbg_size, GFP_NOFS);
16 }

Figure 10: An integer overflow vulnerability found in Linux by
APISAN. Since struct ext4_new_group_data is larger than
struct ext4_new_flex_group_data, previous overflow check
can be bypassed. Interestingly, this bug was previously found
by KINT and already patched [8], but APISAN found the patch
is actually incorrect.

incorrect check. Finally, if there is no constraint, then it
is a missing check. The checker concludes that an API
is more integer overflow-sensitive if the ratio of correct
checks over total checks is higher. The checker gives
a higher rank to incorrect checks followed by missing
checks. For example, Figure 10 shows an integer over-
flow vulnerability found by APISAN.

4.3 Checking Memory Leak
A memory leak can be represented as a causal relation-
ship between memory allocation and free functions. As
Figure 1 shows, APISAN can infer a constrained causal
relation between such a pair of functions, which may not
be captured as a direct causal relation. When a function
that is presumed to be a free function is not called follow-
ing a function that is presumed to be the corresponding
allocation function, it is reported as a memory leak with
a higher rank. In this manner, APISAN effectively cap-
tures typical usage patterns of memory allocation and free
routines to report potential memory leaks.

4.4 Checking Lock and Unlock
Similar to checking memory leaks, lock checking is based
on a constrained causal relationship between lock and un-
lock functions inferred by APISAN. It gives a higher rank
to cases where there are missing unlock function calls in
some of the paths. For example, Figure 11 shows that
there is one missing clk_prepare_unlock() call among
two symbolic execution paths.

4.5 Checking NULL Dereference
NULL dereference can happen by accessing a pointer re-
turned by a memory allocation function, such as malloc()
and kmalloc(), without validation. Checking NULL

8

USENIX Association 25th USENIX Security Symposium 371

1 // @drivers/clk/clk.c:2672
2 // in Linux v4.5-rc4
3 void clk_unregister(struct clk *clk) {
4 clk_prepare_lock();
5 if (clk->core->ops == &clk_nodrv_ops) {
6 pr_err("%s: unregistered clock: %s\n", __func__,
7 clk->core->name);
8 // APISan: Missing clk_prepare_unlock()
9 // @FUNC: clk_prepare_lock

10 // @CONS: None
11 // @POST: clk_prepare_unlock
12 return;
13 }
14 clk_prepare_unlock();
15 }

Figure 11: A missing unlock bug in Linux found by APISAN.
It shows a common pattern of violating a causal relation.

dereference is based on the return value inference of
APISAN. It collects how frequently the return value of
a function is compared against NULL. Based on this in-
formation, it can find missing NULL checks. In addition,
it gives a higher rank to cases where the function name
contains common keywords for allocation such as alloc
or new.

4.6 Checking Return Value Validation
Checking a return value of a function properly is more
important than checking a return value itself. If the return
value is incorrectly checked, the caller is likely to believe
that the callee succeeded. Moreover, it is quite usual that
incorrect checks fail only in rare cases, so that finding
such incorrect checks is much more difficult than com-
pletely omitted checks. APISAN can find bugs of this
kind, such as the one shown in Figure 7, by comparing
constraints of return value checks.

4.7 Checking Broken Argument Relation
We can find potential bugs by inferring and finding broken
relations between arguments. However, detecting a bro-
ken relation does not mean that it is always a bug, because
there might be an implicit relation between two argu-
ments that cannot be captured by APISAN (e.g., complex
pointer aliasing of the buffer). This lack of information
is complemented by a ranking policy that incorporates
domain-specific knowledge, for example, a broken argu-
ment relation is ranked higher if either argument has a
sizeof() operator.

4.8 Checking Format String
Incorrect use of format strings is one frequent source of
security vulnerabilities [39]. Modern compilers (e.g., gcc)
give compile-time warnings for well-known APIs such
as printf(). However, in the case of programs that have
their own printf-like functions (e.g., PHP), compilers
cannot detect such errors.

To infer whether a function argument is a format string,
we use a simple heuristic: if the majority of symbolic ex-
pressions for an argument is a constant string and contains
well-known format codes (e.g, %s), then the argument is
considered as a format string. For the cases where a sym-
bolic variable is used as a format string argument, the
corresponding API calls will be considered as potential
bugs. Similarly, domain-specific knowledge can be ap-
plied as well. Bug reports of an API whose name contains
a sub-string print is ranked higher, since it indicates that
the API is very likely to take a format string as an argu-
ment.

5 Implementation

APISAN is implemented in 9K lines of code (LoC) as
shown in Table 1: 6K of C/C++ for generating symbolic
execution traces, which is based on Clang 3.6, and 3K of
Python for checkers and libraries. We empirically chose
a threshold value of 0.8 for deciding whether to label an
API usage pattern as majority. Since APISAN ranks all
reports in order of bug likelihood, however, the result is
not sensitive to the threshold value in that the ordering of
the top-ranked reports remains the same.

Component Lines of code

Symbolic database generator 6,256 lines of C/C++
APISAN Library 1,677 lines of Python
Checkers 1,047 lines of Python

Total 8,980 lines of code

Table 1: Components and lines of code of APISAN.

6 Evaluation

To evaluate APISAN, this section attempts to answer the
following questions:

• How effective is APISAN in finding previously un-
known API misuses? (§6.1)

• How easy is APISAN to use by end-users and
checker developers? (§6.2)

• How reasonable is APISAN’s relaxed symbolic exe-
cution in finding bugs? (§6.3)

• How effective is APISAN’s approach in ranking
bugs? (§6.4)

• How effective is APISAN’s approach compared to
manual checking? (§6.5)

6.1 New Bugs
We applied APISAN to Linux v4.5-rc4, OpenSSL 1.1.0-
pre3-dev, PHP 7.0, Python 3.6, and all 1,204 debian
packages using the OpenSSL library. APISAN gener-
ated 40,006 reports in total, and we analyzed the reports

9

372 25th USENIX Security Symposium USENIX Association

Program Module API misuse Impact Checker #bugs S.

Linux cifs/cifs_dfs_ref.c heap overflow code execution args 1 ✓
xenbus/xenbus_dev_frontend.c missing integer overflow check code execution intovfl 1 ✓
ext4/resize.c incorrect integer overflow check code execution intovfl 1 ✓
tipc/link.c missing tipc_bcast_unlock() deadlock cpair 1 ✓
clk/clk.c missing clk_prepare_unlock() deadlock cpair 1 ✓
hotplug/acpiphp_glue.c missing pci_unlock_rescan_remove() deadlock cpair 1 ✓
usbvision/usbvision-video.c missing mutex_unlock() deadlock cpair 1 ✓
drm/drm_dp_mst_topology.c missing drm_dp_put_port() DoS cpair 1 ✓
affs/file.c missing kunmap() DoS cpair 1 ✓
acpi/sysfs.c missing kobject_create_and_add() check system crash rvchk 1 ✓
cx231xx/cx231xx-417.c missing kmalloc() check system crash rvchk 1 ✓
qxl/qxl_kms.c missing kmalloc() check system crash rvchk 1 P
chips/cfi_cmdset_0001.c missing kmalloc() check system crash rvchk 1 ✓
ata/sata_sx4.c missing kzalloc() check system crash rvchk 1 ✓
hsi/hsi.c missing kzalloc() check system crash rvchk 2 ✓
mwifiex/sdio.c missing kzalloc() check system crash rvchk 2 ✓
usbtv/usbtv-video.c missing kzalloc() check system crash rvchk 1 ✓
cxgb4/clip_tbl.c missing t4_alloc_mem() check system crash rvchk 1 ✓
devfreq/devfreq.c missing devm_kzalloc() check system crash rvchk 2 ✓
i915/intel_dsi_panel_vbt.c missing devm_kzalloc() check system crash rvchk 1 ✓
gpio/gpio-mcp23s08.c missing devm_kzalloc() check system crash rvchk 1 ✓
drm/drm_crtc.c missing drm_property_create_range() check system crash rvchk 13 ✓
gma500/framebuffer.c missing drm_property_create_range() check system crash rvchk 1 ✓
emu10k1/emu10k1_main.c missing kthread_create() check system crash rvchk 1 ✓
m5602/m5602_s5k83a.c missing kthread_create() check system crash rvchk 1 ✓
hisax/isdnl2.c missing skb_clone() check system crash rvchk 1 ✓
qlcnic/qlcnic_ctx.c missing qlcnic_alloc_mbx_args() check system crash rvchk 1 ✓
xen-netback/xenbus.c missing vzalloc() check system crash rvchk 1 ✓
i2c/ch7006_drv.c missing drm_property_create_range() check system crash rvchk 1 ✓
fmc/fmc-fakedev.c missing kmemdup() check system crash rvchk 1 P
rc/igorplugusb.c missing rc_allocate_device() check system crash rvchk 1 ✓
s5p-mfc/s5p_mfc.c missing create_singlethread_workqueue() check system crash rvchk 1 P
fusion/mptbase.c missing create_singlethread_workqueue() check system crash rvchk 1 P
nes/nes_cm.c missing create_singlethread_workqueue() check system crash rvchk 1 ✓
dvb-usb-v2/mxl111sf.c missing mxl111sf_enable_usb_output() check malfunction rvchk 2 ✓
misc/xen-kbdfront.c missing xenbus_printf() check malfunction rvchk 1 ✓
pvrusb2/pvrusb2-context.c incorrect kthread_run() check malfunction rvchk 1 P
agere/et131x.c incorrect drm_alloc_coherent() check malfunction rvchk 1 ✓
drbd/drbd_receiver.c incorrect crypto_alloc_hash() check malfunction rvchk 1 ✓
mlx4/mr.c incorrect mlx4_alloc_cmd_mailbox() check maintanence rvchk 1 ✓
usnic/usnic_ib_qp_grp.c incorrect kzalloc() check maintanence rvchk 2 ✓
aoe/aoecmd.c incorrect kthread_run() check maintanence rvchk 1 ✓
ipv4/tcp.c incorrect crypto_alloc_hash() check maintanence rvchk 1 ✓
mfd/bcm590xx.c incorrect i2c_new_dummy() check maintanence rvchk 1 P
usnic/usnic_ib_main.c incorrect ib_alloc_device() check maintanence rvchk 1 ✓
usnic/usnic_ib_qp_grp.c incorrect usnic_fwd_dev_alloc() check maintanence rvchk 1 ✓

OpenSSL dsa/dsa_gen.c missing BN_CTX_end() DoS cpair 1 ✓
apps/req.c missing EVP_PKEY_CTX_free() DoS cpair 1 ✓
dh/dh_pmeth.c missing OPENSSL_memdup() check system crash rvchk 1 ✓

PHP standard/string.c missing integer overflow check code execution intovfl 3 ✓
phpdbg/phpdbg_prompt.c format string bug code execution args 1 ✓

Python Modules/zipimport.c missing integer overflow check code execution intovfl 1 ✓

rabbitmq librabbitmq/amqp_openssl.c incorrect SSL_get_verify_result() use MITM cond 1 ✓

hexchat common/server.c incorrect SSL_get_verify_result() use MITM cond 1 ✓

lprng auth/ssl_auth.c incorrect SSL_get_verify_result() use MITM cond 1 P

afflib lib/aftest.cpp missing BIO_new_file() check system crash rvchk 1 ✓
tools/aff_bom.cpp missing BIO_new_file() check system crash rvchk 1 ✓

Table 2: List of new bugs discovered by APISAN. We sent patches of all 76 new bugs; 69 bugs have been already confirmed and
applied by corresponding developers (marked ✓in the rightmost column); 7 bugs (marked P in the rightmost column) have not been
confirmed yet. APISAN analyzed 92 million LoC and found one bug per 1.2 million LoC.

10

USENIX Association 25th USENIX Security Symposium 373

according to ranks. As a result, APISAN found 76 pre-
viously unknown bugs: 64 in Linux, 3 in OpenSSL, 4 in
PHP, 1 in Python, and 5 in the debian packages (see Ta-
ble 2 for details). We created patches for all the bugs and
sent them to the mainline developers of each project. 69
bugs have been confirmed by the developers and most
have already been applied to the mainline repositories.
For remaining, 7 bugs, we are waiting for their response.
Security implications. All of the bugs we found have
serious security implications: e.g., code execution, sys-
tem crash, MITM, etc. For a few bugs including integer
overflows in Python(CVE-2016-5636 [13]) and PHP, we
could even successfully exploit them by chaining ROP
gadgets [2, 27]. In addition, we found that the vulnerable
Python module is in the whitelist of Google App Engine
and reported it to Google.

6.2 Usability

End-users. APISAN can be seamlessly integrated into
an existing build process. Users can generate symbolic
execution databases by simply invoking the existing build
command, e.g., make, with apisan.
1 # generate DB
2 $ apisan make

With the database, users can run various checkers, which
extract semantic beliefs from the database and locate po-
tential bugs in order of their likelihood. For eight types of
API misuses described at §4, we developed five checkers:
return value checker (rvchk), causality checker (cpair),
argument relation checker (args) implicit pre- and post-
condition checker (cond), and integer overflow checker
(intovfl).
1 # run a causality checker
2 $ apisan --checker=cpair
3 @FUNC: EVP_PKEY_keygen_init
4 @CONS: ((-2147483648, 0),)
5 @POST: EVP_PKEY_CTX_free
6 @CODE: {’req.c:1745’}
7 ...

APISAN can also be run against multiple databases
generated by different project code repositories. For ex-
ample, users can infer semantic beliefs from multiple
programs (e.g., all packages using libssl) and similarly
get a list of ranked, potential bugs. This is especially
useful for relatively young projects, which lack sufficient
API usages.
1 # check libssl misuses by using rabbitmq and hexchat repos
2 $ apisan --checker=cond --db=rabbitmq,hexchat

Checker developers. Developing specialized checkers
is easy; APISAN provides a simple interface to access
symbolic execution databases. Each of our checkers is
around 200 lines of Python code as shown in §5. Provid-
ing API-specific knowledge such as manual annotations
can be easily integrated in the Python script.

UC-KLEE APISAN

Approach
Loop best effort once
Inter-procedural yes no
Constraint SAT numerical range

Bugs
(OpenSSL)

Memory leak 5 7 (2⋆)
NULL dereference - 11
Uninitialized data 6 -

Table 3: Comparison between UC-KLEE and APISAN in ap-
proaches and bugs found in OpenSSL v1.0.2, which is used
in UC-KLEE’s evaluation [37]. APISAN found 7 memory leak
bugs and 11 NULL dereference vulnerabilities; two memory
leak bugs (marked ⋆) were previously unknown, and our two
patches have been applied to the mainline repository.

6.3 Effect of Relaxed Symbolic Execution
One of our key design decisions is to use relaxed sym-
bolic execution for scalability at the cost of accuracy. To
evaluate the effect of this design decision, we compare
APISAN against UC-KLEE, which performs best-effort
accurate symbolic execution including inter-procedural
analysis and best-effort loop unrolling. For compari-
son, we ran UC-KLEE and APISAN on OpenSSL v1.0.2,
which is the version used for UC-KLEE’s evaluation. Ta-
ble 3 shows a summary of the result.

APISAN found 11 NULL dereference bugs caused
by missing return value checks of OPENSSL_malloc(),
which are already fixed in the latest OpenSSL. Also,
APISAN found seven memory leak bugs related to var-
ious APIs, such as BN_CTX_new(), BN_CTX_start(), and
EVP_PKEY_CTX_new(), without any annotations. Two of
these bugs were previously unknown; we sent patches
which were confirmed and applied to the OpenSSL main-
line. UC-KLEE found five memory leak bugs related to
OPENSSL_malloc() with the help of users’ annotations.

Interestingly, there is no common bug between
UC-KLEE and APISAN. UC-KLEE cannot find the bugs
that APISAN found because of function pointers, which
are frequently used for polymorphism, and path explo-
sion in complex cryptographic operations. APISAN does
not discover the five memory bugs that UC-KLEE found
because of diverse usages of OpenSSL_malloc(). Also,
APISAN could not find any uninitialized memory bugs
since it does not track memory accesses.

6.4 Ranking Effectiveness
Another key design aspect of APISAN is its ranking
scheme. In this section, we investigate two aspects of
our ranking scheme: (1) where true-positives are located
in bug reports and (2) what are typical reasons of false
positives. To this end, we analyzed the results of the
return value checker (rvchk) on Linux v4.5-rc4.
True positives. If true-positive reports are highly ranked,
developers can save effort in investigating bug reports. An

11

374 25th USENIX Security Symposium USENIX Association

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

tr
ue

-p
os

iti
ve

bu
gs

Reports sorted by ranking

Figure 12: Cumulative true-positive bugs in Linux v4.5-rc4
reported by our return value checker (rvchk). We investigated
top 445 bug reports out of 2,876 reports in total. Most new bugs
are highly ranked.

author audited the top 445 reports out of 2,876 reports for
two days and found 54 new bugs. As shown in Figure 12,
most new bugs are highly ranked. This shows that our
ranking scheme is effective to save developers’ effort by
letting them investigate the highest-ranked reports first.
False positives. To understand what causes false posi-
tives, we manually investigated all false positive cases in
the top 445 reports, and found a few frequent reasons: di-
verse patterns of return value checking, wrapper functions
delegating return value checking to callers, and semanti-
cally correct, but rare patterns.

Some kernel APIs, such as snd_pcm_new() [40], return
zero on success or a negative error code on failure. In this
case, there are two valid ways to check for error: compari-
son against zero (i.e., == 0) or negative value (i.e., < 0). If
the majority of code follows one pattern (snd_pcm_new()
<0), APISAN flags the minor correct cases as bugs.

Some wrapper functions delegate return value checking
to their callers. APISAN treats these cases as if return
value checking is missing because APISAN does not per-
form inter-procedural analysis.

If a return value of a function can have multiple mean-
ings, APISAN can decide the rare cases as bugs. For ex-
ample, most functions use strcmp() to test if two strings
are equivalent (i.e., == 0). But for the rare cases, which
in fact use strcmp() to decide alphabetical order of two
strings (i.e., < 0), APISAN generates false alarms.

6.5 Comparison with Manual Auditing
The other extreme to automatic bug finding is manual
auditing by developers. Manual auditing would be the
most accurate but is not scalable in size and cost. We
compared APISAN with manual auditing to grasp how
accurate APISAN is compared to the ground truth.

To this end, we manually inspected memory allocation
and free functions in OpenSSL v1.1.0-pre3-dev because
OpenSSL faithfully follows naming conventions: alloca-
tion functions end with _new or alloc, and free functions
end with _free.

1 // @ext/standard/string.c:877
2 // in PHP v5.5.9-rc1
3 PHP_FUNCTION(wordwrap) {
4 if (linelength > 0) {
5 chk = (int)(textlen/linelength + 1);
6 // no integer overflow
7 newtext = safe_emalloc(chk, \
8 breakcharlen, textlen + 1);
9 alloced = textlen + chk * breakcharlen + 1;

10 }
11 }

1 // @ext/standard/string.c:946
2 // in PHP v7.0.0-rc1
3 PHP_FUNCTION(wordwrap) {
4 if (linelength > 0) {
5 chk = (size_t)(ZSTR_LEN(text)/linelength + 1);
6 // introduce a new integer overflow
7 ⋆ newtext = zend_string_alloc(\
8 ⋆ chk * breakchar_len + ZSTR_LEN(text), 0);
9 alloced = ZSTR_LEN(text) + chk * breakchar_len + 1;

10 }
11 }

Figure 13: An integer overflow bug introduced by changing
string allocation API in PHP. While the old string allocation
API, safe_emalloc(), internally checks integer overflow, the
new API, zend_string_alloc() has no such check.

To detemine how APISAN accurately infers the cor-
rect check of return value, we counted how many alloca-
tion functions are inferred to need NULL checking by
APISAN. Among 294 allocation functions, APISAN
successfully figured out that 164 allocation functions
require NULL checking. To assess the accuracy of
APISAN’s causal relation inference, we counted how
many allocation-free functions are inferred as causal re-
lations by APISAN. APISAN found 37 pairs out of 187
such causal relations.

The inaccuracy of APISAN mainly stems from a small
number of API usages and limited symbolic execution.
For example, if allocated memory is freed by a callback
function, APISAN fails to detect the causal relation.

6.6 Performance
Our experiments are conducted on a 32-core Xeon server
with 256GB RAM. Constructing a symbolic database for
Linux kernel, a one-time task for analysis, takes roughly
eight hours and generates 300 GB database. Each checker
takes approximately six hours. Thus, APISAN can ana-
lyze a large system in a reasonable time bound.

6.7 Our Experience with APISAN

While investigating the bug reports generated by
APISAN, we found several interesting bugs, which were
introduced while fixing bugs or refactoring code to re-
duce potential bugs. We believe that it shows that bug
fixing is the essential activity during the entire life cycle
of any software, and automatic bug finding tools such
as APISAN should be scalable enough for them to be
integrated into the daily software development process.

12

USENIX Association 25th USENIX Security Symposium 375

Incorrect bug fixes. Interestingly, APISAN found an
incorrect bug patch, which was found and patched by
KINT [45]. The bug was a missing integer overflow check
in ext4 file system, but the added condition was incor-
rect [8]. Also, the incorrect patch was present for almost
four years, showing the difficulty of finding such bugs that
can be reproduced only under subtle conditions. Since
APISAN gives a higher rank for incorrect condition check
for integer overflow, we easily found this bug.
Incorrect refactoring. While investigating PHP integer
overflow bugs in Figure 13, we found that the bug was
newly introduced when changing string allocation APIs;
the new string allocation API, zend_string_alloc(),
omits an internal integer overflow check, making its
callers vulnerable to integer overflow.

7 Discussion

In this section, we discuss the limitations of APISAN’s
approach and discuss potential future directions to miti-
gate the limitations.
Limitations. APISAN does not aim to be sound nor
complete. In fact, APISAN has false positives (§6.4) as
well as false negatives (§6.3, §6.5).
Replacing manual annotations. One practical way
to reduce false negatives is to run multiple checkers on
the same source code. In this case, APISAN’s inference
results can be used to provide missing manual annotations
required by other checkers. For example, APISAN can
provide inferred integer overflow-sensitive APIs to KINT
and inferred memory allocation APIs to UC-KLEE.
Interactive ranking and filtering. In our experience,
the false positive reports of APISAN are repetitive since
incorrect inference of an API can incur many false posi-
tive reports. Therefore, we expect that incorporating the
human feedback of investigation into APISAN’s infer-
ence and ranking will significantly reduce false positives
and developers’ investigation efforts.
Self regression. As we showed in §6.7, bug fixing and
refactoring can introduce new bugs. APISAN’s approach
is also a good fit for self-regression testing by comparing
two versions of bug reports and giving higher priorities to
changed results.

8 Related Work

In this section, we survey related work in bug finding,
API checking, and semantic inference.
Finding bugs. Meta compilation [3, 17, 25] per-
forms static analysis integrated with compilers to en-
force domain-specific rules. RacerX [16] proposed flow-
sensitive static analysis for finding deadlocks and race

conditions. LCLint [20] detects mismatches between
source code and user-provided specifications. Sparse [41]
is a static analysis tool to find certain types of bugs (e.g.,
mixing pointers to user and kernel address spaces, and
incorrect lock/unlock) in the Linux kernel based on devel-
opers’ annotations. Model checking has been applied to
various domains including file systems [24, 38, 48, 49],
device drivers [5], and network protocols [34]. A frequent
obstacle in applying these techniques is the need to spec-
ify semantic correctness, e.g., domain-specific rules and
models. In contrast, APISAN statistically infers seman-
tic correctness from source code; it is generic without
requiring models or annotations, but it could incur higher
false positives than techniques that use precise semantic
correctness information.

Checking API usages. SSLint [26] is a static analysis
tool to find misuses of SSL/TLS APIs based on prede-
fined rules. MOPS [9] checks source code against security
properties, i.e., rules of safe programming practices. Jo-
ern [46] models common vulnerabilities into graph traver-
sals in a code property graph. Unlike these solutions,
which are highly specialized for a certain domain (or an
API set) and rely on hand-coded rules, APISAN is gener-
ally applicable to any domain without manual effort.

Inferring semantics. Engler et al. [18] find deviations
from the results of static analysis. Juxta [32] finds devia-
tions by comparing multiple file systems, which follow
similar specifications. APISAN’s goal is to find devia-
tions in API usages under rich symbolic contexts. Dy-
naMine [30] and VCCFinder [36] automatically extract
bug patterns from source code repositories by analyz-
ing bug patches. These approaches would be useful in
APISAN as well.

Automatic generation of specifications has been ex-
plored by Kremenek et al. [28] for resource allocation, by
PRMiner [29] for causal relations, by APIMiner [1] for
partial ordering of APIs, by Daikon [19] from dynamic
execution traces, by Taghdiri et al. [43] for structural
properties, by PRIME [33] for temporal specifications, by
Nguyen et al. [35] for preconditions of APIs, by Gruska
et al. [23] for sequences of functions, by JIGSAW [44] for
resource accesses, by MERLIN [31] for information flow
specifications, and by Yamaguchi et al. [47] for taint-style
vulnerabilities. These approaches focus on extracting one
aspect of the specification. Also, some of them [1, 43] are
not scalable because of the complexity of the algorithms
used. On the other hand, APISAN focuses on extracting
four orthogonal aspects of API usages and using them in
combination to find complex bug patterns.

13

376 25th USENIX Security Symposium USENIX Association

9 Conclusion

We proposed APISAN, a fully automated system for find-
ing API usage bugs by inferring and contrasting semantic
beliefs about API usage from source code. We applied
APISAN to large, widely-used software, including the
Linux kernel, OpenSSL, PHP, and Python, composed
of 92 million lines of code. We found 76 previously
unknown bugs of which 69 bugs have already been con-
firmed. Our results show that APISAN’s approach is
effective in finding new bugs and is general enough to
extend easily to custom API checkers based on APISAN.

10 Acknowledgment

We thank the anonymous reviewers for their helpful
feedback. This work was supported by DARPA un-
der agreement #15-15-TC-FP-006, #HR0011-16-C-0059
and #FA8750-15-2-0009, NSF awards #CNS-1563848,
#DGE-1500084, #1253867 and #1526270, ONR N00014-
15-1-2162, ETRI MSIP/IITP[B0101-15-0644], and NRF
BSRP/MOE[2015R1A6A3A03019983]. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copy-
right thereon.

References
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: from usage scenarios to specifica-
tions. In Proceedings of the 6th joint meeting of European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering (FSE), Dubrovnik,
Croatia, Sept. 2007.

[2] An integer overflow bug in php_str_to_str_ex() led arbitrary
code execution. https://bugs.php.net/bug.php?id=71450,
2016.

[3] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In Proceedings of the 23rd IEEE
Symposium on Security and Privacy (Oakland), pages 143–160,
Oakland, CA, May 2002.

[4] T. Ball and S. Rajamani. The SLAM project: Debugging system
software via static analysis. In POPL, 2002.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough
static analysis of device drivers. In Proceedings of the ACM
EuroSys Conference, pages 73–85, Leuven, Belgium, Apr. 2006.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In Proceedings
of the 13th ACM Conference on Computer and Communications
Security, Alexandria, VA, Oct.–Nov. 2006.

[7] C. Cadar, D. Dunbar, D. R. Engler, et al. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, CA, Dec.
2008.

[8] H. Chen. [PATCH] FS: ext4: fix integer overflow
in alloc_flex_gd(). http://lists.openwall.net/linux-
ext4/2012/02/20/42, 2012.

[9] H. Chen and D. Wagner. MOPS: an infrastructure for examin-
ing security properties of software. In Proceedings of the 9th
ACM Conference on Computer and Communications Security,
Washington, DC, Nov. 2002.

[10] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In Pro-
ceedings of the 23rd IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2002.

[11] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using
rule-directed symbolic execution. In Proceedings of the 18th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, Mar.
2013.

[12] CVE-2014-4113. http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-4113, 2014.

[13] CVE-2016-5636. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-5636, 2016.

[14] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program
verification in polynomial time. In PLDI’02, 2002.

[15] M. S. Dittmer and M. V. Tripunitara. The UNIX process identity
crisis: A standards-driven approach to setuid. In Proceedings
of the 21st ACM Conference on Computer and Communications
Security, Scottsdale, Arizona, Nov. 2014.

[16] D. Engler and K. Ashcraft. RacerX: effective, static detection
of race conditions and deadlocks. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP), Bolton
Landing, NY, Oct. 2003.

[17] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler exten-
sions. In Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Oct. 2000.

[18] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), Chateau Lake Louise, Banff, Canada,
Oct. 2001.

[19] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynam-
ically discovering likely program invariants to support program
evolution. In Proceedings of the 21st International Conference on
Software Engineering (ICSE), Los Angeles, CA, USA, May 1999.

[20] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A
tool for using specifications to check code. In Proceedings of
the 1994 ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), New Orleans, Louisiana, USA, Dec. 1994.

[21] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM TOSEM,
17(2), 2008.

[22] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: validating
SSL certificates in non-browser software. In Proceedings of the
19th ACM Conference on Computer and Communications Security,
Raleigh, North Carolina, Oct. 2012.

[23] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000
projects: lightweight cross-project anomaly detection. In Proceed-
ings of the 2010 International Symposium on Software Testing and
Analysis (ISSTA), Trento, Italy, July 2010.

[24] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and B. Liblit. EIO: Error handling is occasionally
correct. In Proceedings of the 6th Usenix Conference on File and
Storage Technologies (FAST), San Jose, California, USA, Feb.
2008.

[25] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In Proceedings of

14

USENIX Association 25th USENIX Security Symposium 377

the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation, Berlin, Germany, June 2002.

[26] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang,
and Z. Zhang. Vetting SSL usage in applications with SSLint. In
Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[27] Heap overflow in zipimporter module. https://bugs.python.
org/issue26171, 2016.

[28] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From
uncertainty to belief: Inferring the specification within. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, Nov. 2006.

[29] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software code.
In Proceedings of the 10th European Software Engineering Con-
ference (ESEC) held jointly with 13th ACM SIGSOFT Symposium
on Foundations of Software Engineering (FSE), Lisbon, Portugal,
Sept. 2005.

[30] B. Livshits and T. Zimmermann. DynaMine: finding common er-
ror patterns by mining software revision histories. In Proceedings
of the 10th European Software Engineering Conference (ESEC)
held jointly with 13th ACM SIGSOFT Symposium on Foundations
of Software Engineering (FSE), Lisbon, Portugal, Sept. 2005.

[31] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:
Specification Inference for Explicit Information Flow Problems.
In Proceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Dublin, Ireland,
June 2009.

[32] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking
semantic correctness: The case of finding file system bugs. In
Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP), Monterey, CA, Oct. 2015.

[33] A. Mishne, S. Shoham, and E. Yahav. Typestate-based semantic
code search over partial programs. In Proceedings of the 2012 An-
nual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Tucson, AZ, USA, Oct. 2012.

[34] M. S. Musuvathi, D. Park, D. Y. W. Park, A. Chou, D. R. Engler,
and D. L. Dill. CMC: A pragmatic approach to model checking
real code. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), Boston, MA, Dec.
2002.

[35] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining pre-
conditions of APIs in large-scale code corpus. In Proceedings of
the 22nd ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), Hong Kong, Sept. 2014.

[36] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar. VCCFinder: Finding potential vulnerabilities
in open-source projects to assist code audits. In Proceedings of
the 22nd ACM Conference on Computer and Communications

Security, Denver, Colorado, Oct. 2015.

[37] D. A. Ramos and D. Engler. Under-constrained symbolic exe-
cution: correctness checking for real code. In Proceedings of
the 24th Usenix Security Symposium (Security), Washington, DC,
Aug. 2015.

[38] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-
Dusseau, and A. C. Arpaci-Dusseau. Error propagation analysis
for file systems. In Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
pages 270–280, Dublin, Ireland, June 2009.

[39] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
Format String Vulnerabilities with Type Qualifiers. In Proceedings
of the 10th Conference on USENIX Security Symposium - Volume
10, SSYM’01, Berkeley, CA, USA, 2001. USENIX Association.

[40] snd_pcm_new(). https://www.kernel.org/doc/htmldocs/
device-drivers/API-snd-pcm-new.html, 2016.

[41] Sparse - a Semantic Parser for C. https://sparse.wiki.
kernel.org/index.php/Main_Page, 2013.

[42] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Software
Eng., 12(1), 1986.

[43] M. Taghdiri and D. Jackson. Inferring specifications to detect
errors in code. In Proceedings of the 19th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE),
Linz, Austria, Sept. 2004.

[44] H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger. JIGSAW: Pro-
tecting resource access by inferring programmer expectations. In
Proceedings of the 23rd Usenix Security Symposium (Security),
San Diego, CA, Aug. 2014.

[45] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving integer security for systems with KINT. In Proceed-
ings of the 10th Symposium on Operating Systems Design and
Implementation (OSDI), Hollywood, CA, Oct. 2012.

[46] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. In Pro-
ceedings of the 35th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2014.

[47] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Automatic
inference of search patterns for taint-style vulnerabilities. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[48] J. Yang, P. Twohey, and Dawson. Using model checking to find
serious file system errors. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI), pages
273–288, San Francisco, CA, Dec. 2004.

[49] J. Yang, C. Sar, and D. Engler. eXplode: A lightweight, general
system for finding serious storage system errors. In Proceedings
of the 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 10–10, Seattle, WA, Nov. 2006.

15

378 25th USENIX Security Symposium USENIX Association

A Appendix
Function retvars(e) returns all ⟨ret, i⟩ variables in e, which is defined as
follows:

retvars(e) =

/0 if e ≡ n
/0 if e ≡ ⟨arg, i⟩
{⟨ret, i⟩} if e ≡ ⟨ret, i⟩
retvars(e′) if e ≡ uop e′

retvars(e1)∪ retvars(e2) if e ≡ e1 bop e2

Function argvars(e, t) returns all ⟨arg, i⟩ variables in e, consulting t to
recursively replace each ⟨ret, i⟩ variable by its associated function call
symbolic expression. It is defined as follows:

argvars(e, t)=

/0 if e ≡ n
{⟨arg, i⟩} if e ≡ ⟨arg, i⟩|ē′ |

j=1 argvars(ē′[j], t) if e ≡ ⟨ret, i⟩,where
t[i]≡ call∗ (ē′)

argvars(e′, t) if e ≡ uop e′

argvars(e1, t)∪argvars(e2, t) if e ≡ e1 bop e2

16

