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SUMMARY

The most common cyber-attack vector is exploit of software vulnerability. Despite

much efforts toward building secure software, software systems of even modest complexity

still routinely have serious vulnerabilities. More alarmingly, even the trusted computing base

(e.g. OS kernel) still contains vulnerabilities that would allow attackers to subvert security

mechanisms such as the application sandbox on smartphones. Among all vulnerabilities,

memory corruption is one of the most ancient, prevalent, and devastating vulnerabilities.

This thesis proposed three projects on mitigating this threat.

There are three popular ways to exploit a memory corruption vulnerability—attacking

the code (a.k.a. code injection attack), the control data (a.k.a. control-flow hijacking attack),

and the non-control data (a.k.a. data-oriented attack). Theoretically, code injection attack

can be prevented with the executable XOR writable policy; but in practice, this policy is

undermined by another important technique—dynamic code generation (e.g. JIT engines).

In the first project, we first showed that this conflict is actually non-trivial to resolve, then

we introduced a new design paradigm to fundamentally solve this problem, by relocating

the dynamic code generator to a separate process. In the second project, we focused on

preventing data-oriented attacks against operating system kernel. Using privilege escalation

attacks as an example, we (1) demonstrated that data-oriented attacks are realistic threats

and hard to prevent; (2) discussed two important challenges for preventing such attacks (i.e.,

completeness and performance); and (3) presented a system that combines program analysis

techniques and system designs to solve these challenges.

During these two projects, we found that lacking sufficient hardware support imposes

many unnecessary difficulties in building robust and efficient defense mechanisms. In the

third project, we proposed HDFI (hardware-assisted data-flow isolation) to overcome this

limitation. HDFI is a new fine-grained isolation mechanism that enforces isolation at the

machine word granularity, by virtually extending each memory unit with an additional tag

xiii



that is defined by data-flow. This capability allows HDFI to enforce a variety of security

models such as the Biba Integrity Model and the Bell–LaPadula Model. For demonstration,

we developed and ported several security mechanisms to leverage HDFI, including stack

protection, standard library enhancement, virtual function table protection, code pointer

protection, kernel data protection, and information leak prevention. The evaluation results

showed that HDFI is easy to use, imposes low performance overhead, and allows us to create

simpler and more secure solutions.
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CHAPTER I

INTRODUCTION

Exploits against software vulnerabilities is the most popular attack vector to compromise

computer systems. While much effort has been spent on designing, building, and deploying

software that is free of defects, software systems of even modest complexity are still routinely

deployed with vulnerabilities. More alarmingly, even the trusted computing base (e.g. OS

kernel) may contain vulnerabilities that would allow attackers to subvert security mechanisms

like the application sandbox on smartphones.

Among all types of vulnerabilities, memory corruption vulnerabilities are one of the

worst. For several reasons. First of all, due to the popularity of type unsafe languages

(e.g., C/C++), memory corruption vulnerabilities are very common. At the same time,

memory corruption vulnerabilities are highly exploitable. As will be discussed in §2, memory

corruption vulnerabilities can be exploited in many ways and in most cases they can lead

to executing arbitrary logic. As a result, memory corruption vulnerabilities are still one

most widely exploited vulnerabilities. According to the latest report from Microsoft [214],

memory-corruption-based exploits dominate the remote code execution CVEs.

For severity and popularity of memory-corruption-based attacks, lots of effort has been

made to prevent memory-corruption-based exploits. Szekeres et. al [192] did a good

summary on existing mitigation mechanisms and their limitations. Generally, existing

defense techniques can be put into two categories: memory error detection and exploit

mitigation.

Techniques belong to the first category aim at detecting memory errors, the root cause of

the vulnerabilities. Since these techniques can stop the attacks from happening in the first

place, they have the capability to prevent all memory-corruption-based exploits. However,

achieving this is not without cost. Specifically, these techniques tend to have relatively high

performance overhead, ranging from 50% to over 100%. Unfortunately, when a trade-off
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needs to be made between security and performance, security usually gives the way; hence

most techniques are used for offline bug detection or crash analysis.

Exploit mitigation techniques, on the other hand, focus on preventing attackers from

performing malicious activities. Specifically, memory corruption vulnerabilities can be

exploited in five general ways: code injection attacks, control-flow hijacking attacks, data-

oriented attacks, information leak, and data overlapping (§2.2). For each exploit technique,

corresponding mitigation mechanisms are developed. For instance, data execution prevention

(DEP) is developed to defeat code injection attacks and control-flow integrity (CFI) is

proposed to prevent control-flow hijacking attacks. The advantage of exploit prevention

techniques is their performance overhead, which is usually less than 10%. For this reason, most

deployed mechanisms against memory corruption attacks are exploit mitigation techniques.

The downside, however, is that exploit mitigation techniques (at best) can only prevent one

type of exploit technique so they can be bypassed.

In short, the state-of-the-art on preventing memory-corruption-based exploit is that,

solutions that can provide strong security guarantees are too slow and efficient solutions can

only provide limited defense.

1.1 Problem Statement and Our Approach

This thesis aims to advance the state-of-the-art on defense against memory-corruption-based

attacks by building a set of new exploit prevention techniques each of which is capable

of blocking one exploit method so the combination of them can approximate the security

guarantee of memory error detectors with much less performance overhead. We choose to

build exploit prevention techniques for their low performance overhead and the ease of

adoption, i.e., more practical. But comparing to existing exploit prevention techniques, our

solutions are based on basic security principles so they are able to completely block one type

of exploit technique and withstand the rapidly evolving arm race from offensive technologies.

The first exploit technique we addressed is code injection attacks. Theoretically, the W⊕X

(writable exclusive executable) policy should be able to fully mitigate all code injection attacks.

However, this widely deployed technique is not compatible with another important technique:
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dynamic code generation. As a result, attackers can leverage dynamic code generators to

revive code injection attacks (i.e., code cache injection attack). To fundamentally solve

this conflict thus block all code injection attacks, we have developed Secure Dynamic Code

Generation [184], a novel system design that fundamentally eliminated the conflict between

W⊕X policy and dynamic code generators with small performance overhead. Sdcg achieves

these goals through a multi-process-based architecture. Specifically, instead of generating

and modifying code in a single process, Sdcg relocates the DCG functionality to a second

trusted process. The code cache is built upon memory shared between the original process

and the trusted process. In the original process, the code cache is mapped as RX; but in the

trusted process, the same memory is mapped as WR. By doing so, the code cache remains

read-only under all circumstances in the untrusted process, eliminating the race condition

that allows the code cache to be writable to untrusted thread(s). At the same time, the

code generator in the trusted process can freely perform code generation, patching, and

garbage collection as usual. To enable transparent interaction between the code generator

and the generated code, Sdcg only need to add a few wrappers that make the code generator

callable through remote procedure calls (RPC). Since only functions that modify code cache

need to be handled, the effort for adding wrappers is small.

The second exploit technique we addressed is data-oriented attacks. For the popularity of

control-flow hijacking attacks, lots of effort of previous work focus on preventing this exploit

technique. However, data-oriented attacks can be equally powerful and generic, especially in

kernel privilege escalation attacks. To mitigate this threat, we have developed Kenali [182],

a system that utilized data-flow integrity (DFI) [34] to enforce kernel security invariants

against memory-corruption-based exploits. Similar to CFI, DFI guarantees that runtime data-

flow cannot deviate from the data-flow graph generated from static analysis. For example,

data from a string buffer should never flow to the return address on stack (control-data),

or to the uid (non-control-data). Utilizing this technique, we can enforce a large spectrum

of security invariants in the kernel to defeat different attacks. However, without hardware

support, software-based DFI implementation can be very expensive. To overcome this

limitation, we developed two novel techniques. Our first technique InferDists can soundly
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and automatically infer security-critical memory objects that are vital to kernel privilege

escalation attacks. Based on the inference result, our second technique ProtectDists

selectively protects these memory objects against memory corruptions attacks with lower

performance overhead.

During the development of previous two systems, we found that the isolation mechanisms

provided by commodity hardware have become a bottleneck for building strong and efficient

solutions against memory corruption attacks. To overcome this limitation, we have developed

Hdfi, a novel fine-grained hardware isolation mechanism [183]. Hdfi enforces data isolation

at machine word granularity by virtually extending each physical address with an additional

tag. Inspired by the idea of data-flow integrity [34], Hdfi defines the tag of a memory unit

by the last instruction that writes to this memory location; then at memory read, it allows a

program to check if the tag matches what is expected. Utilizing this new hardware feature,

we have implemented several defense mechanisms against different memory corruption

attacks, including control-flow hijacking prevention (stack protection, standard library

enhancement, virtual function table protection, code pointer separation), data-oriented

attack prevention (kernel data protection), and information leak prevention (Heartbleed

attack). Our development experience shows that Hdfi is easy to use and usually allows us

to create more elegant solutions. Our security analysis showed that Hdfi-based solutions

can provide better security guarantees than previous implementations. And our performance

showed that, by eliminating data shadowing and context switching, Hdfi can also help

reduce the performance overhead for security mechanisms that requires fine-grained data

isolation.

1.2 Thesis Contributions

In summary, this thesis makes the following technical contributions to the security research

community:

• New Threats Highlighting With real exploits, we highlight the threats of code

cache injection attacks and data-oriented attacks.
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• New Software Design We present a new software design to resolve the conflict

between W⊕X policy and dynamic code generation and to block all code injection

attacks.

• New Program Analysis Technique The key challenge for building practical defense

mechanisms against data-oriented attacks is how to identify data that are vital to

those attacks. To solve this challenge, we have develop an automated program analysis

technique that can infer data that is critical to kernel privilege escalation attacks.

• New Isolation Techniques We develop several techniques to enforce efficient pro-

tection over selective memory content and apply them to the Android kernel.

• New Hardware Design We develop a new hardware feature to overcome the lim-

itation of the isolation mechanisms provided by commodity hardware. We further

demonstrate the benefits of our new hardware feature via developing and evaluating of

several defense techniques against memory-corruption-based exploits.

• Open Source We will open source all prototype implementations of the techniques

presented in this thesis for better real world adoption.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides more details on memory

corruption vulnerabilities, including their root causes, common exploit techniques, state-of-

the-art defense techniques, and the limitations of existing defense techniques. Chapter 3

discusses the threat of code cache injection attacks and presents the design and evaluation

of Sdcg. Chapter 4 discusses the threat of data-oriented data (especially in kernel attacks)

and presents two new techniques, InferDists and ProtectDists that can fully prevent

memory-corruption-based kernel privilege escalation attacks with moderate performance

overhead. Chapter 5 discusses the limitation of isolation mechanisms provided by commodity

hardware, presents Hdfi and how Hdfi allows us to build simpler, more secure, and

more efficient defense mechanisms against memory-corruption-based exploits. Chapter 6

summarizes the contributions of this thesis and discusses open problems for future work.
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CHAPTER II

BACKGROUND

2.1 Memory Corruption Vulnerabilities

Memory corruption vulnerabilities are among the oldest problems of the cyber space. The

first publicly recognized worm, the Morris Worm exploited a memory corruption vulnerability

to spread itself. At the same time, due to the popularity of type unsafe languages (e.g.,

assembly, C/C++), memory corruption vulnerabilities are very common. Memory corruption

vulnerabilities are also highly exploitable, which usually would allow attackers to read/write

arbitrary memory and execute arbitrary code. For these reasons, memory corruption

vulnerabilities are one of the most widely exploited vulnerabilities. According to the latest

report from Microsoft [214], memory-corruption-based attacks dominate the remote code

execution CVEs.

Memory corruption can be caused by three types of memory errors: accessing uninitialized

memory, accessing out-of-bound memory, and accessing freed memory. These errors in turn,

can be caused by a various of software bugs. For instance, out-of-bound memory access

can be caused by lacking of bound check, incorrect bound check (e.g., due to integer

overflow/underflow), incorrect allocation (e.g., due to integer overflow), type confusion, etc.

Accessing freed memory, a.k.a. use-after-free, can be caused by missing pointer invalidation

(nullify) after free, incorrect reference counter update, integer overflow of reference count,

etc.

2.2 Exploit Techniques

Once attackers managed to trigger a memory corruption vulnerability, there are three general

directions to exploit: leverage it to overwrite memory content, leverage it to read content,

or control uninitialized data.

Code injection. The first exploit technique is code injection, where attackers utilized
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a memory corruption vulnerability to add new code or modify existing code. Once the

injected code gets executed, it would allow attackers to control the system. For its power

and ease of construction, code injection attacks used to be the most popular way to launch

attacks and shellcode for different tasks is still widely available on the Internet. Even after

the introduction of DEP (data execution prevention), code injection is still an important

step of modern attacks.

Control-flow hijacking. The second way to exploit a memory corruption vulnerability is

to overwrite the control data (a.k.a. code pointers), such as return addresses and function

pointers. At the early age of exploit, control-flow hijacking is mostly used to redirect the

execution to the injected shellcode. However, after the deployment of DEP, such approach

is no longer viable and attackers have moved on to a new technique called code reuse

attacks. In these attacks, attackers will try to hijack the control-flow to invoke one or more

existing code snippets or gadgets. The combination of these code gadgets would allow

attacks to perform similar tasks as traditional shellcode or even generic computation [198].

Moreover, researchers have demonstrated that the code gadgets can be of different granularity,

which can be as small as a few instructions [176], a basic block [66, 82], or even a whole

function [177, 167, 77].

Data-oriented attacks. Besides corrupting code pointers, another way to compromise the

integrity of an execution is to tamper with important data of the target program [41, 88, 89].

Data-oriented attacks can be very powerful too. For example, researchers have demonstrated

how to compromise browsers [228], attack OS kernel [204, 182], and perform Turing-complete

computation [89] with data-oriented attacks.

Information leak. Memory corruption vulnerabilities can also be exploited to perform

illegal read and leak important information. In fact, due to the wide deployment of ASLR

(address space layout randomization), leaking the address of code is now an inseparable step

of most attacks [172, 177]. Moreover, researchers have also demonstrated that information

leak can be used to bypass many recently proposed fine-grained randomization-based defense

mechanisms [181]. Finally, similar to data-only attacks, attackers can also exploit memory
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corruption vulnerabilities to leak generic but important data. For instance, in the Heartbleed

attack [47], attackers aimed to leak the private key of a website’s certificate.

Data overlapping. Data overlapping is the technique to exploit temporal memory

errors (i.e., uninitialized data access and use-after-free). To exploit uninitialized data

access, attackers need to control the memory that is not initialized before access; and to

exploit use-after-free, attackers need to control the re-allocated memory. By overlapping the

attacker-controlled memory with important information, attackers can exploit a temporal

memory error to leak such information. For example, uninitialized data read is a popular

attack vector to leak kernel information [38]. And by overlapping the attacker-controlled

memory with control data (e.g., vtable pointers) or important non-control data(e.g., those

used in data-oriented attacks), attackers can also exploit a temporal memory error to launch

control-flow hijacking or data-oriented attacks.

2.3 Existing Defense Mechanisms

To defeat memory corruption based attacks, numerous defense mechanisms has been proposed.

These mechanisms can be put into two general categories: those aim to eliminate memory

errors and those aim to prevent specific exploit techniques. The former approaches could

provide better security guarantees as mechanism targeting a specific exploit technique can

usually be bypassed. However, due to their much higher performance overhead, in practice,

most deployed defense mechanisms are exploit prevention techniques.

2.3.1 Exploit Prevention

Write exclusive Execution. W⊕X is a security policy that requires memory access

permissions to be either writable but not executable (e.g., data segments) or be executable

but not writable (e.g., code segments). This enforcement can completely mitigate code

injection attacks as code becomes not modifiable and data becomes not executable. After

the introduction of hardware support for W⊕X enforcement (e.g., NX-bit on x86 processors

and XN-bit on ARM processors), W⊕X has become one of the most widely deployed defense

mechanisms. As a result, attackers are forced to leverage more complicated exploit techniques,
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such as code reuse attacks. However, the effectiveness of W⊕X can be undermined by another

important technique—dynamic code generation (DCG), which usually introduces a code

cache that is both writable and executable. In §3, we will show how this DCG can be utilized

to revive code injection attacks and how to fundamentally solve this weakness of W⊕X.

Randomization. Randomization is a generic way to detect/prevent “foreign”, attacker

introduced data. Currently, the most widely deployed randomization-based mechanism

is ASLR [156], which randomized the memory layout hence pointers of a process. With

ASLR, if attackers try to overwrite/overlap a security critical pointer (e.g., return address)

with their crafted value, the pointer is likely to be invalid. Besides the coarse-grained

layout randomization, other types of randomization have also been proposed. ASLP [105]

randomizes the layout of functions, binary stirring [210] randomizes the layout of basic

blocks, ICR [152] randomizes instruction layout within a basic block, ILR [87] randomizes

the layout of all instructions, DSLR [118] randomizes the layout of data structures, and

ISR [161, 20] randomizes the encoding of instructions.

Randomization-based defense mechanisms have two weaknesses: lack of entropy and

information leak. Without enough entropy, randomization-based defense mechanism can be

defeated by spray-based attacks [61, 179] or brute-force-based attacks [177, 25, 76]. And

if the randomized information can be leaked (e.g., via memory corruption or side-channel

attacks [91, 81]), all randomization-based approaches can be bypassed [181].

ret2usr Prevention. ret2usr is a special type of control-flow hijacking attacks that

redirect the control-flow to user mode code while the processor is in privileged mode. As

a result, attackers can perform operations that should only be allowed by the OS kernel.

KERNEXEC [155] uses the CS segment register to restrict the code range of in kernel mode.

kGuard [104] uses a lightweight range check to prevent indirect control transfer to user space.

SMEP (Supervisor Mode Execution Protection) and PXN (Privileged eXecution Not) are

hardware features to prevent such attacks.

Control-flow Integrity. For the popularity of control-flow hijacking attacks, many

techniques have been proposed to prevent illegal control transfer. Stack canary [53] is
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the first solution to prevent stack buffer overflow from tampering the return addresses

and is supported by most compilers. However, it cannot prevent direct (not sequential)

overwrite and may be subject to brute-force-based attacks [25]. Another popular approach is

shadow stack [201, 45, 60] which stores return addresses to a separate stack. An alternative

approach is called safe stack [108], which relocates unsafe allocations to a separate stack.

The challenge for these approaches is how to protect the safe stack from arbitrary memory

writes [76]. To solve this challenge, hardware-protected shadow stack has also been proposed

[218, 114, 150, 63, 95]. Finally, solutions have also been proposed to detect return-oriented

programming (ROP) [153, 44].

After securing the backward-edge control-flow, the next step is to secure the forward-edge

control transfer. To solve this challenge, Abadi et al. [1] introduced the term control-flow

integrity (CFI) which enforces that the runtime control-flow transfer should not deviate from

the control-flow graph (CFG) constructed from static analysis. Since then, many following

up work have been proposed to improve different aspects of this approach. HyperSafe [209]

extends CFI to hypervisors; KCoFI [56] extends CFI to monolithic OS kernel; CCFIR [233]

and binCFI [234] try to enforce coarse-grained CFI (due to loss of information) for COST

binaries; MCFI [143] tries to bring modular support; RockJIT [144] and JITScope [231]

extends CFI to dynamically generated code; π-CFI [145] tries to improve the precision of CFG

by dynamically enable transfer targets based on current execution trace; and various hardware-

based CFI solutions aim to improve the efficiency of the enforcement [55, 103, 64, 46, 95].

One thing to notice is that, a CFI solution must cover both forward-edge and backward-

edge, otherwise attacks are still feasible [51]. Despite problems of individual CFI implemen-

tations [33, 66, 82], the more fundamental problems of CFI are (1) due to the theoretical

limitation of static analysis, control-flow hijacking attacks are still feasible without deviating

from the CFG [77] and (2) data-oriented attacks.

Virtual Function Call. Virtual function is an important feature of the C++ language

and consists a majority of indirect calls in C++ programs. This mechanism has been

abused by attackers to launch control-flow hijacking attacks by injecting/modifying the

virtual function table (vtable) pointers. To defeat such attacks, several solutions have
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been proposed. SafeDispatch [97] is similar to CFI and restricts the target function to be

within the set generated from class hierarchy analysis. FCFI [197] takes a similar approach

but only validates the vtable pointers and supports incremental build. VTint [232] uses

binary rewriting to prevent vtable injection attacks, but cannot prevent vtable reuse attacks.

VTable interleaving [27] tries to reduce the cost of validation checks with a new vtable layout.

VTrust [230] uses a multi-layer protection scheme to defeat all vtable-related attacks with

low performance overhead.

Pointer Encryption. Because many exploit techniques involve injecting/overwriting

pointers, another direction to defeat such attacks is to protect the integrity of pointers.

PointGuard [54] encrypts all pointers in memory and only decrypts them when pointers are

loading into the registers. The goal of the encryption is to prevent attackers from generating

pointers controlled by them. Unfortunately, as the encryption scheme used by PointGuard

is too simple—XOR with one single key, this key can be easily recovered [189]. CCFI [124]

enforces CFI by encrypting all code pointers (function pointers, vtable pointers, and exception

handlers) and return addresses with AES (hardware supported AES-NI instructions) to

create a MAC (message authentication code). If attackers try to inject their own pointers,

then the decrypted pointers will not pass the MAC check. ASLR-Guard [120] encrypts

all pointers that can be used to infer the address of code so as to prevent breaking ASLR

with information leak. This encryption also prevents attackers from modifying protected

pointers to transfer the control-flow to arbitrary destinations. The drawback of encryption

is replay attacks, i.e., with information leak, attackers can still launch attacks by reusing

valid pointers.

Isolation. Isolation is a generic approach to prevent attackers from tampering important

data thus can be used to prevent data-oriented attacks. An isolation-based protection

mechanism faces two challenges. First, efficient hardware-based isolation supports are

removed in 64-bit mode—segments on x86 processors and access domain on ARM processors

are both gone. As a result, security solutions must choose between efficiency and security.

In §5, we will discuss more about this problem and present a new hardware feature to solve

this problem. The second challenge is how to identify what data is critical and should be
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protected/isolated. Many existing solutions identify such data based on heuristics or existing

attacks. As a result, they cannot provide enough security guarantees thus can be bypassed.

In §4, we will show a new approach to systematically discover critical data in the kernel

space.

Information Flow Tracking. Compare to control-flow hijacking, preventing memory-

corruption-based information leak prevention is relatively less popular topic. Among existing

solutions, the most generic one is dynamic information flow tracking (DIFT) [224, 73].

Execute-only Memory. To prevention information leak from breaking fine-grained

randomization techniques, researchers have also proposed execute-only (i.e., neither readable

nor writable) memory [17, 65], which is also supported by latest Intel processors through

“memory protection keys.”

2.3.2 Memory Error Detection

Uninitialized Memory. Most compilers provide the -Wuninitialized option to detect

accessing uninitialized stack variables, but the scope is limited to the current function.

Besides compile-time detection, many runtime memory error detection tools also support

detecting uninitialized memory access. Valgrind’s memcheck [174] and Dr. Memory [29]

use dynamic binary instrumentation to monitor all memory access of the target program.

The performance overhead of these tools can be above 10x. kmemcheck [146] uses shadow

memory to track the state of allocated memory, but only support heap objects allocated from

the standard heap allocator. MemorySanitizer [188] relies on compile-time instrumentation

and shadow memory to detect uninitialized data use at run-time. Its performance is

much better than dynamic instrumentation based tools; however, it still imposes a 3x-4x

performance overhead. Usher [222] proposed value-flow analysis to reduce the number of

tracked allocations and reduced the performance overhead of MemorySanitizer to 2x-2.5x.

Spatial Error. There are two general directions to detect spatial memory errors: object-

based (i.e., can the pointer used to access the target memory) and pointer-based (i.e., is

the target address out-of-bound). Memcheck [174], Dr. Memory [29], kmemcheck [146], and

AddressSanitizer [171] are representative shadow-memory based error detectors. They use
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shadow memory to mark which memory address can be accessed and which cannot. Yong

et al. [225], write integrity test (WIT) [4] and data-flow integrity (DFI) [34] uses static

point-to analysis to decide whether the target memory can be written by the given pointer.

Compared to pointer-based approaches, object-based approaches all suffer from imprecision

thus may still allow some attacks to happen.

J&K [100], CRED [165], Baggy Bounds Checking (BBC) [5], and PAriCheck [227] try to

detect out-of-bound pointers at the time of pointer creation, i.e., whether the result of a

pointer arithmetic would be out-of-bound. The drawback of this direction is that, because

bound information is created at memory allocation, they cannot detect memory corruption

within the allocated object.

CCured [137] and Cyclone [98] retrofit the C language to use “fat-pointers” (i.e., pointer

with additional boundary information) for memory access and to perform boundary check

for unsafe memory dereference. Unfortunately, because they both require source code level

changes and are not binary compatible with existing code, they have not been adopted

in practice. MSCC [219] uses source code transformation to avoid source code change

and more compact metadata to improve efficiency. SoftBound [135] uses compiler-based

instrumentation to avoid source code change and split metadata to solve memory the layout

compatibility problem.

The common problem of all spatial memory error detector, especially for those based on

boundary check, is high performance overhead, which is usually more than 100%. For this

reason, researchers have also proposed special hardware to improve the performance and

compatibility (i.e., without re-compilation) [69, 133, 134, 212]. However, even with hardware

support, memory safety enforcement can still impose 29% slowdown on SPEC CINT 2006

benchmarks [134].

Use-after-free. DieHard [23] and DieHarder [147] use special memory allocators to approx-

imate infinite memory so as to avoid memory reuse. With state tracking, Memcheck [174],

Dr. Memory [29], kmemcheck [146], and AddressSanitizer [171] can also detect temporal

memory errors, as long as that memory has not be reallocated. CETS [136] uses version

tracking to detect whether a pointer is a dangling pointer (i.e., points to a freed object).
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DangNull [113] and FreeSentry [226] uses pointer nullification to eliminate dangling pointers

when the referenced memory is freed. CCured [137], Cyclone [98], and MemGC [129] solve

problem by relying on garbage collection.

14



CHAPTER III

PREVENTING CODE INJECTION ATTACKS AGAINST DYNAMIC

CODE GENERATOR

3.1 Motivation

Exploits against memory corruption vulnerabilities remain one of the most severe threats

to cyber security. To mitigate this threat, many techniques have been proposed, including

data execution prevention (DEP) [6] and address space layout randomization (ASLR) [156],

both of which have been widely deployed and are effective. DEP is a subset of the more

general security policy W⊕X, which enforces that memory should either be writable but

not executable (e.g., data segments), or be executable but read-only (e.g., code segments).

This enforcement can completely mitigate traditional exploits that corrupt existing code or

inject malicious shellcode into data segments. Consequently, attackers have to leverage more

complicated exploit techniques, such as return-to-libc [177] and return-oriented-programming

(ROP) [176]. Moreover, W⊕X memory has become the foundation of many other protection

techniques, such as control flow integrity (CFI) [1, 234, 233].

However, the effectiveness of W⊕X can be undermined by another important compilation

technique—dynamic code generation (DCG). With the ability to generate and execute

native machine code at runtime, DCG is widely used in just-in-time (JIT) compilers [15]

and dynamic binary translators (DBT) [169, 121] to improve performance, portability,

and security. For example, JIT compilers for dynamic languages (e.g., JavaScript and

ActionScript) can leverage platform information and runtime execution profile to generate

faster native code. DBTs can leverage DCG to provide dynamic analysis capability [121],

cross-platform or cross-architecture portability [168, 22], bug diagnostics [139, 163], and

enhanced security [20, 142, 43, 90, 87].

A fundamental challenge posed by DCG is that the code cache, in which the dynamically

generated code is stored, needs to be both writable (for code emitting, code patching, and
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garbage collection) and executable. This violates the W⊕X policy and enables a new attack

vector. In fact, security researcher has already demonstrated the feasibility of exploiting this

weakness through a real world exploit that delivers shellcode into the writable code cache

and successfully compromises the Chrome web browser [160].

Solving this problem seems trivial. A straightforward idea, which has been adopted in

browsers like mobile Safari, is demonstrated in Figure 1. This technique keeps the code

cache as read-only and executable (RX) when the generated code is executing; switches to

writable but not executable (WR) when the code cache needs to be modified (t1); and switches

back to RX when the write operation finishes (t2). As a result, the code cache will remain

read-only when the generated code is executing; and the attack demonstrated in [160] can

be mitigated.

Unfortunately, in addition to performance overhead, this simple mechanism does not

work well with multi-threaded programs. First, if the code generator uses a shared code

cache for all threads (e.g., PIN [121]), then the code cache cannot be switched to WR, because

other concurrently running threads require the executable permission. Second, even if the

code generator uses a dedicated code cache for each thread (e.g., JS engines), the protection

is still flawed and is subject to race condition attacks [140], as shown in Figure 2. More

specifically, memory access permissions are applied to the whole process and are shared

among all threads. When one thread turns on the writable permission for its code cache

(e.g., for code emitting), the code cache also becomes writable to all other threads. Once

the write permission is set, another concurrently running thread can (maliciously) overwrite

the first thread’s code cache to launch attacks. This is similar to the classic time-of-check-

to-time-of-use (TOCTTOU) problem [126], where the resource to be accessed is modified

between the check and the use by exploiting race conditions.

In this chapter, we demonstrate the feasibility of such race-condition-based code cache

injection attacks, through a proof-of-concept exploit against modern browsers that support

the Web Worker [205] specification. Rather than relying on a permanently writable code

cache [160], our attack leverages race conditions and can bypass permission-switching-based

W⊕X enforcement ( Figure 1). In this attack, the malicious JS code utilizes web workers to
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Figure 1: A permission switching based W⊕X enforcement.
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Figure 2: Race-condition-based attack using two threads.

create a multi-threaded environment. After forcing a worker thread into the compilation

state, the main JS thread can exploit vulnerabilities of the browser to inject shellcode into

the worker thread’s code cache.

To fundamentally prevent such attacks, we propose secure dynamic code generation

(Sdcg), a new architecture that (1) enables dynamic code generation to comply with the

W⊕X policy; (2) eliminates the described race condition; (3) can be easily adopted; and (4)

introduces less performance overhead compared to alternative solutions.

3.2 Assumptions and Threat Model

Sdcg focuses on preventing remote attackers from leveraging memory corruption vulnera-

bilities to overwrite the code cache to achieve arbitrary code execution. Hence, we focus

on two classic attack scenarios discussed as follows. In both scenarios, we assume the code

generator itself is trusted and does not have security vulnerabilities.

• Foreign Attacks. In this scenario, the code generator is a component of a program

(e.g., a web browser). The program is benign, but components other than the code

generator are assumed to be vulnerable when handling input or contents provided by

an attacker (e.g., a malicious web page). Attackers can then exploit the vulnerable

components to attack the code cache.
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• Jailbreak Attacks. In this scenario, the code generator is used to sandbox or monitor

an untrusted program, and attacks are launched within the code cache. This could

happen under two circumstances. First, the sandboxed program itself is malicious.

Second, the program is benign, but the dynamically generated code has vulnerabilities

that can be exploited by attackers to jailbreak.

Without loss of generality, we assume that the following mitigation mechanisms for both

general and JIT-based exploits have been deployed on the target system.

• Address Space Layout Randomization. We assume that the target system has at least

deployed the basic ASLR and all predictable memory mappings have been eliminated.

• JIT Spray Mitigation. For JIT engines, we assume that they have implemented a

full-suite of JIT spray mitigation mechanisms, including but not limited to random

NOP insertion, constant splitting, and those proposed in [213, 9].

• Guard Pages. We assume the target system creates guard pages (i.e., pages without

access permission) to wrap each pool of the code cache, as seen in the Google V8 JS

engine. These guard pages can prevent buffer overflows, both overflows out of the code

cache and overflows into the code cache.

• Page Permissions. We assume that the underlying hardware has support for mapping

memory as non-executable (NX) and that writable data memory like the stack and

normal heap are set to be non-executable. Furthermore, we assume that all statically

generated code has been set to non-writable to prevent overwriting. However, almost

all JIT compilers map the code cache as both writable and executable.

The target system can further deploy the following advanced mitigation mechanisms for

the purpose of sandboxing and monitoring:

• Fine-grained Randomization. The target system can enforce fine-grained random-

ization by permuting the location of functions [105], basic blocks [210], and each

instruction [152]; and even randomizing the instruction set [20].
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• Control Flow Hijacking Mitigation. The target system can deploy control flow hi-

jacking mitigation mechanisms, including (but not limited to): control flow integrity

enforcement, either coarse-grained [233, 234] or fine-grained [1, 143]; return-oriented

programming detection [153, 44]; and dynamic taint analysis based hijacking detec-

tion [142].

To allow overwriting of the code cache, we assume there is at least one vulnerability that

allows attackers to write to an attacker-specified address with attacker-provided contents. We

believe this is a realistic assumption, because many types of vulnerabilities can be exploited

to achieve this goal, such as format string [141], heap overflow [50], use-after-free [48], integer

overflow [49], etc. For example, the attack described in [160] obtained this capability by

exploiting an integer overflow vulnerability (CVE-2013-6632); in [42], the author described

how five use-after-free vulnerabilities (CVE-2013-0640, CVE-2013-0634, CVE-2013-3163,

CVE-2013-1690, CVE-2013-1493) can be exploited to perform arbitrary memory writes. It

is worth noting that in many attack scenarios, the ability to do arbitrary memory write can

easily lead to arbitrary memory read and information disclosure abilities.

3.3 Related Work

In this section, we discuss the techniques that could be used to protect a code cache from

being maliciously modified and explain their limitations. We also discuss other forms of

attacks against the JIT engines and their countermeasures.

3.3.1 Software-based Fault Isolation

Software-based fault isolation (SFI) [207] can be used to confine a program’s ability to access

memory resources. On 32-bit x86 platforms, SFI implementations usually leverage segment

registers [79, 223] to confine memory accesses for the benefit of low runtime overhead. On

other platforms without segment support (e.g., x86-64, ARM), SFI implementations use

either address masking [170, 144] or access control lists (ACL) [35], introducing higher

runtime overhead.

Once memory accesses, especially write accesses are confined, SFI can prevent untrusted
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code from overwriting security sensitive data, such as the code cache. Sdcg differs from SFI

in several respects. First, SFI’s overhead comes from the execution of the extra inline checks

while Sdcg’s overhead comes from remote procedure calls and cache synchronization on

multi-core systems. Therefore, if execution stays mostly within the code cache, Sdcg will

introduce less overhead than SFI. On the other hand, if execution needs to be frequently

switched between the code generator and the generated code, then SFI could be faster. Since

most modern code generators try to make the execution stay as long as possible in the code

cache, our approach is more suitable in most cases.

Second, to reduce the overhead of address masking, many SFI solutions [170, 144] use

ILP32 (32-bit integer, long, pointer) primitive data types, limiting data access to 4GB of

space, even on a 64-bit platform. Sdcg does not have this limitation.

It is worth noting that some efforts have been made to apply SFI to JIT engines [9, 144].

Despite relatively higher overhead, the threat model of these approaches usually did not

consider scenarios where the JIT compiler is only a component of a larger software, such as a

web browser. Since most web browser vulnerabilities are found outside the JIT engines [58],

to apply such techniques one would have to apply SFI to other browser components as well.

This could result in even higher performance overhead. From this perspective, we argue that

our solution is more realistic in practice.

3.3.2 Memory Safety

Attacking code caches (at randomized locations) relies on the ability to write to a memory

location specified by attackers. Therefore, such attacks could be defeated by memory

safety enforcement, which prevents all unexpected memory reads and writes. However, many

programs are written in low-level languages like C/C++, and are prone to memory corruption

bugs, leading to the majority of security vulnerabilities for these languages. Unfortunately,

existing memory safety solutions [175, 71, 14, 154, 219, 136, 135] for C/C++ programs tend

to have much higher performance overhead than SFI or other solutions, prohibiting their

adoptions. For example, the combination of Softbound [135] and CETS [136] provides a

strong spatial and temporal memory safety guarantee, but they were reported to have 116%
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average overhead on SPEC CPU 2000 benchmark. Compared with this direction of research,

even though Sdcg provides less security guarantees, it is still valuable because it fully blocks

a powerful attack vector with much lower runtime overhead.

3.3.3 Control Flow Integrity

Control flow hijacking is a key step in many real world attacks. As DEP becomes ubiquitous,

more and more attacks rely on return-to-libc [177] or ROP [176] to hijack control flow. Many

solutions [1, 234, 233, 143, 144, 231] have been proposed to enforce control flow integrity

(CFI) policy. With CFI policy, a program’s control flow cannot be hijacked to unexpected

locations. CFI could protect the code cache in some way, e.g., attackers cannot overwrite

the code cache by jumping to arbitrary addresses of the code generator.

However, attackers can still utilize arbitrary memory write vulnerabilities to overwrite

the code cache without breaking CFI. Once the code cache is overwritten, injected code

could be invoked through normal function invocations without breaking the static CFI

policy.

More importantly, when extending CFI to dynamically generated code [144, 231], without

proper write protection the embedded enforcement checks can also be removed once attackers

can overwrite the code. From this perspective, Sdcg is complementary to CFI because it

guarantees one basic assumption of CFI: code integrity protection.

3.3.4 Process Sandbox

A delegation-based sandbox architecture, a.k.a. the broker model [80], has been widely

adopted by the industry and used in Google Chrome [84], Windows 8 [128], Adobe Reader [2],

etc. In this architecture, the sandboxed process drops most of its privileges and delegates all

security sensitive operations to the broker process. The broker process then checks whether

the request complies with the security policy. Sdcg is based on the same architecture. Using

this architecture, we (1) delegate all the operations that will modify the code cache (e.g.,

code installation, patching, and deletion) to the translator process; and (2) make sure the

W⊕X policy is mandatory.
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3.3.5 Attacks on JIT engines

Attackers have targeted the code cache for its writable and executable properties. Currently,

the most popular exploit technique is JIT spray [179], an extension to classic heap spray

attacks [61]. Heap spray is used to bypass ASLR without guessing the address of injected

shellcode. This technique becomes infeasible after DEP is deployed because the heap is no

longer executable. To bypass this, attackers turned to JIT engines. The JIT spray attack

abuses the JIT engine to emit chunks of predictable code and then hijacks control flow

toward the entry or middle of one of these code chunks. DEP or W⊕X is thus bypassed

because these code chunks reside in the executable code cache. Most JIT engines have since

deployed different mitigation techniques to make the layout of the code cache unpredictable,

e.g., random NOP insertion, constant splitting, etc. Researchers have also proposed more

robust techniques [213, 9] to prevent such attacks.

Rather than abusing JIT engines to create expected code, attackers can also abuse the

writable property of the code cache and directly overwrite generated code [160]. In the next

section, we first extend this attack to show that even with a permission switching based

W⊕X enforcement, attackers can still leverage race conditions to bypass such enforcement.

3.4 Attacking the Code Cache

This section describes in detail the code cache injection threat Sdcg aims to address. First,

we show how the code cache can be attacked to bypass state-of-the-art exploit mitigation

techniques. Then we demonstrate how a naive W⊕X enforcement can be bypassed by

exploiting race conditions.

3.4.1 Code Cache Injection Attacks

Software Dynamic Translator. For ease of discussion, we use the term software dynamic

translator (SDT) to represent software that leverages dynamic code generation to translate

code in one format to another format. Before describing the attacks, we first give a brief

introduction on SDT. A core task of all SDTs is to maintain a mapping between untranslated

code and translated code. Whenever a SDT encounters a new execution unit (depending on
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the SDT, the execution unit could be a basic block, a function, or a larger chunk of code),

it first checks whether the execution unit has been previously translated. If so, it begins

executing the translated code residing in the code cache; otherwise, it translates this new

execution unit and installs the translated code into the code cache.

Exploit Primitives. In this subsection, we describe how the code cache with full WRX

permission can be overwritten. This is done in two steps. First, we need to bypass ASLR

and find out where the code cache is located. Second, we need to write to the identified

location.

Bypassing ASLR. The effectiveness of ASLR or any randomization based mitigation

mechanism relies on two assumptions: (i) the entropy is large enough to prevent brute-force

attacks; and (ii) the adversary cannot learn the random value (e.g., module base, instruction

set). Unfortunately, these two assumptions rarely hold in practice. First, on 32-bit platforms,

user space programs only have 8 bits of entropy for heap memory, which is subject to

brute-force guessing [177] and spray attacks [61]. Second, with widely available information

disclosure vulnerabilities, attackers can easily recover the random value [172, 164]. In fact,

researchers have demonstrated that even with a single restricted information disclosure

vulnerability, it is possible to traverse a large portion of memory content [181].

When attacking a code cache, we can either launch a JIT spray attack to prepare a large

number of WRX pages on platforms with low entropy, or leverage an information disclosure

vulnerability to pinpoint the location of the code cache. Note that as one only needs to

know the location of the code cache, most fine-grained randomizations that try to further

randomize the contents of memory are ineffective against this attack. Since the content of

code cache will be overwritten in the next step (described below), none of the JIT spray

mitigation mechanisms can provide effective protection against this attack.

Writing to the Code Cache. The next step is to inject shellcode to the code cache.

In most cases, the code cache will not be adjacent to other writable heap memory (due

to ASLR), and may also be surrounded by guard pages. For these reasons, we cannot

directly exploit a buffer overflow vulnerability to overwrite the code cache. However, as our

assumption section (§3.2 suggests, besides logic errors that directly allow one to write to
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anywhere in memory, several kinds of memory corruption vulnerabilities can also provide

arbitrary memory write ability. In the following example, an integer overflow vulnerability

is exploited to acquire this capability.

An In-the-Wild Attack. We have observed one disclosed attack [160] that leveraged the

code cache to achieve reliable arbitrary code execution. This attack targeted the mobile

Chrome browser. By exploiting an integer overflow vulnerability, the attack first gained

reliable arbitrary memory read and write capabilities. Using these two capabilities, the

attack subsequently bypassed ASLR and located the permanently writable and executable

code cache. Then it injected shellcode into the code cache to overwrite an emitted JS

function. Finally, by invoking the corrupted function, it turned control flow to the shellcode.

Security Implication. In practice, we have only observed this single attack that injects

code into the code cache. We believe this is mainly due to the convenience of a popular

ROP attack pattern, which works as: (i) preparing traditional shellcode in memory; (ii)

exploiting vulnerabilities to launch an ROP attack; (iii) using the ROP gadgets to turn on

the execution permission of memory where the traditional shellcode resides; and (iv) jumping

to the traditional shellcode to finish the intended malicious tasks. However, once advanced

control flow hijacking prevention mechanisms such as fine-grained CFI are deployed, this

attack pattern will be much more difficult to launch.

On the other hand, code cache injection attack can easily bypass most of the exist-

ing exploit mitigation mechanisms. First, all control flow hijacking detection/prevention

mechanisms such as CFI and ROP detection rely on the assumption that the code cannot

be modified. When this assumption is broken, these mitigation mechanisms are no longer

effective. Second, any inline reference monitor based security solution is not effective because

the injected code is not monitored.

3.4.2 Exploiting Race Conditions

A naive defense against the code cache injection attack is to enforce W⊕X by manipulating

page permissions (Figure 1). More specifically, when the code cache is about to be modified

(e.g., for new code generation or runtime garbage collection), the code generator turns on the
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write permission and turns off the execution permission (t1). When the code cache is about

to be executed, the generator turns off the write permission and turns on the execution

permission (t2).

This solution prohibits the code cache to be both writable and executable at the same

time. If the target program is single-threaded, this approach can prevent code cache injection

attacks, as the code cache is only writable when the SDT is executing and we assume

that the SDT itself is trusted and not vulnerable, attackers cannot hijack or interrupt the

SDT to overwrite the code cache. However, as illustrated in Figure 2, in a more general

multi-threaded programming environment, even if the SDT is trusted, the code cache can

still be overwritten by other insecure threads when the the code cache is set to be writable

for one thread.

In this subsection, we use a concrete attack to demonstrate the feasibility of such attacks,

i.e., with naive W⊕X enforcement, it is still possible to overwrite the code cache with the

same exploit primitives described above.

Multi-threaded Programming in SDT. To launch the race-condition-based attack, we

need two more programming primitives. First, we need the ability to write multi-threaded

programs. Note that some SDTs such as Adobe Flash Player also allows “multi-threaded”

programming, but each “thread” is actually implemented as a standalone OS process. For

these SDTs, since the code cache is only writable to the corresponding “thread”, our proposed

exploit technique would not work. Second, since the attack window is generally small, we

need the ability to coordinate threads before launching the attack.

• Thread Primitives. A majority of SDTs have multi-threaded programming support.

JavaScript (JS) used to be single-threaded and event-driven. With the new HTML5

specification, JS also supports multi-threaded programming through the WebWorker

specification [205]. There are two types of WebWorker: dedicated worker and shared

worker. In V8, the dedicated worker is implemented as a thread within the same

process; a shared worker is implemented as a thread in a separate process. Since we

want to attack one JS thread’s code cache with another JS thread, we leverage the
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dedicated worker. Note that although each worker thread has its own code cache, it is

still possible to launch the attack, because memory access permissions are shared by

all threads in the same process.

• Synchronization Primitives. To exploit the race condition, two attacker-controlled

threads need to synchronize their operations so that the overwrite can happen within

the exact time window when the code cache is writable. Since synchronization is

an essential part of multi-threaded programming, almost all SDTs support thread

synchronization. In JS, thread synchronization uses the postMessage function.

A Proof-of-Concept Attack. Based on the vulnerability disclosed in the previous

real-world exploit, we built a proof-of-concept race-condition-based attack on the Chrome

browser. Since the disclosed attack [160] already demonstrated how ASLR can be bypassed

and how arbitrary memory write capability can be acquired, our attack focuses on how race

conditions can be exploited to bypass naive W⊕X enforcement. The high level workflow of

our attack is as follows:

1. Create a Worker. The main JS thread creates a web worker, and thus a worker thread

is created.

2. Initialize the Worker. The worker thread initializes its environment, making sure the

code cache is created. It then sends a message to the main thread through postMessage

that it is ready.

3. Locate the Worker’s Code Cache. Upon receiving the worker’s message, the main

JS thread locates the worker thread’s code cache, e.g., by exploiting an information

disclosure vulnerability. In the Chrome V8 engine, attackers can locate the code cache

using the previously disclosed exploit. Instead of following the pointers for the current

thread, attackers should go through the thread list the JS engine maintains and follow

pointers for the worker thread. Then, the main thread informs the worker that it is

ready.
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4. Make the Code Cache Writable. Upon receiving the main thread’s message, the worker

thread begins to execute another piece of code, forcing the SDT to update its code

cache. In V8, the worker can execute a function that is large enough to force the SDT

to create a new MemoryChunk for the code fragment and set it to be writable (for a

short time).

5. Monitor and Overwrite the Code Cache. At the same time, the main thread monitors

the status of the code cache and tries to overwrite it once its status is updated. In V8,

the main thread can keep polling the head of the MemoryChunk linked list to identify

the creation of a new code fragment. Once a new code fragment is created, the main

thread can then monitor its content. Once the first few bytes (e.g., the function

prologue) are updated, the main thread can try to overwrite the code cache to inject

shellcode. After overwriting, the main thread informs the worker it has finished.

6. Execute the Shellcode. Upon receiving the main thread’s new message, the worker calls

the function whose content has already been overwritten. In this way, the injected

shellcode is executed.

It is worth noting that the roles of the main thread and the worker thread cannot be

swapped in practice, because worker threads do not have access to the document object

model (DOM). Since many vulnerabilities exist within the rendering engine rather than the

JS engine, this means only the main thread (which has the access to the DOM) can exploit

those vulnerabilities.

Reliability of the Race Condition. One important question for any race-condition-

based attack is its reliability. The first factor that can affect the reliability of our attack is

synchronization, i.e., the synchronization primitive should be fast enough so that the two

threads can carry out the attack within the relatively small attack window. To measure

the speed of the synchronization between the worker and the main thread, we ran another

simple experiment:

1. The main thread creates a worker thread;
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2. The worker thread gets a timestamp and sends it to the main thread;

3. Upon receiving the message, the main thread sends an echo to the worker;

4. Upon receiving the message, the worker thread sends back an echo;

5. The main thread and the worker repeatedly send echoes to each other 1,000 times.

6. The main thread obtains another timestamp and computes the time difference.

The result shows that the average synchronization delay is around 23 µs. The average attack

window (t2− t1 in Figure 2) of our fine-grained naive W⊕X protection is about 43 µs. Thus,

in theory, the postMessage method is sufficiently fast to launch the race condition attack.

The second and more important factor that can affect the reliability of our attack is

task scheduling. Specifically, if the thread under the SDT context (e.g., the worker thread)

is de-scheduled by the OS while the attacking thread (e.g., the main thread) is executing,

then the attack window will be increased. The only way to change the code cache’s memory

permission is through system calls, and a context switch is likely to happen during the

system call. For example, the system call for changing memory access permissions on Linux

is mprotect. During the invocation of mprotect, since we are using fine-grained protection,

the virtual memory area needs to be split or merged. This will trigger the thread to be

de-scheduled. As a result, the main thread (with higher priority than the worker) can gain

control to launch attacks.

Considering these two factors, we tested our attack against the Chrome browser 100

times. Of these 100 tests, 91 succeeded.

3.5 System Design

This section presents the design of Sdcg, which aims to achieve two goals: (1) Sdcg should

prevent all possible code cache injection attacks under our adversary model; and (2) Sdcg

should introduce acceptable performance overhead. Currently, Sdcg is designed to be

integrated with the targeted SDT, so we assume the source code of the SDT is available.
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Figure 3: Overview of Sdcg’s multi-process-based architecture.

3.5.1 Overview and Challenges

Since the root cause of the attack is a writable code cache (either permanently or temporarily),

we can prevent such attacks making one of two design choices: (1) ensure that no component

other than the SDT can write to the code cache, e.g., through SFI or memory safety; or (2)

ensure that the memory occupied by the code cache is always mapped as RX. We selected the

second option for two reasons. First, we expect that the performance overhead of applying

SFI or memory safety to a large, complex program (e.g., a web browser) would be very high.

Second, implementing the first choice requires significant engineering effort.

Figure 3 shows the high level design of Sdcg. The key idea is that through shared

memory, the same memory content will be mapped into two (or more) different processes

with different access permissions. In the untrusted process(es), the code cache will be

mapped as RX; but in the SDT process, it will be mapped as WR. By doing so, Sdcg prevents

any untrusted code from modifying the code cache. At the same time, it allows the SDT to

modify the code cache as usual. Whenever the SDT needs to be invoked (e.g., to install

a new code fragment), the request will be served through a remote procedure call (RPC)

instead of a normal function call.

To build and maintain this memory model, following technical and engineering challenges

must be solved.

1. Memory Map Synchronization. Since the memory regions occupied by the code cache

29



are dynamically allocated and can grow and shrink freely, we need an effective way

to dynamically synchronize memory mapping between the untrusted process(es) and

the SDT process. More importantly, to make Sdcg’s protection mechanism work

transparently, we have to make sure that the memory is mapped at exactly the same

virtual address in all processes.

2. Remote Procedure Call. After relocating the SDT to another process, we need to make

it remotely invocable by wrapping former local invocations with RPC stubs. Since

RPC is expensive, we need to reduce the frequency of invocations, which also reduces

the attack surface.

3. Permission Enforcement. Since Sdcg’s protection is based on memory access permis-

sions, we must make sure that untrusted code cannot tamper with our permission

scheme. Specifically, memory content can be mapped as either writable or executable,

but never both at the same time.

3.5.2 Memory Map Synchronization

Synchronizing memory mapping between the untrusted process(es) and the SDT process is

a bi-directional issue. On one side, when the SDT allocates a new code fragment in the SDT

process, Sdcg should map the same memory region in the untrusted process(es) at exactly

the same address; otherwise the translated code will not work correctly (e.g., create an

incorrect branching target). On the other side, the untrusted process may also allocate some

resources that are critical to the SDT. For example, in the scenario of binary translation,

when the untrusted process loads a dynamically linked module, Sdcg should also load the

same module at the same address in the SDT process; otherwise the SDT will not be able

to locate the correct code to be translated. Moreover, this synchronization needs to be as

transparent to the SDT as possible, so as to minimize code changes.

When creating shared memory, there are two possible strategies: on-demand and

reservation-based. On-demand mapping creates the shared memory at the very moment a

new memory region is required, e.g., when the SDT wants to add a new memory region to

the code cache. However, as the process address space is shared by all modules of a program,
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the expected address may not always be available in both the untrusted process and the

SDT process. For this reason, we choose the reservation-based strategy. That is, when the

process is initialized, we reserve (map) a large chunk of shared memory in both the untrusted

process(es) and the SDT process. Later, any request for shared memory will be allocated

from this shared memory pool. Note that in modern operating systems, physical memory

resources are not mapped until the reserved memory is accessed, so our reservation-based

strategy does not impose significant memory overhead.

Once the shared memory pool is created, synchronization can be done via inter-process

communication (IPC). Specifically, when the SDT allocates a new memory region for the

code cache, it informs the untrusted process(es) about the base address and the size of

this new memory region. Having received this event, the untrusted process(es) maps a

memory region with the same size at the same base address with the expected permission

(RX). Similarly, whenever the untrusted process allocates memory that needs to be shared, a

synchronization event is sent to the SDT process.

3.5.3 Remote Procedure Call

Writing RPC stubs for the SDT faces two problems: argument passing and performance.

Argument passing can be problematic because of pointers. If a pointer points to a memory

location that is different between the untrusted process and the SDT process, then the SDT

ends up using incorrect data and causes run-time errors. Vice versa, if the returned value

from the SDT process contains pointers that point to data not copied back, the untrusted

code ends up running incorrectly. The common solution for the stub to serialize the object

before passing it to the remote process instead of simply passing the pointer. Unfortunately,

not all arguments have built-in serialization functionality. In addition, when an argument is

a large object, performing serialization and copy for every RPC invocation introduces high

performance overhead. Thus, in general, stub generation is not easy without support from

the SDT or from program analysis.

To avoid this problem, Sdcg takes a more systematic approach. Specifically, based

on the observation that a majority of data that the SDT depends on is either read-only
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or resides in dynamically mapped memory, we extend the shared memory to also include

the dynamic data the SDT depends on. According to the required security guarantee, the

data should be mapped with different permissions. By default, Sdcg maps the SDT’s

dynamic data as read-only in the untrusted process, to prevent tampering by the untrusted

code. However, if data-oriented attacks [41, 88, 89] are not considered, the SDT’s dynamic

data can be mapped as WR in the untrusted process. After sharing the data, we only need

to handle a few cases where writable data (e.g., pointers within global variables) is not

shared/synchronized.

Since RPC invocations are much more expensive than normal function calls, we want to

minimize the frequency of RPC invocation. To do so, we take a passive approach. That

is, we do not convert an entry from the SDT to RPC unless it modifies the code cache.

Again, we try to achieve this goal without involving heavy program analysis. Instead, we

leverage the regression tests that are usually distributed along with the source code. More

specifically, we begin with no entries being converted to RPC and gradually convert them

until all regression tests pass.

While our approach can be improved with more automation and program analysis, we

leave these as future work because our main goal here is to design and validate that our

solution is effective against the new code cache injection attacks.

3.5.4 Permission Enforcement

To enforce mandatory W⊕X, we leverage the delegation-based sandbox architecture [80].

Specifically, we intercept all system calls related to virtual memory management, and enforce

the following policies in the SDT process:

(I) Memory cannot be mapped as both writable and executable.

(II) When mapping a memory region as executable, the base address and the size must

come from the SDT process, and the memory is always mapped as RX.

(III) The permission of non-writable memory cannot be changed.
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3.5.5 Security Analysis

In this section, we analyze the security of Sdcg under our threat model. First, we show

that our design can enforce permanent W⊕X policy. The first system call policy ensures

that attackers cannot map memory that is both writable and executable. The second policy

ensures that attackers cannot switch memory from non-executable to executable. The

combination of these two policies guarantees that no memory content can be mapped as

both writable and executable, either at the same time or alternately. Next, the last policy

ensures that if there is critical data that the SDT depends on, it cannot be modified by

attackers. Finally, since the SDT is trusted and its data is protected, the second policy can

further ensure that only SDT-verified content (e.g., code generated by the SDT) can be

executable. As a result, Sdcg can prevent any code cache injection attack.

3.6 Implementation

We implemented two prototypes of Sdcg, one for the Google V8 JS engine [85], and the other

for the Strata DBT [169]. Both prototypes were implemented on Linux. We chose these two

SDTs for the following reasons. First, JS engines are one of the most widely deployed SDTs.

At the same time, they are also one of the most popular stepping stones for launching attacks.

Among all JS engines, we chose V8 because it is open source, highly ranked, and there is

a disclosed exploit [160]. Second, DBTs have been widely used by security researchers to

build various security solutions [20, 142, 43, 90, 87]. Among all DBTs, we chose Strata

because (1) it has been used to implement many promising security mechanisms, such as

instruction set randomization [90], instruction layout randomization [87], etc; and (2) its

academic background allowed us to have access to its source code, which is required for

implementation of Sdcg.

3.6.1 Shared Infrastructure

The memory synchronization and system call filtering mechanisms are specific to the target

platform, but they can be shared among all SDTs.

Seccomp-Sandbox. Our delegation-based sandbox is built upon the seccomp-sandbox [83]
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from Google Chrome. Although Google Chrome has switched to a less complicated process

sandbox based on seccomp-bpf [52], we found that the architecture of seccomp-sandbox

serves our goal better. Specifically, since seccomp only allows four system calls once enabled,

and not all system calls can be fulfilled by the broker (e.g., mmap), the seccomp-sandbox

introduced a trusted thread to perform system calls that cannot be delegated to the broker.

To prevent attacks on the trusted thread, the trusted thread operates entirely on CPU

registers and does not trust any memory that is writable to the untrusted code. When the

trusted thread makes a system call, the system call parameters are first verified by the broker,

and then passed through a shared memory that is mapped as read-only in the untrusted

process. As a result, even if the other threads in the same process are compromised, they

cannot affect the execution of the trusted thread. This provides a perfect foundation to

securely build our memory synchronization mechanism and system call filtering mechanism.

To enforce the mandatory W⊕X policy, we modified the sandbox so that before entering

sandbox mode, Sdcg enumerates all memory regions and converts any WRX region to RX.

For RPC invocation, we also reused seccomp-sandbox’s domain socket based communica-

tion channel. However, we did not leverage the seccomp mode in our current implementation

for several reasons. First, it is not compatible with the new seccomp-bpf-based sandbox

used in Google Chrome. Second, it intercepts too many system calls that are not required

by Sdcg. More importantly, both Strata and seccomp-bpf provide enough capability for

system call filtering.

Shared Memory Pool. During initialization, Sdcg reserves a large amount of con-

secutive memory as a pool. This pool is mapped as shared (MAP_SHARED), not file backed

(MAP_ANONYMOUS) and with no permission (PROT_NONE). After this, any mmap request from the

SDT allocates memory from this pool (by changing the access permission) instead of using

the mmap system call. This guarantees any SDT allocated region can be mapped at exactly

the same address in both the SDT process and the untrusted process(es).

After the sandbox is enabled, whenever the SDT calls mmap, Sdcg generates a synchro-

nized request to the untrusted process(es), and waits until the synchronization is done before

returning to the SDT. In the untrusted process, the synchronization event is handled by the
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trusted thread. It reads a synchronization request from the IPC channel and then changes

the access permission of the given region to the given value. Since the parameters (base

address, size and permission) are passed through the read-only IPC channel and the trusted

thread does not use a stack, it satisfies our security policy for mapping executable memory.

Memory mapping in the untrusted process(es) is forwarded to the SDT process by the

system call interception mechanism of the sandbox. The request first goes through system

call filtering to ensure the security policy is enforced. Sdcg then checks where the request

originated. If the request is from the SDT, or is a special resource the SDT depends on (e.g.,

mapping new modules needs to be synchronized for Strata), the request is fulfilled from the

shared memory pool. If it is a legitimate request from the untrusted code, the request is

fulfilled normally.

System Call Filtering. Sdcg rejects the following types of system calls.

• mmap with writable (PROT_WRITE) and executable (PROT_EXEC) permission.

• mprotect or mremap when the target region falls into a protected memory region.

• mprotect with executable (PROT_EXEC) permission.

Sdcg maintains a list of protected memory regions. After the SDT process is forked,

it enumerates the memory mapping list through /proc/self/maps, and any region that is

executable is included in the list. During runtime, when a new executable region is created,

it is added to the list; when a region is unmapped, it is removed from the list. If necessary,

the SDT’s dynamic data can also be added to this list.

For Strata, this filtering is implemented by intercepting the related system calls (mmap,

mremap, and mprotect). For V8 (integrated with the Google Chrome browser), we rely on

the seccomp-bpf filtering policies.

3.6.2 SDT Specific Handling

Next, we describe some implementation details that are specific to the target SDT.

Implementation for Strata. Besides the code cache, many Strata-based security

mechanisms also involve some critical metadata (e.g., the key to decrypt a randomized
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instruction set) that needs to be protected. Otherwise, attackers can compromise such

data to disable or mislead critical functionalities of the security mechanisms. Thus, we

extended the protection to Strata’s code, data, and the binary to be translated. Fortunately,

since Strata directly allocates memory from mmap and manages its own heap, this additional

protection can be easily supported by Sdcg. Specifically, Sdcg ensures that all the memory

regions allocated by Strata are mapped as either read-only or inaccessible. Note that we do

not need to protect Strata’s static data, because once the SDT process is forked, the static

data is copy-on-write protected, i.e., while the untrusted code could modify Strata’s static

data, the modification cannot affect the copy in the SDT process.

Writing RPC stubs for Strata also reflects the differences in the attack model: since all

dynamic data are mapped as read-only, any functionality that modified the data also needs

to be handled in the SDT process.

Another special case for Strata is the handling of process creation, i.e., the clone system

call. The seccomp-sandbox only handles the case for thread creation, which is sufficient

for Google Chrome (and V8). But for Strata, we also need to handle process creation.

The challenge for process creation is that once a memory region is mapped as shared, the

newly created child process will also inherit this memory regions as shared. Thus, once the

untrusted code forks a new process, this process also shares the same memory pool with its

parent and the SDT process. If we want to enforce a 1 : 1 serving model, we need to un-share

the memory. Unfortunately, un-sharing memory under Linux is not easy: one needs to (1)

map a temporary memory region, (2) copy the shared content to this temporary region, (3)

unmap the original shared memory, (4) map a new shared memory region at exactly the

same address, (5) copy the content back, and (6) unmap the temporary memory region. At

the same time, the child process is likely to either share the same binary as its parent, which

means it can be served by the same SDT; or call execve immediately after the fork, which

completely destroys the virtual address space it inherited from its parent. For these reasons,

we implemented a N : 1 serving model for Strata, i.e., one SDT process serves multiple

untrusted processes. The clone system call can then be handled in the same way for both

thread creation and process creation. The only difference is that when a new memory region
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is allocated from the shared memory pool, all processes need to be synchronized.

3.6.2.1 Implementation for V8

Compared with Strata, the biggest challenge for porting V8 to Sdcg is the dynamic data

used by V8. Specifically, V8 has two types of dynamic data: JS related data and its own

internal data. The first type of data is allocated from custom heaps that are managed by

V8 itself. Similar to Strata’s heap, these heaps directly allocate memory from mmap, thus

Sdcg can easily handle this type of data. The difficulty comes from the second type of data,

which is allocated from the standard C library (glibc on Linux). This makes it challenging to

track which memory region is used by the JS engine. Clearly, we cannot make the standard

C library allocate all the memory from the shared memory pool. However, as mentioned

earlier in the design section, we have to share data via RPC and avoid serializing objects,

especially C++ objects, which can be complicated. To solve this problem, we implemented

a simple arena-based heap that is backed by the shared memory pool and modified V8 to

allocate certain objects from this heap. Only objects that are involved in RPC need to be

allocated from this heap, the rest can still be allocated from the standard C library.

Another problem is the stack. Strata does not share the same stack as the translated

program, so it never reads data from the program’s stack. This is not true for V8. In fact,

many objects used by V8 are allocated on the stack. Thus, during RPC handling, the STD

process may dereference pointers pointing to the stack. Moreover, since the stack is assigned

during thread creation, it is difficult to ensure that the program always allocates stack space

from our shared memory pool. As a result, we choose to copy stack content between the two

processes. Fortunately, only 3 RPCs require a stack copy. Note that because the content is

copied to/from the same address, when creating the trusted SDT process, we must assign it

a new stack instead of relying on copy-on-write.

Writing RPC stubs for V8 is more flexible than Strata because dynamic data is not

protected. For this reason, we would prefer to convert functions that are invoked less

frequently. To achieve this goal, we followed two general principles. First, between the entry

of the JS engine and the point where the code cache is modified, many functions could
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be invoked. If we convert a function too high in the calling chain, and the function does

not result in modification of the code cache under another context, we end up introducing

unnecessary RPC overhead. For instance, the first time a regular expression is evaluated, it

is compiled; but thereafter, the compiled code can be retrieved from the cache. Thus, we

want to convert functions that are post-dominated by operations that modify the code cache.

On the same time, if we convert a function that is too low in the calling chain, even though

the invocation of this function always results in modification of the code cache, the function

may be called from a loop, e.g., marking processes during garbage collection. This also

introduces unnecessary overhead. Thus, we also want to convert functions that dominate

as many modifications as possible. In our prototype implementation, since we did not use

program analysis, these principles were applied empirically. In the end, we added a total of

20 RPC stubs.

3.7 Evaluation

To evaluate our prototype, we designed and performed experiments in order to answer the

following questions:

• How effective is our design in blocking code cache injection attacks (§3.7.2)?

• How much overhead is incurred by our protection mechanism (§3.7.3 and §3.7.4)?

3.7.1 Setup

For our protected version of the Strata DBT, we measured the performance overhead using

SPEC CINT 2006 [186]. Our protected version of the V8 JS engine was based on revision

16619. The benchmark we used to measure the performance overhead is the V8 Benchmark

distributed with the source code (version 7) [162]. All experiments were run on a workstation

with one Intel Core i7-3930K CPU (6-core, 12-thread) and 32GB memory. The operating

system is the 64-bit Ubuntu 13.04 with kernel 3.8.0-35-generic.

3.7.2 Effectiveness

In §3.5.5, we provided a security analysis of our system design, which showed that if

implemented correctly, Sdcg can prevent all code cache injection attacks. In this section,

38



Table 1: RPC Overhead During the Execution of V8 Benchmark.

Benchmark Avg Call Lat Avg Ret Lat # of Calls w/ Stack Copy w/o Stack Copy

Richards 4.70 µs 4.54 µs 1525 362 (23.74%) 1163 (76.26%)
DeltaBlue 4.28 µs 4.46 µs 2812 496 (17.64%) 2316 (82.36%)
Crypto 3.99 µs 4.28 µs 4596 609 (13.25%) 3987 (86.75%)
RayTrace 3.98 µs 4.00 µs 3534 715 (20.23%) 2819 (79.77%)
EarlyBoyer 3.87 µs 4.28 µs 5268 489 ( 9.28%) 4779 (90.72%)
RegExp 3.82 µs 5.06 µs 6000 193 ( 3.22%) 5807 (96.78%)
Splay 4.63 µs 5.04 µs 5337 1187 (22.24%) 5150 (77.76%)
NavierStokes 4.67 µs 4.82 µs 1635 251 (15.35%) 1384 (84.65%)

we evaluate our Sdcg-ported V8 prototype to determine whether it can truly prevent the

attack we demonstrated in §3.4.2.

The experiment was done using the same proof-of-concept code as described in §3.4.2.

As the attack relies on a race condition, we executed it 100 times. For the version that is

protected by naive W⊕X enforcement, the attack was able to inject shellcode into the code

cache 91 times. For Sdcg-protected version, all 100 attempts failed.

3.7.3 Micro Benchmark

The overhead introduced by Sdcg comes from two major sources: RPC invocation and

cache coherency.

RPC Overhead. To measure the overhead for each RPC invocation, we inserted a new

field in the request header to indicate when this request was sent. Upon receiving the request,

the handler calculates the time elapsed between this and the current time. Similarly, we also

calculated the time elapsed between the sending and receiving of return values. To eliminate

the impact from cache synchronization, we pinned all threads (in both the untrusted process

and the SDT process) to a single CPU core. The frequency of RPC invocation also effects

overall overhead, so we also collected this number during the evaluation.

Table 1 shows the result from the V8 benchmark, using the 64-bit release build. The

average latency for call request is around 3-4 µs and the average latency for RPC return

is around 4-5 µs. Thus, the average latency for an RPC invocation through Sdcg’s

communication channel is around 8-9 µs. The number of RPC invocations is between 1,525

and 6,000. Since the input is fixed, this number is stable, with small fluctuations caused by

garbage collection. Compared to the overall overhead presented in the next subsection, it
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follows the expected pattern that the larger the number of RPC invocations, the higher the

overhead is. Among all RPC invocations, less than 24% require a stack copy.

Cache Coherency Overhead. Sdcg involves at least three concurrently running threads:

the main thread in the untrusted process, the trusted thread in the untrusted process, and

the main thread in the SDT process. This number can increase if the SDT to be protected

already uses multiple threads. On a platform with multiple cores, these threads can be

scheduled to different cores. Since Sdcg depends heavily on shared memory, OS scheduling

for these threads can also affect performance, i.e., cache synchronization between threads

executing on different cores introduces additional overhead.

In this subsection, we report this overhead at the RPC invocation level. In the next

subsection, we present its impact on overall performance. The evaluation also uses V8

benchmark. To reduce the possible combination of scheduling, we disabled all other threads

in V8, leaving only the aforementioned three threads. The Intel Core i7-3930K CPU on our

testbed has six cores. Each core has a dedicated 32KB L1 data cache and 256KB integrated

L2 cache. A 12MB L3 cache is shared among all cores. When Hyperthreading is enabled,

each core can execute two concurrent threads.

Given the above configuration, we have tested the following scheduling:

1. All threads on a single CPU thread (affinity mask = {0});

2. All threads on a single core (affinity mask = {0,1});

3. Two main threads that frequently access shared memory on a single CPU thread,

trusted thread freely scheduled (affinity mask = {0},{*});

4. Two main threads on a single core, trusted thread freely scheduled (affinity mask =

{0,1},{*});

5. All three threads on different cores (affinity mask = {0},{2},{4}); and

6. All three threads freely scheduled (affinity mask = {*},{*},{*}).

Table 2 shows the result, using the 64-bit release build. All the numbers are for RPC

invocation, with return latency omitted. Based on the result, it is clear that scheduling

40



Table 2: Cache Coherency Overhead Under Different Scheduling Strategies.

Benchmark Schedule 1 Schedule 2 Schedule 3 Schedule 4 Schedule 5 Schedule 6

Richards 4.70 µs 13.76 µs 4.47 µs 14.25 µs 12.85 µs 13.37 µs
DeltaBlue 4.28 µs 13.29 µs 4.31 µs 13.85 µs 14.09 µs 15.84 µs
Crypto 3.99 µs 10.91 µs 3.98 µs 14.07 µs 12.47 µs 13.48 µs
RayTrace 3.98 µs 14.99 µs 4.05 µs 14.76 µs 13.15 µs 12.35 µs
EarlyBoyer 3.87 µs 13.70 µs 3.87 µs 14.27 µs 13.42 µs 13.47 µs
RegExp 3.82 µs 14.64 µs 3.85 µs 14.48 µs 13.55 µs 12.32 µs
Splay 4.63 µs 12.92 µs 4.49 µs 13.22 µs 13.36 µs 15.11 µs
NavierStokes 4.67 µs 12.06 µs 4.47 µs 13.02 µs 14.80 µs 12.65 µs

Table 3: SPEC CINT 2006 Results.

Benchmark Native Strata SDCG (Pinned) SDCG (Free)

perlbench 364 559 574 558
bzip2 580 600 613 602
gcc 310 403 420 410
mcf 438 450 479 471
gobmk 483 610 623 611
hmmer 797 777 790 777
sjeng 576 768 784 767
libquantum 460 463 511 474
h264ref 691 945 980 971
omnetpp 343 410 450 428
astar 514 546 587 563
xalancbmk 262 499 515 504

GEOMEAN 461 566 592 576

has a great impact on the RPC latency. If the two main threads are not scheduled on the

same CPU thread, the average latency can exacerbate to 3x-4x slower. On the other hand,

scheduling for the trusted thread has little impact on the RPC latency. This is expected

because the trusted thread is only utilized for memory synchronization.

3.7.4 Macro Benchmark

Since OS scheduling can have a large impact on performance, for each benchmark suite,

we evaluated two CPU schedules. The first (Pinned) pins both the main threads from the

untrusted process and the SDT process to a single core; and the second (Free) allows the

OS to freely schedule all threads.

SPEC CINT 2006. Both the vanilla Strata and the Sdcg-protected Strata are built

as 32-bit. The SPEC CINT 2006 benchmark suite is also compiled as 32-bit. Since all

benchmarks from the suite are single-threaded, the results of different scheduling strategies

only reflect the overhead caused by Sdcg.
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Figure 4: SPEC CINT 2006 Slowdown of Strata.

Table 3 shows the evaluation result. The first column is the result of running natively.

The second column is the result for Strata without Sdcg. We use this as the baseline for

calculating the slowdown introduced by Sdcg. The third column is the result for Sdcg

with pinned schedule, and the last column is the result for Sdcg with free schedule. Since

the standard deviation is small (less than 1%), we omitted this information.

The corresponding slowdown is shown in Figure 4. For all benchmarks, the slowdown

introduced by Sdcg is less than 6%. The overall (geometric mean) slowdown is 1.46% for

the pinned schedule, and 2.05% for the free schedule.

Since SPEC CINT is a computation-oriented benchmark suite and Strata does a good

job reducing the number of translator invocations, we did not observe a significant difference

between the pinned schedule and the free schedule.

JavaScript Benchmarks. Our Sdcg-protected V8 JS engine was based on revision

16619. For better comparison with an SFI-based solution [9], we performed the evaluation on

both IA32 and x64 release builds. The arena-based heap we implemented was only enabled

for Sdcg-protected V8. To reduce the possible combination of scheduling, we also disabled

all other threads in V8.

Table 4 shows the results for the IA32 build, and Table 5 shows the results for the x64

build. The first column is the baseline result; the second column is the result of Sdcg-

protected V8 with a pinned schedule; and the last column is the result of Sdcg-protected V8
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Table 4: V8 Benchmark Results (IA32).

Benchmark Baseline SDCG (Pinned) SDCG (Free)

Richards 24913 (2.76%) 23990 (0.28%) 24803 (1.72%)
DeltaBlue 25657 (3.31%) 24373 (0.43%) 25543 (3.86%)
Crypto 20546 (1.61%) 19509 (1.27%) 19021 (1.95%)
RayTrace 45399 (0.38%) 42162 (0.75%) 43995 (6.46%)
EarlyBoyer 37711 (0.61%) 34805 (0.27%) 34284 (0.82%)
RegExp 4802 (0.34%) 4251 (1.04%) 2451 (3.82%)
Splay 15391 (4.47%) 13643 (0.71%) 9259 (8.18%)
NavierStokes 23377 (4.15%) 22586 (0.42%) 23518 (1.26%)

Score 21071 (0.72%) 19616 (0.35%) 17715 (1.86%)

Table 5: V8 Benchmark Slowdown (x64).

Benchmark Baseline SDCG (Pinned) SDCG (Free)

Richards 25178 (3.39%) 24587 (2.31%) 25500 (3.24%)
DeltaBlue 24324 (3.65%) 23542 (0.38%) 24385 (2.54%)
Crypto 21313 (3.16%) 20551 (0.26%) 20483 (2.57%)
RayTrace 35298 (5.97%) 32972 (1.03%) 35878 (1.66%)
EarlyBoyer 32264 (4.42%) 30382 (0.61%) 30135 (1.04%)
RegExp 4853 (3.59%) 4366 (0.82%) 2456 (7.72%)
Splay 13957 (6.02%) 12601 (2.92%) 7332 (9.85%)
NavierStokes 22646 (2.48%) 21844 (0.30%) 21468 (3.45%)

Score 19712 (3.57%) 18599 (0.62%) 16435 (1.03%)

with a free schedule. All results are the geometric mean over 10 executions of the benchmark.

The number in the parentheses is the standard deviation as a percentage. As we can see,

the fluctuation is small, with the baseline and a free schedule slightly higher than a pinned

schedule.

The corresponding slowdown is shown in Figure 5 (for IA32 build) and Figure 6 (for

x64 build). Overall, we did not observe a significant difference between the IA32 build and

the x64 build. For four benchmarks (Richards, DeltaBlue, Crypto, and NavierStokes), the

slowdown introduced by Sdcg is less than 5%, which is negligible because they are similar

to the standard deviation. The other four benchmarks (RayTrace, EarlyBoyer, RegExp,

and Splay) have higher overhead, but with a pinned schedule, the slowdown is within 11%,

which is much smaller than previous SFI-based solutions [9] (79% on IA32).

There are two major sources of overhead. For RPC overhead, we can see a clear trend

that more RPC invocations (Table 1) implies more slowdown. However, the impact of

cache coherency overhead caused by different scheduling strategies is not consistent. For

some benchmarks (Richards, DeltaBlu, and RayTrace), free scheduling is faster than pinned
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Figure 5: V8 Benchmark Slowdown (IA32).
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Figure 6: V8 Benchmark Slowdown (x64).

scheduling; for some benchmarks (Crypto and EarlyBoyer), overhead is almost the same;

but for two benchmarks (RegExp and Splay), the overhead under free scheduling is much

higher than pinned scheduling. We believe this is because these two benchmarks depend

more heavily on shared data (memory) access. Note that, unlike Strata, for Sdcg-protected

V8, we not only shared the code cache, but also shared the heaps used to store JS objects,

for the ease of RPC implementation. Besides RPC frequency, this is another reason why we

observed a higher overhead compared with Sdcg-protected Strata.

3.8 Limitations and Future Work

This section discusses the limitations of this work and potential future work.
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3.8.1 Reliability of Race Condition

Although we only showed the feasibility of the attack in one scenario, the dynamic translator

can be invoked under different situations, each of which has its own race condition window.

Some operations can be quick (e.g., patching), while others may take longer. By carefully

controlling how the translator is invoked, we can extend the race condition window and

make such attacks more reliable.

In addition, OS scheduling can also affect the size of the attack window. For example,

as we have discussed in §3.4, the invocation of mprotect is likely to cause the thread to be

swapped out of the CPU, which will extend the attack window.

3.8.2 RPC Stub Generation

To port a dynamic translator to Sdcg, our current solution is to manually rewrite the source

code. Although the modification is relatively small compared to the translator’s code size,

the process still requires the developer to have a good understanding of the internals of

the translator. This process can be improved or even automated through program analysis.

First, our current RPC stub creation process is not sound, i.e., we heavily relied on the test

input. Thus, if a function is not invoked during testing, or the given parameter does not

trigger the function to modify the code cache, then we miss this function. Second, to reduce

performance overhead and the attack surface, we want to create stubs only for functions

that (1) are post-dominated by operations that modify the code cache; and (2) dominate

as many modification operations as possible. Currently, this is done empirically. Through

program analysis, we could systematically and more precisely identify these “key” functions.

Finally, for the ease of development, our prototype implementation uses shared memory

to avoid deep copy of objects when performing RPC. While this strategy is convenient, it

may introduce additional cache coherency overhead. With the help of program analysis,

we could replace this strategy with object serialization, but only for data that is accessed

during RPC.
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3.8.3 Performance Tuning

In our current prototype implementations, the SDTs were not aware of our modification

to their architectures. Since their optimization strategy may not be ideal for Sdcg, it is

possible to further reduce the overhead by making the SDT be aware of our modification.

First, one major source of Sdcg’s runtime overhead is RPC invocation, and the overhead can

be reduced if we reduce the frequency of code cache modification. This can be accomplished

in several ways. For instance, we can increase the threshold to trigger code optimization,

use more aggressive speculative translation, separate the garbage collection, etc.

Second, in our implementations, we used the domain socket-based IPC channel from

the seccomp-sandbox. This means for each RPC invocation, we need to enter the kernel

twice; and both the request/return data need to be copied to/from the kernel. While this

approach is more secure (in the sense that a sent request cannot be maliciously modified),

if the request is always untrusted, then using a faster communication channel (e.g., ring

buffer) could further reduce the overhead.

Third, we used the same service model as seccomp-sandbox in our prototypes. That is,

RPC requests are served by a single thread in the SDT process. This strategy is sufficient

for SDTs where different threads share the same code cache (e.g., Strata) since modifications

need to be serialized anyway to prevent a data race condition. However, this service model

can become a bottleneck when the SDT uses different code caches for different thread (e.g.,

JS engines). For such SDTs, we need to create dedicated service threads in the SDT process

to serve different threads in the untrusted process.

In addition, our current prototype implementations of Sdcg are not hardware-aware.

Different processors can have different shared cache architectures and cache management ca-

pabilities, which in turn affects cache synchronization between different threads. Specifically,

on a multi-processor system, two cores may or may not share the same cache. As we have

demonstrated, if the translator thread and the execution thread are scheduled to two cores

with different cache, then the performance is much worse than when they are scheduled to

cores with the same cache. To further reduce the overhead, we can assign processor affinity

according to the hardware features.
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3.9 Summary

In this chapter, we highlighted that a code cache injection attack is a viable exploit technique

that can bypass many state-of-the-art defense mechanisms. To defeat this threat, we

proposed Sdcg, a new architecture that enforces mandatory W⊕X policy. To demonstrate

the feasibility and benefit of Sdcg, we ported two software dynamic translators, Google V8

and Strata, to this new architecture. Our development experience showed that Sdcg is easy

to adopt and our performance evaluation showed the performance overhead is small.
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CHAPTER IV

PREVENTING KERNEL PRIVILEGE ESCALATION ATTACKS

WITH DATA-FLOW INTEGRITY

4.1 Motivation

The operation system (OS) kernel is often the de facto trusted computing base (TCB)

of the whole software stack, including many higher level security solutions. For example,

the security of an application/browser sandbox usually depends on the integrity of the

kernel. Unfortunately, kernel vulnerabilities are not rare in commodity OS kernels like Linux,

Windows, and XNU. Once the kernel is compromised, attackers can bypass any access

control checks, escalate their privileges, and hide the evidence of attacks. For example,

to prevent remote attacks, modern browsers all isolate the potential vulnerable rendering

engine in a sandbox. Theoretically, this should prevent all attacks as even if attackers can

compromise the rendering engine, they cannot perform any malicious activity. However, due

to kernel vulnerabilities, attackers usually can find a way to break the sandbox and take out

the attacks, which has been demonstrated repeatedly in the Pwn2Own competitions.

Among all kernel vulnerabilities, the ones related to memory corruption are the most

prevalent because all commodity kernels are implemented in low-level unsafe language like C

and assembly. Memory corruption bugs are also the most dangerous ones because they can

grant attackers great capabilities. For these reasons, most kernel attacks exploit memory

corruption vulnerabilities.

Existing solutions to this problem can be classified into two main categories: off-line

tools and runtime protection mechanisms. Off-line tools [206, 111, 37, 220, 99] try to identify

potential kernel memory safety violations so that developers can fix them before deployment.

Although these tools have successfully found many vulnerabilities in the kernel, they have

limitations. First, most bug-finding tools tend to generate lots of false positives, which

makes it hard for developers to filter out the real bugs. Second, tools that can prove an
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implementation is free of memory safety issues usually do not scale well. This means they

can only be applied to small, self-contained kernel extensions [138, 19] or micro-kernels [107].

For runtime protection mechanisms, as discussed in §2 a majority of them focus on

protecting the control flow. Many mechanisms are proposed to protect code integrity and

stop malicious kernel extensions from loading [173]. Others focus on preventing control-flow

hijacking attacks, such as ret2usr [155, 104] and return-oriented programming (ROP) [115].

More recently, researchers have demonstrated the feasibility of enforcing control-flow integrity

(CFI) in kernel space [209, 56]. However, in addition to problems discovered in CFI [32, 77,

82, 66], the more fundamental problem is that, even with perfect CFI, many vulnerabilities

are still exploitable. This is because OS kernels are mainly data-driven, so CFI can be easily

bypassed by data-oriented attacks [41]. For example, to bypass discretionary access control

(DAC), attackers just need to overwrite the subject’s identity of the current process with

the one of the root/administrators.

Some technologies are capable of preventing data-oriented attacks. For example, software

fault isolation (SFI) [207, 74, 35, 123] can be used to isolate small “untrusted” modules

from tampering the core kernel components. However, a recent study on Linux kernel

vulnerabilities [38] has shown that vulnerabilities in the core components are as common as

vulnerabilities in third-party drivers. The secure virtual architecture [57] is able to provide

full memory safety for the kernel, but its performance overhead is too high to be deployed

in practice.

Another promising technique that can prevent both control-flow and data-oriented attacks

is data-flow integrity (DFI) [34]. Similar to CFI, DFI guarantees that runtime data-flow

cannot deviate from the data-flow graph generated from static analysis. For example, data

from a string buffer should never flow to the return address on stack (control-data), or to

the uid (non-control-data). Utilizing this technique, we can enforce a large spectrum of

security invariants in the kernel to defeat different attacks. For instance, to defeat privilege

escalation attacks, we can utilize DFI to enforce security invariants that are related to kernel

access control mechanisms (a.k.a. reference monitors). Specifically, assuming a reference

monitor is implemented correctly, its runtime correctness relies on three high-level security
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invariants [7]:

I Complete mediation: attackers should not be able to bypass any access control

check; and

II Tamper proof: attackers should not be able to tamper with the integrity of either

the code or data of the reference monitor.

While this approach sounds intuitive at high level, enforcing it with practical runtime

performance overhead is challenging. First, unlike kernel extensions, which are usually self-

contained and use dedicated data structures, access control checks are scattered throughout

the kernel, and related data are mixed with other data. Therefore, the protection technique

must be deployed kernel-wide. Moreover, without hardware support, software-based DFI

implementation can be very expensive, e.g., the original DFI enforcement implementation

imposed an average 104% overhead for user-mode CPU benchmarks [34]. Since OS kernels

tend to be more data intensive than those CPU benchmarks, we expect the same technique

will be even more expensive for kernel protection.

To overcome these challenges, we propose Kenali, a system that is both principled and

practical. Kenali consists of two key techniques. Our first technique, InferDists, is based

on the observation that although the protection has to be kernel-wide, only a small portion

of data is essential for enforcing the two security invariants related to access control. For ease

of discussion, we refer to this set of data as distinguishing regions (formally defined in §4.6.1).

Hence, instead of enforcing DFI for all kernel data, we only need to enforce DFI over the

distinguishing regions. Our second technique, ProtectDists, is a new technique to enforce

selective DFI over the distinguishing regions. In particular, since distinguishing regions only

constitutes a small portion of all kernel data, ProtectDists uses a two-layer protection

scheme. The first layer provides a coarse-grained but low-overhead data-flow isolation that

prevents illegal data-flow from non-distinguishing regions to distinguishing regions. After this

separation, the second layer then enforces fine-grained DFI over the distinguishing regions.

Combining these two techniques, namely, InferDists and ProtectDists, Kenali is able

to enforce the two security invariants without sacrificing too much performance.
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4.2 Threat Model and Assumptions

Our research addresses kernel attacks that exploit memory corruption vulnerabilities to

achieve privilege escalation. We only consider attacks that originate from unprivileged

code, such as user-space application without root privilege. Accordingly, attacks that

exploit vulnerabilities in privileged system processes (e.g., system services or daemons) are

out-of-scope. Similarly, because kernel drivers and firmware are already privileged, we do

not consider attacks that originate from kernel rootkits and malicious firmware. Please

note that we do not exclude attacks that exploit vulnerabilities in kernel drivers, but only

attacks from malicious kernel rootkits. Other kernel exploits such as denial-of-service (DoS),

logical/semantic bugs, or hardware bugs [106] are also out-of-scope. We believe this is a

realistic threat model because (1) it covers a majority of the attack surface and (2) techniques

to prevent the excluded attacks have been proposed by other researchers and can be combined

with Kenali.

However, we assume a powerful adversary model for memory corruption attacks. Specifi-

cally, we assume there is one or more kernel vulnerabilities that allow attackers to read and

write word-size value at an arbitrary virtual address, as long as that address is mapped in

the current process address space.

Since many critical non-control-data are loaded from disk, another way to compromise the

kernel is to corrupt the disk. Fortunately, solutions already exist for detecting and preventing

such attacks. For example, secure boot [10] can guarantee that the kernel and Kenali are

not corrupted on boot; SUNDR enables data to be stored securely on untrusted servers [116];

ZFS enforces end-to-end data integrity using the Merkle tree [26]; and Google also introduced

a similar mechanism called DMVerity [8] to protect the integrity of critical disk partitions.

For these reasons, we limit the attack scope of this paper to memory-corruption-based

attacks and exclude disk-corruption-based attacks.

4.3 Related work

In this section, we compare Kenali with a variety of defense mechanisms to defend memory-

corruption-based attacks.
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4.3.1 Kernel Integrity

Early work on runtime kernel integrity protection focused on code integrity, including

boot time [10] and post boot [173, 16, 62]. Kenali also needs to guarantee kernel code

integrity, and our approach is similar to [62]. After rootkit became a major threat to

the kernel, techniques have also been proposed to detect malicious modifications to the

kernel [158, 159, 18, 31]. Compared to these works, Kenali has two differences: (1) threat

model: rootkit are code already with kernel privilege, and their goal is to hide their existence;

and (2) soundness: most of these tools are not sound on identifying all critical data (i.e.,

have false negatives), but our approach is sound.

4.3.2 Software Fault Isolation

Because many memory corruption vulnerabilities are found in third-party kernel drivers due

to relatively low code quality, many previous works focused on confining the memory access

capabilities of these untrusted code with SFI [207, 74, 35, 123]. A major limitation of SFI,

as pointed out by [38], is that the core kernel may also contain many bugs, which cannot be

handled by SFI.

4.3.3 Data-flow Integrity

DFI is a more general technique than SFI, as it can mitigate memory corruptions from

any module of the target program/kernel. Kenali differs from previous work on DFI

enforcement [4, 34] in the following aspects. First, Kenali is designed for OS kernels, while

previous work focused on user-mode programs; so Kenali requires additional care for the

kernel environment. Second, previous work protects all program data, while Kenali aims

at reducing the overhead by only enforcing DFI over a small portion of data that are critical

to security invariants. Finally, as the effectiveness of DFI also depends on the quality of

the point-to analysis, Kenali leveraged a more precise context-sensitive point-to analysis

tailored for the kernel [31].
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4.3.4 Dynamic Taint Analysis

DTA is similar to DFI and has also been used to prevent attacks [142]. The main difference

is, in DTA, data provenance is defined by high-level abstractions like file, network, and

syscall; but in DFI, data provenance is defined by the instruction that writes to the memory.

For this reason, DTA is usually much more expensive than DFI, as it also needs to track the

data provenance/tag for computation operations.

4.3.5 Memory Safety

Besides DFI, another important defense technique is runtime memory safety enforcement.

Theoretically, complete memory safety enforcement is more precise than DFI because it is

based on concrete runtime information, but its performance overhead is also higher. For

example, SVA [57] imposes a 2.31x - 13x overhead on LMbench. Generally, because the

result generated by InferDists is orthogonal to the runtime enforcement techniques, it

can also be combined with memory safety. In this work, we chose DFI because we found

that most accesses to distinguishing regions are safe; so DFI requires fewer checks and no

metadata propagation for pointer assignments and arithmetic. However, if the overhead

for memory safety enforcement becomes reasonable, e.g., with hardware assistant like Intel

MPX [93], we can also switch the second layer protection from DFI to memory safety.

A recent memory safety work [108] demonstrated that, to defeat a certain type of attack

(control-flow hijacking), it is sufficient to only protect a portion of data, thus reducing the

performance overhead. While Kenali leveraged a similar idea, it addressed an important

yet previously unsolved problem—what data are essential to prevent privilege escalation

attacks.

4.3.6 Control-flow Integrity

Because a majority of real-world attacks are control-flow hijacking, CFI [1] has been a hot

topic in recent year and has been demonstrated to be extensible to the kernel [56]. However,

as discussed in §4.4, non-control-data attacks are both feasible and capable enough for a

full privilege escalation attack. Furthermore, as CFI becomes more practical, attackers are
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also likely to move to non-control-data attacks. For these reasons, we believe Kenali makes

valuable contributions, as (1) it can prevent both control-data and non-control-data attacks;

and (2) compared to previous discussions on non-control-data attacks [41, 88], it provides

an automated and systematic way to discover critical non-control-data.

4.4 Demonstration Attacks

We use a real vulnerability, CVE-2013-6282 [131], as a running example to demonstrate

the various types of attacks feasible under our threat model, and to illustrate how and why

these attacks can bypass the state-of-the-art defense techniques like CFI and ad-hoc kernel

integrity protection. Given this vulnerability, we begin with an existing attack against the

Linux kernel. Then, step-by-step, we further demonstrate two additional attacks showing

how this original attack can be extended to accomplish a full rooting attack.

4.4.1 Simple rooting attacks

CVE-2013-6282 allows attackers to read and write arbitrary kernel memory, which matches

our adversary model. The corresponding rooting attack provides a good example of how

most existing kernel privilege escalation exploits work:

a) Retrieving the address of prepare_kernel_cred() and commit_creds(). Depending on

the target system, they can be at fixed addresses, or obtainable from the kernel symbol

table (kallsyms_addresses);

b) Invoking prepare_kernel_cred() and pass the results to commit_creds(), then the

kernel will replace the credential of the current thread with one of root privilege.

Step b can be done in several ways: attackers can overwrite a function pointer to a

user mode function that links these two functions together (i.e., ret2usr). Alternatively,

attackers can also link them through return-oriented programming.

4.4.2 Bypassing CFI with non-control-data attacks

The above attack can be prevented by kernel-wide CFI [56]. But CFI can be easily bypassed

by non-control-data attacks: by locating the cred structure and overwriting the euid field,
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attackers can still escalate the privilege to the root user. The cred structure can be

located in many ways: (1) if kallsyms is available and contains the address of init_task,

we can easily traverse the process list to locate the task_struct of the current process,

then task_struct->cred; (2) if there is a vulnerability that leaks the stack address (e.g.,

CVE-2013-2141), attackers can directly obtain the address of the thread_info structure, then

follows the links to locate the task_struct; and (3) with arbitrary memory read capability,

attackers can also scan the whole kernel memory and use signature matching to identify the

required data structures [117]. (4) alternatively, they can also start with some fixed global

objects and traverse the memory using technique presented in [31].

4.4.3 Bypassing CFI with control-data attacks

In this example, we designed a new attack to demonstrate another limitation of CFI.

Specifically, to prevent root privilege from being acquired through compromising system

daemons, Android leverages SELinux, a mandatory access control mechanism, to further

restrict the root privilege [180]. Therefore, disabling SELinux is a necessary step to gain the

full root privilege. This can be achieved through control-data attacks that do not violate

CFI. In particular, SELinux callbacks are stored in a dispatch table that has a special

initialization phase:

1 // @security/capability.c

2 void security_fixup_ops(struct security_operations *ops) {

3 if (!ops->sb_mount)

4 ops->sb_mount = cap_sb_mount;

5 if (!ops->capable)

6 ops->capable = cap_capable;

7 ...

8 }

9 static int cap_sb_mount(const char *dev_name, ...) {

10 return 0;

11 }

Basically, if a Linux Security Module (LSM) does not implement a hook, its callback

function will be set to the default one (e.g., cap_sb_mount). Therefore, the default callback

functions are also valid control transfer targets, but they usually perform no checks before
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directly returning 0. Based on this observation, SELinux can then be disabled without

violating CFI, by setting every callback function pointer to its default one.

4.4.4 Diversity of non-control-data attacks

Some existing kernel integrity protection mechanisms also try to protect non-control-data [158,

159, 18], such as uid. However, these approaches are inherently limited because there can

be many different non-control-data involved in access control. For example, from the target

kernel we evaluated, we found that 2,419 data structures contain critical data (§4.8). Here,

we use a concrete non-control-data attack to demonstrate this limitation of previous work.

Specifically, the above two steps only grant attackers temporary root privilege until the

next reboot (a.k.a. tethered root). To acquire permanent root privilege (untethered root),

the de facto way is to install the su utility. To do so, however, there is one more protection

to bypass: read-only mounting. That is, to protect critical system files, the system partition

on most Android devices is mounted as read-only. Existing rooting attacks achieve this

goal by remounting the partition as writable, but we achieve this goal through another

non-control-data attacks:

1 // @fs/namespace.c

2 int __mnt_is_readonly(struct vfsmount *mnt) {

3 if (mnt->mnt_flags & MNT_READONLY)

4 return 1;

5 if (mnt->mnt_sb->s_flags & MS_RDONLY)

6 return 1;

7 return 0;

8 }

As we can see, by overwriting data fields like mnt_flags and s_flags, attackers can

bypass the read-only mount and overwrite the system partition.

4.5 Technical Approach

Figure 7 provides an overview of our technical approach, which consists of two steps. In the

first step, we use a novel program analysis technique InferDists to systematically infer

a complete and minimized set of distinguishing regions. In the second step, we employ a
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Figure 7: Overview of Kenali’s approach.

lightweight runtime protection technique, ProtectDists, to enforce DFI over the inference

result.

4.5.1 Inferring Distinguishing Regions

In this subsection, we present our approach to the inference problem. The challenge is that

for security, our solution must be sound (i.e., no false negatives), but for performance, we

want the size of the inference result to be as small as possible.

Control-Data. As discussed in §4.1, invariant I can be violated via control-data

attacks. Therefore, all control-data must be included as distinguishing regions so as to

enforce CFI. Control-data in the kernel has two parts: general control-data and kernel-

specific data. General control-data (e.g., function pointers) can be identified based on the

type information [108]. Kernel-specific data, such as interrupt dispatch table, have been

enumerated in [56]. Since our approach to infer these data does not differ much from previous

work, we omit the details here.

Non-Control-Data. The challenge for inferring distinguishing non-control-data is the

soundness, i.e., whether a proposed methodology can discover all distinguishing regions. To

address this challenge, we developed InferDists, an automated program analysis technique.

The key idea is that access controls are implemented as security checks, and while a kernel

may have many security checks scattered throughout different components, they all follow
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one consistent semantic: if a security check fails, it should return a security related error

codes. For example, a POSIX-compatible kernel returns -EACCES (permission denied) [194]

to indicate the current user does not have access to the requested resources. Similarly,

Windows also has ERROR_ACCESS_DENIED [191]. Leveraging this observation, InferDists is

able to collect security checks without manual annotation. Then, distinguishing regions can

be constructed via standard dependency analysis over the conditional variables of security

checks. Next, we use Example 1 as a running example to demonstrate how InferDists

works. The formal model of InferDists and proof for its soundness are provided in §4.6.
1 int acl_permission_check(struct inode *inode, int mask) {
2 unsigned int mode = inode->i_mode;
3 if (current_cred->fsuid == inode->i_uid)
4 mode >>= 6;

5 else if (in_group_p(inode->i_gid))
6 mode >>= 3;

7 if ((mask & ˜mode &
8 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

9 return 0;
10 return -EACCES;
11 }

Example 1: A simplified version of the discretionary access control (DAC) check in the Linux
kernel.

In step (1), InferDists collects the return instructions R that may return an error code

that we are interested in.

In Example 1, the function returns -EACCES at line 10, so InferDists include this

instruction into R.

In step (2), InferDists collects the branch instructions I that determine if a run either

executes a return instructions in R or performs a potentially privileged operation. The

conditional variables B of I will be distinguishing variables of this function.

In Example 1, the condition of the if statement at line 7 is the distinguishing

conditional variable of the function. Note, the if statement at line 3 is not included

because it is post-dominated by the if statement at line 7.

It is worth mentioning that we need to handle some special cases in step (2). First, in

some cases, when a security check fails, it will not directly return an error but will continue

to another alternative check, e.g., in the setuid system call, three checks are performed:
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1 if (!nsown_capable(CAP_SETUID) &&

2 !uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid))

3 return -EPERM;

In this case, when the first check nsown_capable failed, the control flow will go to the

second, and possibly the third check. Although these are all security checks, in the control

flow graph (CFG), only the branch instruction for the last uid_eq check will lead to an error

return. If we only consider this branch, then we will miss the first two checks. Therefore, we

must also consider branch(es) that dominate a security check. However, naively including

all dominators will introduce many false positives. To reduce false positives, InferDists

conservatively excludes two cases: (a) a branch can lead to non-related error return (e.g.,

-EINVAL) and (b) a branch instruction is post-dominated by either a security check or checks

in (a), i.e., diamond-shaped nodes.

In step (3), InferDists collects and returns all memory regions that have dependencies

on conditional variables in B. For completeness, we consider both data- and control-

dependencies, and the analysis is inter-procedural and iterative, i.e., we perform the analysis

multiple times until there is no new data get included.

In Example 1 the if statement on line 7 has two conditional variables, mask and mode.

Data-dependency over mode would include i_mode (line 2) and control-dependency

would include i_uid, fsuid (line 3), and the return value of in_group_p (line 5).

Because our dependency analysis is inter-procedural, we will also include i_gid.

Sensitive Pointers. Pointers to sensitive regions must be protected as well; otherwise,

attackers can indirectly control the data in distinguishing regions by manipulating these

pointers [88]. For instance, instead of overwriting the euid field of a cred structure, an

attacker could overwrite the task_struct->cred pointer to point to a cred structure whose

euid == 0.

Hence, after collecting control- and non-control-data, the analysis collects the sensitive

pointers of a program, and includes such pointers in distinguishing regions. A pointer is

sensitive if it points to a data structure that contains distinguishing regions. There are two
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points worth noting: (1) sensitive pointers are defined recursively and (2) even with the

existence of generic pointers, we still can collect a sound over-approximation set of sensitive

pointers using a static program analysis, so no false negatives will be introduced.

4.5.2 Protecting Distinguishing Regions

After collecting the distinguishing regions, the next step is to enforce DFI over the inference

result. The challenge for this step is how to minimize the performance overhead on commodity

processors that lack support for fine-grained data-flow tracking. To address this challenge,

our key observation is that, after (conceptually) separating the memory into distinguishing

and non-distinguishing regions, there could be three types of data-flow: (1) within non-

distinguishing regions, (2) between two regions, and (3) within distinguishing regions. Our

goal is to prevent attackers from introducing illegal data-flow to compromise distinguishing

regions. Obviously, it is not possible to compromise distinguishing regions based on the first

type of data-flow, but most legal data-flows actually belong to this type. Therefore, if we

purely rely on DFI to vet all data-flows, there will be a huge number of unnecessary checks.

Based on this observation, we design a two-layer scheme: the first layer is a lightweight

data-flow isolation mechanism that prevents illegal data-flow of the second type; then we use

the more expensive DFI enforcement to prevent illegal data-flow of the third type. With this

two-layer approach, we can reduce the performance overhead without sacrificing security

guarantees.

Data-Flow Isolation. There are two general approaches to enforce data-flow isolation:

software-based and hardware-based. Software fault isolation is not ideal because it requires

instrumenting a majority of write operations. For example, in our prototype implementation,

only 5% of write operations can access distinguishing regions; thus, relying on SFI would

end up with instrumenting the remaining 95% of write operations. At the same time, not

all hardware isolation mechanisms are equally efficient. Since distinguishing regions are

actually not continuous, but interleaved with non-distinguishing regions, it would be ideal if

the hardware could support fine-grained memory isolation. Unfortunately, most commodity

hardware does not support this but only provides coarse-grained isolation mechanisms. Based
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on their corresponding overhead (from low to high), the available options on commodity

hardware are: the segmentation on x86-32 [223], the execution domain on ARM-32 [235],

the WP flag on x86-64 [209, 62], hardware virtualization [178, 157], and TrustZone [16].

In this work, we explored the feasibility of hardware-based data-flow isolation for AArch64,

which is becoming more and more popular for mobile devices, but has not been well

studied before. For AArch64, most of the aforementioned features are not available, except

TrustZone1; but world switch for TrustZone is usually very expensive because it needs to

flush the cache and sometimes the TLB (translation look-aside buffer) too. To solve this

problem, we developed a novel, virtual address space-based isolation mechanism. Specifically,

to reduce the overhead of context switching between different virtual address spaces, modern

processors usually tag the TLB with an identifier associated with the virtual address space.

Utilizing this feature, we can create a trusted virtual address space by reserving an identifier

(e.g., ID = 0). By doing so, context switching between the untrusted context and trusted

context becomes less expensive because it requires neither TLB flush nor cache flush (see §4.7

for more details).

Write Integrity Test. In addition to preventing illegal data-flow from non-distinguishing

regions to distinguishing regions, we use DFI to prevent illegal data-flow within distinguishing

regions. However, instead of checking data provenance at read, we leveraged the write

integrity test (WIT) technique [4]. We chose this technique for the following reasons. First,

we found that the memory access pattern for distinguishing regions is very asymmetric, e.g.,

reading uid is prevalent, but updating uid is very rare. Thus, by checking write operations,

we can reduce the number of checks that need to be performed. Second, WIT reasons about

safe and unsafe write operations and only instruments unsafe writes, which matches another

observation—the majority of writes to the distinguishing regions are safe and do not require

additional checks. Finally, compared to memory safety enforcement techniques [57], WIT is

less expensive because it does not require tracking pointer propagation. Because of page

limitation, we omit the details of WIT; please refer to the original paper for more details.

1Hardware virtualization extension is defined, but a majority of processors do not implement it; and for
those who have this feature, the bootloader usually disabled it.
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However, in order to apply this technology to the kernel, we made one change. In particular,

the original WIT implementation used a context-sensitive field-insensitive point-to analysis,

but since OS kernels usually contain a lot of generic pointers and linked lists, we replaced

the point-to analysis with a context-sensitive and field-sensitive analysis that is tailored for

the kernel [31].

Shadow Objects. Shadow objects is a work-around for the lack of fine-grained hardware

isolation mechanism. Specifically, as a hardware protection unit (e.g., page) may contain

both distinguishing and non-distinguishing regions, once we write-protect that page, we

also have to pay additional overhead for accessing non-distinguishing regions. One solution

to this problem is to manually partition data structures that contain mixed regions into

two new data structures [185]. However, this approach does not scale and requires heavy

maintenance if the data structure changes between different kernel versions. Our solution to

this problem is shadow objects, i.e., if a kernel object contains both regions, then we will

create two copies of it—a normal copy for the non-distinguishing regions and a shadow copy

for the distinguishing regions. Shadow memory may consume up to two times the original

memory, but because commodity OS kernels usually use memory pools (e.g., kmem_cache) to

allocate kernel objects, it allows us to reduce the memory overhead by dedicating different

pools to objects that need to be shadowed. This nice feature also allows us to eliminate

maintaining our own metadata for shadow objects allocation/free; and to perform fast

lookup—giving a pointer to normal object, its shadow object can be acquired by adding a

fixed offset.

Safe Stack. Similar to heap, stack also needs a “shadow” copy for the lack of fine-grained

isolation. However, stack is treated differently for its uniqueness. First, stack contains many

critical data that are not visible at the source code level, such as return addresses, function

arguments, and register spills [51]. Second, the access pattern of these critical data is also

different: write accesses are almost as frequent as read accesses. For these reasons, we

leveraged the safe-stack technique proposed in [108], with a few improvements to make this

technique work better for the kernel. First, we used more precise inter-procedural analysis

to reduce the number of unsafe stack objects from 42% to 7%. Second, as the number of
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unsafe stack objects is very small, instead of using two stacks, we keep only one safe stack

and move all unsafe objects to the heap to avoid maintaining two stacks.

4.6 Formal Model

To demonstrate that our technical approach is correct, we formalize the problem of preventing

privilege escalation via memory corruption and describe an approach to solve the problem. In

§4.6.1, we formulate the problem of rewriting a monitor with potential memory vulnerabilities

to protect privileged system resources. In §4.6.2, we formulate the sub-problem of inferring

a set of memory regions that, if protected, are sufficient to ensure that a monitor protects

privileged resources. In §4.6.3, we formulate the problem of rewriting a program to protect

a given set of memory regions. In §4.6.4, we show that our approaches to solve the inference

and protection problems can be composed to solve the overall problem.

4.6.1 Problem Definition

A language of monitors. A monitor state is a valuation of data variables and address

variables, where each address is represented as a pair of a base region and an offset. Let

the space of machine words be denoted Words and let the space of error codes be denoted

ErrCodes ⊆ Words. Let the space of memory regions be denoted Regions, and let an address

be a region paired with a machine word, i.e., Addrs = Regions×Words.

Let the space of control locations be denoted Locs, let the space of protection colors be

denoted colors, let the space of data variables be denoted D, and let the space of address

variables be denoted A.

Definition 1 A monitor state consists of (1) a control location, (2) a map from each

address to its size, (3) a map from each address to its protection color, and (4)–(6) maps

from D, A, and Addrs to the word values that they store. The space of monitor states is

denoted Q.

A monitor instruction is a control location paired with an operation. The set of operations

contains standard read operations read a, d, conditional branches bnz d, returns ret d,
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arithmetic operations, and logical operations. The set of operations also contains the

following non-standard operations:

(1) For each protection color c ∈ colors, each address variable a ∈ A, and each data

variable d ∈ D, alloc[c] a, d allocates a new memory region R ∈ Regions, sets the size of R

to be to the word stored in d, and stores the address (R, 0) in a. The space of allocation

instructions is denoted Allocs.

(2) For each protection color c ∈ colors, each data variable d ∈ D, and each address

variable a ∈ A, write[c] d, a attempts to write the value stored in d to the address stored in

a. Let a store the address (R, o). If in the current state, the color of R is c, then the write

occurs; otherwise, the program aborts. If a stores an address inside of its base region, then

the write is safe; otherwise, the write is unsafe. The space of write instructions is denoted

Writes.

Definition 2 For each instruction i ∈ Instrs, the transition relation of i is denoted σ[i] ⊆

Q×Q.

We refer to σ as the unrestricted transition relation, as it places no restriction on the target

address of a write outside of a region (in contrast to restricted transition relations, defined in

Defn. 5). The formal definitions of the transition relations of each instruction follow directly

form the instruction’s informal description and thus are omitted.

Definition 3 A monitor is a pair (I, A), where I ∈ Instrs∗ is a sequence of instructions in

which (1) each variable is defined exactly once and (2) only the final instruction is a return

instruction; A ⊆ Allocs are the allocation sites of privileged regions. The space of monitors

is denoted Monitors = Instrs∗ × P(Instrs).

A run of M is an alternating sequence of states and instructions such that adjacent states

are in the transition relation of the unrestricted semantics of the neighboring instruction;

the runs of M under the unrestricted semantics are denoted Runs(M). The safe runs of M are

the runs in which each write instruction only writes within its target region.

A monitor M′ ∈ Monitors is a refinement of M if each run of M′ is a run of M. M′ is a

non-blocking refinement of M if (1) M′ is a refinement of M and (2) each safe run of M is a
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run of M′.

Monitor consistency. A monitor inconsistency is a pair of runs (r0, r1) from the same

initial state, where r0 accesses a privileged region and r1 returns an error code.

A monitor is weakly consistent if for each run, the monitor exclusively either accesses

privilege regions or returns an error code. That is, monitor M = (I, A) ∈ Monitors is weakly

consistent if there is no run r ∈ Runs(M) such that (r, r) is an inconsistency. A core assumption

of our work, grounded in our study of kernel access control mechanisms, is that practical

monitors are usually written to be weakly consistent.

A monitor is strongly consistent if for each initial state, the monitor exclusively either

accesses privileged regions or returns an error code. That is, M is strongly consistent if there

are no runs r0, r1 ∈ Runs(M) such that (r0, r1) is an inconsistency.

The consistent-refinement problem. Each strongly consistent monitor is weakly

consistent. However, a monitor M may be weakly consistent but not strongly consistent if

it contains a memory error that prohibits M from ensuring that all runs from a given state

either access privileged regions or return error codes. The main problem that we address in

this work is to instrument all such monitors to be strongly consistent.

Definition 4 For monitor M, a solution to the consistent-refinement problem Refine(M)

is a non-blocking refinement of M (Defn. 3) that is strongly consistent.

We have developed a program rewriter, Kenali, that attempts to solve the consistent-

refinement problem. Given a monitor M, Kenali first infers a set of distinguishing allocation

sites A for which it is sufficient to protect the integrity of all regions in order to ensure

consistency (§4.6.2). Kenali then rewrites M to protect the integrity of all regions allocated

at A (§4.6.3). The rewritten module M′ is a non-blocking refinement of M, and all potential

inconsistencies of M′ can be strongly characterized (§4.6.4).

4.6.2 Inferring distinguishing regions

Problem formulation. We now formulate the problem of inferring a set of memory

regions that are sufficient to protect a monitor to be strongly consistent. We first define a
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semantics for monitors that is parameterized on a set of allocation sites A, under which the

program can only modify a region allocated at a site in A with a safe write.

Definition 5 For allocation sites A ⊆ Allocs and instruction i ∈ Instrs, the restricted

semantics of R σA(i) ⊆ Q×Q is the transition relation over states such that: (1) if i is

not a write, then σA[i] is identical to σ[i]; (2) if i is a write, then for an unsafe write, the

program may write to any region not allocated at a site in A

For each monitor M ∈ Monitors, the runs of M under the restricted semantics for R are

denoted RunsR(M).

The distinguishing-site inference problem is to infer a set of allocation sites A such that

if all regions allocated at sites in A are protected, then the monitor is consistent.

Definition 6 For each monitor M = (I, A) ∈ Monitors and set of regions, a solution to the

distinguishing-site inference problem Dists(M) is a set of allocation sites A′ ⊆ Allocs such

that M is consistent under the restricted semantics RunsA′(M). We refer to such a set A′ as

distinguishing sites for M.

Inferring distinguishing sites. In this section, we present a solver, InferDists, for

solving Dists. InferDists proceeds in three steps: (1) InferDists collects the return

instructions R that may return an error code. (2) InferDists collects the condition variables

B of the branch instructions that determine if a run either executes a return instructions

in R or accesses any memory region. (3) InferDists returns the dependency sites of all

condition variables of B. We now describe phases in detail.

Background: data-dependency analysis. For monitor M, data variable x ∈ D, and allocation

site a ∈ Allocs, a is a dependency site of x if over some run of M, the value stored in some

region allocated at a partially determines the value stored in x (the formal definition of a

data dependency is standard) [3]. The data-dependency-analysis problem is to collect the

dependency sites of a given set of data variables.

Definition 7 For a monitor M ∈ Monitors and data variables D ⊆ D, a solution to the

data-dependency-analysis problem Deps(M, D) is a set of allocation sites that contain the

dependency sites of all variables in D.
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Our solver for the Dists problem, named InferDists, constructs instances of the Deps

problem and solves the instances by invoking a solver, InferDeps. The implementation of

InferDeps used by InferDists is a field-sensitive and context-sensitive analysis based on

previous work [31].

Phase 1: collect error-return instructions. Phase 1 of InferDists collects an over-

approximation E of the set of instructions that may return error codes. While in principle the

problem of determining whether a given control location returns an error code is undecidable,

practical monitors typically use simple instruction sequences to determine the codes that

may be returned by a given instruction. Thus, InferDists can typically collect a precise

set R using constant folding, a standard, efficient static analysis [3].

Phase 2: collect distinguishing condition variables. After collecting an over-approximation

E of the instructions that may return error codes, InferDists collects an over-approximation

C of data variables that determine if a program returns an error code or accesses a sensitive

resource; we refer to such data variables as distinguishing condition variables. InferDists

collects C by performing the following steps: (1) InferDists computes the post-dominator

relationship PostDom ⊆ Instrs× Instrs, using a standard efficient algorithm. (2) InferDists

computes the set of pairs ImmPred ⊆ Instrs× Instrs such that for all instructions i, j ∈ Instrs,

(i, j) ∈ ImmPred if there is a path from i to j that contains no post-dominator of i. ImmPred

can be computed efficiently from M by solving standard reachability problems on the control-

flow graph of M. (3) InferDists collects the set of branch instructions B such that for each

branch instruction b ≡ bnz x, T, F ∈ B, there is some error-return instruction e ∈ E and some

access a ∈ accesses such that ImmPred(b, T) and ImmPred(b, F). (4) InferDists returns all

condition variables of instructions in B.

Phase 3: collect data dependencies of conditions. After InferDists collects a set of

distinguishing condition variables C, it collects the dependency sites A′ of C by invoking

InferDeps (Defn. 7) on M and C.
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4.6.3 Protecting distinguishing regions

The region-protection problem. For monitor M and set of allocation sites A ⊆ Allocs,

the region-protection problem is to color M so that it protects each region allocated at each

site in A.

Definition 8 For each monitor M ∈ Monitors and set of allocation sites A ⊆ Allocs, a solution

to the distinguishing-site-protection problem DistsProt(M, A) is a monitor M′ ∈ Monitors

such that each run of M′ under the unrestricted semantics (Defn. 2) is a run of M under the

restricted semantics for A (Defn. 5).

Background: writes-to analysis. For module M ∈ Monitors, the writes-to analysis

problem is to determine, for each write instruction w in a monitor, the set of regions that w

may write to in some run of M.

Definition 9 For monitor M ∈ Monitors, a solution to the writes-to analysis problem

WrTo(M) is a binary relation R ⊆ Writes × Allocs such that if there is some run of M in

which a write-instruction w ∈ Writes writes to a region allocated at allocation site a ∈ Allocs,

then (w, a) ∈ R.

Our implementation of ProtectDists uses a writes-to analysis SolveWrTo, which is

built from a points-to analysis provided in the LLVM compiler framework [119].

A region-protecting colorer. Given an input monitor M ∈ Monitors and a distin-

guishing set of allocation sites A ⊆ Allocs, ProtectDists solves the protection problem

DistsProt(M, A) using an approach that is closely related to the WIT write-integrity test [4].

In particular, ProtectDists performs the following steps: (1) ProtectDists obtains a

writes-to relation W by invoking SolveWrTo on the writes-to analysis problem WrTo(M).

(2) ProtectDists constructs the restriction of W to only allocation sites in A, denoted WA.

(3) ProtectDists collects the set C of connected components of W , and for each component

C ∈ C, chooses a distinct color cC . (3) ProtectDists replaces each allocation instruction

alloc[0] a, d of M in component C ∈ C with the “colored” instruction alloc[cC ] a, d. (4)
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ProtectDists replaces each write instruction write[0] a, d of M in component D ∈ C with

the “colored” instruction write[cD] a, d.

ProtectDistsmay thus be viewed as a “paramaterized WIT” that uses WIT’s technique

for coloring write-instructions and regions to protect only the subset of the regions that a

monitor may allocate to determine whether to access a privileged region or return an error

code.

4.6.4 Protected monitors as refinements

In this section, we characterize the properties of modules instrumented by solving the

distinguishing-site inference (§4.6.2) and protection problems (§4.6.3). Let the module

instrumenter Kenali be defined for each monitor M ∈ Monitors as follows:

Kenali(M) = ProtectDists(M, InferDists(M))

Kenali does not instrument a monitor to abort unnecessarily on runs in which the monitor

does not perform an unsafe write.

Theorem 1 For each monitor M ∈ Monitors, Kenali(M) is a non-blocking refinement of M.

While the modules generated by Kenali may have access-control inconsistencies, each

inconsistency can be characterized by the results of the points-to analysis used by Protect-

Dists.

Theorem 2 For each monitor M ∈ Monitors, let W be the writes-to relation of M found

by SolveWrTo (Defn. 9). If (r0, r1) is an inconsistency of Kenali(M), then r0 is of the

form q0, . . . , qn, (w ≡ write a, d), qn+1, and there are a pair of regions R0 ̸= R1 ∈ Regions

allocated at sites A0, A1 ∈ Allocs such that (1) R0 is the target region of w, (2) R1 is the

region written by w, and (3) A0 and A1 are in the writes-to set for w in W .

Our practical evaluation of our approach (§4.8.2) indicates that the accuracy of state-of-

the-art points-to analyses greatly restricts the potential for inconsistencies in rewritten

programs.
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Figure 8: Shadow address space of Kenali.

4.7 A Prototype for Android

In this section, we present the prototype implementation for Kenali. As a demonstration,

we focus on the AArch64 Linux kernel that powers Android devices. We chose AArch64

Linux for the following reasons. First, InferDists requires source code to perform the

analysis, and thanks to the success of Android, Linux is the most popular open-sourced

kernel now. Second, due to the complexity of the Android ecosystem, a kernel vulnerability

usually takes a long cycle to patch [203]. This means kernel defense techniques play an even

more critical role for Android. Third, among all the architectures that Android supports,

ARM is the most popular. Moreover, compared to other architectures like x86-32 [223]

x86-64 [62] and AArch32 [235], there is little research on efficient isolation techniques for

AArch64. Despite this choice, we must emphasize that our techniques are general and can

be implemented on other hardware architectures and even other OS kernels (see §4.9).

We start this section with a brief introduction of the AArch64 virtual memory system

architecture (VMSA) and how we leveraged various hardware features to implement data-

flow isolation (§4.7.1). Next, we describe the techniques we used to enforce MMU integrity

(§4.7.2). Then we discuss the challenges we had to overcome to implement the shadow

objects technique on top of the Linux SLAB allocator (§4.7.3). Finally, we describe our

implementation of safe stack for this particular prototype (§4.7.4).
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4.7.1 Data-flow Isolation

For this prototype, we developed a new virtual address space isolation-based technique

that leverages several nice features of the AArch64 virtual memory system architecture

(VMSA) [12].

AArch64 VMSA. The AArch64 supports a maximum of 48-bit virtual address (VA),

which is split into two parts: the bottom part is for user space, and the top part is for

kernel space. VA to PA (physical address) translation descriptors are configured through

two control registers: TTBR0 (translation table base register) for the bottom half and TTBR1

for the top half.

To minimize the cost of context switch, the AArch64 TLB has several optimizations.

First, it allows global pages (mainly for kernel), i.e., translation results are always valid

regardless of current address space. Second, each process-specific VA is associated with an

ASID (address space identifier), i.e., translation results are cached as (ASID + VA) ⇒ PA.

Third, if the hardware virtualization extension is enabled, every VA is also tagged with a

VMID (virtual machine identifier). In our target platform, the hardware supports 16-bit

ASID and the ASID of current process is configured to be stored in TTBR0 registers.

Shadow Address Space. Our data-flow isolation implementation leverages the ASID

tagging feature and is based on shadow address space, as illustrated in Figure 8. Under this

isolation scheme, the same physical page is mapped into two different address spaces with

different access permissions. Although the shadow address space technique is not new, the

key advantage of our approach is that it does not require TLB flush for context switch. More

specifically, most previous systems map the same physical page at the same VA. However,

because kernel memory is mapped as global, context switching always requires TLB flush to

apply the new permission. Our approach instead maps the same physical memory at two

different VAs. This allows us to leverage the ASID tagging feature to avoid TLB flush for

context switch. Another benefit of this approach is that since it does not change the access

permissions of global pages, it is not subject to multi-core-based attacks, i.e., when one core

un-protects the data, attackers can leverage another core to attack.
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In the shadow address space, we map the whole physical memory to a fixed virtual

address (SHADOW_OFFSET) as read-writable. But in the original logical mapping (PAGE_OFFSET),

memory may be mapped with more restricted permissions. For example, pages used for

distinguishing regions are mapped as read-only. And the reason we choose to map the

shadow address space at fixed VAs is to make the address space conversion between shadow,

virtual and physical as efficient as possible.

Atomic Primitive Operations. Apparently we cannot keep the shadow address space

always available; otherwise attackers can just write to the shadow address. Therefore, we

only switch to the shadow address space whenever necessary and immediately switch back

to the original (user) context after the operation is done. Moreover, since the kernel can be

preemptive (as our target kernel), we also need to disable interruption under the shadow

address space to prevent the operation from being interrupted. Otherwise, it could provide

attackers chances to launch attacks or break the context, i.e., after exception handling, the

shadow address space will not be restored, so writing to that VA will either crash the kernel

or trash the user space data. For these reasons, we want to make every operation under the

shadow address space atomic and as simple as possible. Currently, we support the following

atomic primitive operations: write a single 8-, 16-, 32-, and 64-bit data, memcpy, and memset.

Example 2 gives an example of performing an atomic 64-bit write operation in the shadow

address space.

1 ; performing *%addr = %value

2 mrs x1, daif ; save IRQ state

3 msr daifset, #2 ; disable IRQ

4 mrs x2, ttbr0_el1 ; save current ttbr0

5 msr ttbr0_el1, %shadow_pgd_and_asid ; context switch

6 str %value, %addr ; update shadow object

7 dmb ishst ; store barrier

8 msr ttbr0_el1, x2 ; restore ttbr0

9 isb ; instruction barrier

10 msr daif, x1 ; restore IRQ

Example 2: An example of performing an atomic 64-bit write operation in the shadow address
space.

72



4.7.2 MMU Integrity

Since our isolation is based on virtual address space, we must guarantee that attackers

cannot compromise our isolation scheme. We achieve this goal by enforcing three additional

security invariants:

III. MMU isolation: We enforce that only MMU management code can modify MMU-

related data, including hardware configuration registers and page tables.

IV. Code integrity: We enforce that attackers cannot modify existing kernel code or

launch code injection attacks.

V. Dedicated entry and exit: We enforce that MMU management code is always

invoked through dedicated entries and exits, so that attackers cannot jump to the

middle of an MMU function and launch deputy attacks.

MMU Isolation. Our enforcement technique for invariant III is similar to Hyper-

Safe [209] and nested kernel [62]. First, we enforce that only MMU management code can

modify MMU-related configuration registers. Compare to other platforms, enforcing this

policy is relatively easier for AArch64: (1) because AArch64 uses one single instruction

set that is fix-sized and well aligned, we statically verify that no other code can modify

MMU configuration registers; (2) for configuration registers whose values do not need to be

changed, such as TTBR1, we enforce that they are always loaded with constant values; (3)

for registers that can be re-configured like SCTLR, we enforce that the possible values either

provide the same minimal security guarantees (e.g., enabling and disabling WXN bit does not

affect the protection because page tables can override) or crash the kernel (e.g., since the

kernel VA is much higher than PA, disabling paging will crash the kernel).

The second step is to enforce that all memory pages used for page tables are mapped

as read-only in logical mapping. This is done as follows. (1) We break down the logical

mapping from section granularity (2MB) to page granularity (4K), so that we can enforce

protection at page-level. (2) All physical pages used for initial page tables (i.e., logical

mapping, identical mapping and shadow address space) are all allocated from a dedicated

73



area in the .rodata section. This is possible because the physical memory for most mobile

devices cannot be extended. (3) After kernel initialization, we make all initial page tables as

read-only in the logical mapping. (4) We enforce that physical pages used for these critical

page tables can never be remapped, nor can their mapping (including access permissions) be

modified. This is possible because kernel is always loaded at the beginning of the physical

memory according to the ELF section order, so physical pages used for these critical data

will have their frame number smaller than the end of the .rodata section. Specifically, we

enforce that for any physical page whose page frame number is smaller than the end of

.rodata section cannot be remapped nor can its mapping be modified. (5) Any memory

page allocated by the MMU management code is immediately marked as read-only after

receiving it from the page allocator.

Code Integrity. Enforcing kernel code integrity is essential for enforcing DFI; otherwise

attackers can disable our protection by either removing our instrumentations or injecting

their own code. We achieve this goal by enforcing two page table invariants. First, similar to

page tables, we enforce that the kernel code (.text) section is always mapped as read-only.

Second, we enforce that except for the .text section, no memory can be executable with

kernel privilege, i.e., always has PXN (privilege execution never) bit [12] set.

Dedicated Entries and Exits. Enforcing dedicated entries and exits of MMU manage-

ment code is trivial, as Kenali protects all code pointers, i.e., its capability of defeating

control-flow hijacking attacks is equivalent to CPI [108], which is equivalent to fine-grained

CFI [1].

4.7.3 Shadow Objects

Shadow object support includes three parts: (1) modifications to the SLUB allocator [110],

(2) shadowing global objects, and (3) analysis and instrumentation to utilize the above

runtime support.

SLUB Allocator. In our target kernel, most distinguishing regions are allocated from

the SLUB allocator. There are two general types of slabs, i.e., named ones and unnamed

ones. Named slabs are usually dedicated to a single data structure, if not merged, while the

74



unnamed ones are for kmalloc. Our implementation for shadow objects follows the same

design philosophy: we make read access as efficient as possible at the expense of increasing

the cost for write operations. Specifically, when SLUB allocates page(s) for a new slab, we

allocate a shadow slab of the same size and map it as read-only at a fixed offset (4GB) from

the original slab. By doing so, shadow objects can be statically located by adding this fixed

offset. Similar to kmemcheck, we added one more field in the page structure to record the

PFN of the corresponding shadow page. Writing to shadow objects requires an additional

operation: given a pointer to a shadow object, we (1) subtract the fixed offset to locate

the page for its corresponding normal object; (2) retrieve the page structure of the normal

object and find the PFN for its shadow page; and (3) calculate the VA for the shadow object

in the shadow address space, performs a context switch, and write to the VA.

Because recent Linux kernel merges slabs with similar allocation size and compatible

flags, we also added one additional flag for kmem_cache_create to prevent slabs used for

distinguishing regions from merging with other slabs. Finally, since kmem_caches for kmalloc

are created during initialization, we modified this procedure to create additional caches for

distinguishing regions allocated through kmalloc. Finally, because some slab metadata are

now security-critical, we manually included them as distinguishing regions.

Global Objects. While most distinguishing regions are dynamically allocated, some

of them are statically allocated in the form of global objects, such as init_task. Shadow

objects for global objects are allocated during kernel initialization. In particular, we allocate

shadow memory for the entire .data section, copy all the contents to populate the shadow

memory and then map it in the same way as described above, so that we can use a uniformed

procedure to access both heap and global objects.

Analysis and Instrumentation. Since distinguishing regions contain thousands of data

structures, we use automated instrumentation to instruct the kernel to allocate and access

shadow objects. Specifically, we first identify all allocation sites for objects in distinguishing

regions and modify the allocation flag. If the object is directly allocated via kmem_cache_alloc,

we will also locate the corresponding kmem_cache_create call and modify the creation flag.

Next, we identify all pointer arithmetic operations for accessing distinguishing regions
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and modify them to access the shadow objects (for both read and write access). Finally,

we identify all write accesses to distinguishing regions, including memcpy and memset, and

modify them to invoke our atomic operations instead. Our analysis and instrumentation

do not automatically handle inline-assembly; fortunately inline-assembly is rare for the

AArch64 kernel. There are only 299 unique assembly code snippets, most of which are for

accessing system registers, performance counters, and atomic variables. Besides, only a few

distinguishing regions are accessed by inlined-assembly, so we handle them manually in a

case-by-case manner.

4.7.4 Kernel Stack Randomization

Since we use virtual address space for data-flow isolation, performing a context switch for

every stack write is not feasible. Thus, we used a randomization-based approach to protect

the stack. However, all randomization-based approaches must face two major threats: lack

of entropy and information disclosure [76]. We address the entropy problem by mapping

kernel stack to a unused VA above the logical map (top 256GB). Because kernel stacks are

small (16KB), we have around 24-bit2 of entropy available.

We contain the risk of information leak as follows. First, when performing safe stack

analysis, we mark functions like copy_to_user as unsafe, so as to prevent stack addresses

from leaking to user space. The safe stack also eliminates stack address leaked to kernel

heap, so even with the capability of arbitrary memory read, attackers would not be able to

pinpoint the location of the stack. As a result, there are a few special places that can be used

to locate the stack, such as the stack pointer in the task_struct and the page table. To

handle the formal case, we store the real stack pointer in a redirection table and replace the

original pointer with an index into the table. To protect this table, we map it as inaccessible

under normal context. Similarly, to prevent attackers from traversing page tables through

arbitrary memory read, page tables for the shadow stacks (i.e., top 256GB) are also mapped

as inaccessible under normal context. Accessing these protected tables is similar to writing

distinguishing regions, which disables interrupt, performs a context switch, finishes the

238-bit (256GB) for unused space above kernel, minus 14-bit size.
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operation, and restores the context and interrupt. Please note that because we un-map

memory pages used for kernel stack from their original VA in logical mapping, attackers

can acquire the PFN of the memory by checking un-mapped page table entries. However,

this does not reveal the randomized VA of the re-mapped stack and thus cannot be used to

launch attacks. Finally, the randomized stack addresses may be leakable through TLB-based

side channel attacks [91]. Launching this attack requires the TLB implementation to create

a TLB entry on access permission error but not on translation error. For ARMv8 VMSA,

whether the TBL will create an entry on access permission error is vendor-specific. Based

on experiment result, on our testbed (NVidia Denver), there is no observable performance

difference between translation page fault and access permission page fault, so the TLB-based

side channel is not feasible. Although such attack may be feasible on other SoC chips, as

briefly discussed in [91], such attack can also be defeated via introducing random noise in

page fault handling.

4.8 Evaluation

To evaluate our prototype, we designed and performed experiments in order to answer the

following questions:

• How precise is the region-inference algorithm InferDists (§4.8.2)?

• How effective is our protection mechanism, ProtectDists, in blocking unauthorized

attempts to access distinguishing regions through memory corruption (§4.8.3)?

• How much overhead is incurred by our protection mechanism (§4.8.4)?

4.8.1 Experimental setup

We use Google Nexus 9 as our testing device, which embeds a duo-core ARMv8 SoC

and 2GB memory. We retrieved the kernel source code from the Android Open Source

Project’s repository (flounder branch, commit lollipop-release), and applied patches from the

LLVMLinux project [195] to make it compatible with LLVM toolchain (r226004). Besides

these patches, we modified 64 files and around 1900 LoC of the kernel.
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All of our analysis passes are based on the iterative framework from KINT [208], with

our own call graph and taint analysis. We found this framework to be more efficient than

processing a single linked IR. Our point-to analysis is based on [39], which we extended to be

context-sensitive with the technique proposed in [31], and ported to the iterative framework.

The total LoC for analysis, excluding changes to the point-to analysis, is around 4400. And

our instrumentation pass includes around 500 LoC.

4.8.2 Distinguishing Regions Discovery

Control data. For the Nexus 9 kernel, our analysis identified 6192 code pointers. Among

them, 991 are function arguments and 11 are return values. With safe stack protection,

these pointers do not require additional instrumentation. For the rest of the code pointers,

1490 are global variables and 3699 are fields over 783 data structures.

Non-Control data. The error codes we used were EPERM, EACCES, and EROFS. Overall,

our analysis identified 526 functions as capable of returning permission-related errors; 1077

function arguments, 279 global variables and 1731 data fields over 855 data structures as

security-critical.

Next, we measure the accuracy of our analysis. For measuring false positives, we manually

verified if the reported data regions are actually involved in the access control decision.

Among the 1731 data fields, our manual verification identified 491 fields over 221 data

structures as not sensitive, so the empirical false positive rate is about 28.37%. However,

most of the false positives (430 data fields over 196 data structures) are introduced by one

single check in function dbg_set_powergate, which invokes a generic power management

function rpm_resume; this generic function in turn, invokes power management functions

from different drivers through callback function pointers. Since our call graph analysis

is context-insensitive, this resulted in including many power management related data

structures. If we blacklist this particular check, the false positive rate is only 3.52%.

For false negatives, since our analysis is sound on inferring distinguishing regions, there

should be no false negatives. However, because the effectiveness of our approach depends

on the correctness of our assumptions (see §4.9), we still wanted to check if all well-known
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Figure 9: Data fields categorized by their usage.

sensitive data structures like the cred structure are included. The manual verification

showed that all the well-known data structures like av_decision, cred, dentry, file, iattr,

inode, kernel_cap_struct, policydb, posix_acl, rlimit, socket, super_block, task_struct,

thread_info, vfsmount, vm_area_struct were included. Because of page limitations, we omit

the detailed list of the discovered structures in this paper and provide them as part of an

extended technique report. Here, we provide some high level statistic instead. Figure 9

shows the categories of discovered data field according to where they are used for access

control3. The top 3 sources of distinguishing regions are network (mainly introduced by

netfilter), file system, drivers and core kernel.

Sensitive pointers. Combining both control and non-control inference results, we have a

total of 4906 data fields over 1316 data structures as the input for sensitive pointer inference.

This step further introduced 4002 fields over 1103 structures as distinguishing regions. So,

for the target kernel, Kenali should protect 2419 structures, which is about 27.30% of all

kernel data structures (8861).

3We categorized them based on use because most of the structures are defined in header files that are not
well categorized.
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Table 6: Effectiveness of Kenali against different exploit techniques.

ret2usr cred SELinux RO Mount

Stock ✓ ✗ ✗ ✗

Kenali ✓ ✓ ✓ ✓

4.8.3 Security Evaluation

In this subsection, we first discuss the potential false negatives introduced by point-to

analysis; then we use concrete attacks to show the effectiveness of our protection.

Theoretical limitation. Although our analysis is sound, because the point-to analysis is

not complete (which is a typical problem for all defense mechanisms that rely on point-to

analysis, including CFI, DFI and WIT), we may allow write operations that should never

write to distinguishing regions to overwrite those critical data. To reduce the potential false

negatives introduced by point-to analysis, we try to improve its precision by making the

analysis field-sensitive and context-sensitive. Here, we provide an empirical estimation of

this attack surface by measuring how many allocation sites can a pointer points to. The

results showed that the majority of pointers (97%) can only point to one allocation site.

Real attacks. Since we could not find a real-world attack against our target device, we

back-ported CVE-2013-6282 to our target kernel and attacked the kernel with techniques we

discussed in §4.4. As shown in Table 6, Kenali was able to stop all attacks.

4.8.4 Performance Evaluation

In this subsection, we evaluate the performance overhead introduced by Kenali from the

following perspectives: (1) instrumentation statistics; (2) overhead for our atomic operations

and core kernel services; (3) overhead for user-mode programs; and (4) memory overhead

incurred by shadow objects.

Instrumentation overhead. For instrumentation overhead, we report the following

numbers.

Reallocated stack objects. Recall that to implement safe stack, we relocate unsafe stack

objects to the heap. Since heap allocation is more expensive, we want to measure how

many objects are relocated. Among the 155,663 functions we analyzed, there are 26,945
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stack allocations. Our inter-procedural analysis marked 1813 allocations (6.73%) across 1676

functions as unsafe. Among these 1676 unsafe functions, there are 170 unsafe stores (e.g.,

storing a stack pointer to the heap) and 308 potential unsafe pointer arithmetic. The rest of

them are due to indirect calls where the target functions cannot be statically determined

(i.e., function pointers that are never defined), so we conservatively treat them as unsafe.

As a comparison, the original safe stack analysis used in [108] marked 11,528 allocations

(42.78%) across 7285 functions as unsafe.

Allocation sites. Data structures in the distinguishing regions can be allocated in four

general ways: as global objects, from heap, on stack, or as an embedded object of a

larger structure. Our analysis handles all four cases, with one limitation: our prototype

implementation only handles heap objects allocated from SLAB. Overall, for the 2419 input

structures, we were able to identify allocation sites for 2146 structures and cannot identify

allocation sites for 385 structures. Note that the total number is larger than the input

because the result also (recursively) included parent structures of embedded structures.

We manually analyzed the result and found that some of those missing data structures

like v4l2_ctrl_config actually are never allocated in our target kernel configuration, while

others are allocated directly from page allocator, such as f2fs_node, or casted from a disk

block, such as ext4_inode.

Instrumented instructions. For the target kernel, our analysis processed a total of 158,082

functions and 619,357 write operations. Among these write operations, 26,645 (4.30%)

were identified as may access distinguishing regions whose allocation sites were successfully

located and thus were replaced with atomic write primitives. Within instrumented write

operations, only two operations were marked as unsafe and need to be instrumented to

guarantee write integrity. Besides, we also instrumented 137 memcpy/memset calls.

Binary size. In this experiment, we measure the binary size increment introduced by

Kenali. The result is shown in Table 7. As we can see, Clang-generated binaries are smaller

than GCC (version 4.9.x-google 20140827), and the binary size increase is minor, so the

instrumented binary is only slightly larger than the stock GCC-compiled kernel.

Micro benchmarks. For micro benchmarks, we measured two targets: (1) the overhead
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Table 7: Compressed kernel binary size increment.

Stock Clang Kenali Increase

Size (in bytes) 7,252,356 6,796,657 7,165,173 5.42%

for a context switch and (2) the overhead for core kernel services.

Context switch. In this experiment, we used the ARM cycle count (PMCCNTR_EL0) to

measure the latency for a round-trip context switch under our protection scheme. For each

round of testing, we performed 1 million context switches, and the final result is based on

five rounds of testing. The result, with little deviation, is around 1700 cycles. Unfortunately,

lacking access to hypervisor mode and secure world on the target device, we cannot directly

compare the expense for context switching to hypervisor and the TrustZone on that device. A

recent study [151] showed that on an official Cortex-A53 processor, minimal round-trip cost

for a guest-host switch is around 1400 cycles, and around 3700 cycles for a non-secure-secure

switch (without cache and TLB flush).

LMBench. We used LMBench [127] to measure the latency of various system calls.

To measure how different techniques affect these core system services, we consider four

configurations: (1) baseline: unmodified kernel compiled with clang; (2) CI: kernel with

only life-time kernel code integrity protection (§4.7.2); (3) Stack: code integrity plus stack

protection (§4.7.4; and (4) Kenali: full DFI protection. The result, averaged over 10 times,

is shown in Table 8 4. For comparison, we also included numbers from Nested Kernel [62],

which also provides lifetime kernel code integrity; KCoFI [56], which enforces CFI over the

whole kernel; and SVA [57], which guarantees full spatial memory safety for the whole kernel.

Please note that because these three systems are evaluated on x86 processors and with

different kernels, the comparison can only be used as a rough estimation.

As we can see, for syscalls that involve distinguishing regions manipulation, Kenali

tends to have higher performance overhead than KoCFI but lower than SVA. But for

syscalls that do not involve distinguishing regions manipulation, e.g., null syscall, Kenali

4Because the number for Nested Kernel (PerspicuOS) was reported in a graph, the numbers here are
estimations. Because the original SVA paper did not use LMBench, we used the number reported in the
KCoFI paper.
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Table 8: LMBench results.

Benchmark CI Stack Kenali NK [62] KCoFI [56] SVA [57]

null syscall 0.99x 1.00x 1.00x ∼1.0x 2.42x 2.31x
open/close 0.97x 0.99x 2.76x ∼1.0x 2.47x 11.00x
select 1.00x 1.05x 1.42x - 1.56x 8.81x
signal install 1.34x 1.32x 1.30x ∼1.0x 2.14x 5.74x
signal catch 0.99x 1.11x 2.23x ∼1.0x 0.92x 5.34x
pipe 0.95x 1.02x 3.13x - 2.07x 13.10x
fork+exit 1.31x 1.40x 2.18x ∼2.9x 3.53x -
fork+execv 1.50x 1.55x 2.26x ∼2.5x 3.15x -
page fault 1.61x 1.69x 1.71x ∼1.0x 1.11x -
mmap 1.60x 1.66x 1.63x ∼2.5x 3.29x -
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Figure 10: Benchmark results from four standard Android benchmarks.

has no observable performance overhead. The overhead for enforcing lifetime code integrity

is similar to PerspicuOS.

Android benchmarks. To measure the performance impact on user-mode programs, we

used four standard Android benchmarks: AnTuTu, Geekbench, PCMark, and Vellamo. All

of these benchmarks simulate typical real-world scenarios, including web browsing, video

playback, photo editing, gaming, etc. The configurations we used are similar to LMBench.

The result is shown in Figure 10. As we can see, with Kenali’s protection, the slowdown

for these user-mode benchmarks is between 7% - 15%, which we think is acceptable.

Memory overhead. To measure the memory overhead introduced by Kenali (due to
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Table 9: Number of kmem cache with shadow objects and the number of pages used by shadow
objects.

# kmem cache # pages MB % of total slab % of total memory

Reboot 85 9945 38.85 65.11% 1.90%
Bench 85 9907 38.70 59.79% 1.89%

the use of shadow objects), we modified the /proc/slabinfo interface to report slabs with

shadow objects. Based on this, we calculate how many additional pages are allocated and

their percentage to the whole memory pages used by all slabs. We acquire this number at

two time points: (1) after fresh reboot and (2) after finishing the AnTuTu benchmark. The

result is shown in Table 9.

4.9 Limitations and Future Work

In this section, we discuss limitations of our current design and implementation, insights we

learned, and possible future directions.

4.9.1 Cross-platform

Although we choose AArch64 for the prototype, core techniques of Kenali are generic to

most other commodity platforms. Specifically, data-flow isolation can also be implemented

with the help of segmentation on the x86-32 architecture [223], WP-bit on the x86-64

architecture [62], and access domain on the AArch32 architecture [235]. For shadow objects,

our current design is based on SLAB allocator, which is used by many *nix kernels like Solaris

and FreeBSD. In theory, it can also be implemented on any memory pool/object cache based

allocator. The rest two techniques, WIT and safe stack, are both platform-independent.

4.9.2 Better architecture support

A majority of Kenali overhead can be eliminated by having better hardware support.

For example, with the application data integrity (ADI) feature from the SPARC M7

processor [148], (1) there would be no context switch for accessing distinguishing regions,

and (2) all memory overhead introduced by shadow objects can be eliminated. With the

kernel guard technology from Intel [92], enforcing lifetime kernel code integrity can be less

expensive. We explored this direction in §5.
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4.9.3 Reliability of assumptions

Our static analysis, InferDists, relies on two assumptions: (1) there is no logic bug in

the access control logic, and (2) there is no semantic error (i.e., failure of access control

checks should always leads to returning corresponding error codes). For most cases, these

assumptions usually hold, but may sometimes be violated [13, 38, 130]. However, we believe

Kenali still makes valuable contributions, as it is an automated technique that can provide

a strong security guarantee against memory-corruption-based exploits. In other words, by

blocking exploits against low-level vulnerabilities, future research could focus on eliminating

high-level bugs such as logical and semantic bugs.

4.9.4 Use-after-free

Our current design ofKenali focuses on spatial memory corruptions; thus it is still vulnerable

to temporal memory corruptions, such as use-after-free (UAF). For example, if the cred

of a thread is incorrectly freed and later allocated to a root thread, the previous thread

would acquire the root privilege. However, Kenali still increases the difficulty of exploiting

UAF vulnerabilities: if the wrongly freed object is not in distinguishing regions, exploiting

such vulnerabilities cannot be used to compromise distinguishing regions. At the same time,

many distinguishing regions data structures like cred already utilize reference counter, which

can mitigate UAF. So we leave UAF mitigation as future work.

4.9.5 DMA protection

Since DMA can directly write to any physical address, we must also prevent attackers

from using DMA to tamper distinguishing regions. Although we have not implemented

this feature in Kenali yet, many previous works [173] have demonstrated how to leverage

IOMMU to achieve this goal. Since IOMMU is also available on most commodity hardware,

we expect no additional technical challenges but only engineering efforts.

4.10 Summary

In this chapter, we presented Kenali, a principled and practical approach to defeat all

memory-corruption-based kernel privilege escalation attacks. By enforcing important kernel
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security invariants instead of individual exploit techniques, Kenali can fundamentally

prevent all attacks. And by leveraging novel optimization techniques, Kenali only imposes

moderate performance overhead: our prototype implementation for an Android device only

causes 5-17% overhead for typical user-mode benchmarks.
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CHAPTER V

IMPROVE SECURITY AND PERFORMANCE WITH

HARDWARE-ASSISTED DATA-FLOW ISOLATION

5.1 Motivation

Memory corruption vulnerabilities are the root cause of many modern attacks. To defeat such

attacks, many security features have been commoditized, including NX-bit (No-eXecute), Su-

pervisor Mode Execution Protection (SMEP), Supervisor Mode Access Prevention (SMAP),

Memory Protection Extension (MPX), which have provided a strong foundation for security

in today’s computer systems. However, while these hardware-based security features are

very efficient, they do not provide adequate protection against modern, complex memory-

corruption-based attacks. For example, NX-bit can eliminate simple forms of code injection

attacks, but cannot stop code-reuse attacks such as return-to-libc attack [68], return-oriented

programming (ROP) [176], COOP [167], and non-control data attacks [41, 88, 182].

To defeat these new attacks, researchers continue to develop new hardware-based mecha-

nisms. For example, hardware-based shadow stacks have been proposed to protect return

addresses from tampering by adversaries [218, 114, 150]. Hardware-based control-flow

integrity (CFI) has also been proposed to prevent code-reuse attacks, with various trade-

offs [55, 103, 64, 63]. Furthermore, a number of other approaches have been proposed to

eliminate the root cause of these memory corruption vulnerabilities [69, 133, 134, 212].

In §4, we demonstrated how program analysis and lightweight isolation can be combined

together to provide more efficient protection against memory corruption based exploits.

Our key observation is that even with hardware support, enforcing memory safety for the

whole application is still too expensive for practical use, e.g., WatchDogLite [134] imposes

29% slowdown on SPEC CINT 2006 benchmarks. To further reduce performance overhead,

one promising direction is to divide the memory into different regions—one for sensitive

data (e.g., function pointers) and the other for the rest (e.g., application data). Then, we
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Table 10: Comparison between Hdfi and other isolation mechanisms.

Mechanism (1) (2) (3) (4) (5) (6) (7)

Software-based
Randomization [170, 108] Y N N Y Y Y low
Masking [170, 108, 56] Y N N Y Y N moderate
Access control list [74, 35] N N Y Y Y N high

Hardware-based

x86 memory segment [223, 108] Y N N N Y N low
ARM access domain [235] Y Y N N Y N moderate
Virtual address space [182] Y Y Y Y Y N high
Privilege level Y Y Y Y N N moderate
Virtualization [173] Y Y Y Y N N high
TrustZone [16] Y Y Y Y N N very high
ADI [148] N N Y Y Y N low
HDFI N N N Y Y N low

enforce memory safety only over the sensitive region [108, 170, 182]. There are two major

advantages of this approach. First, sensitive data is usually a smaller set than normal data,

and less data implies fewer checks and less performance overhead. Second, the safety of

memory operations over sensitive data is easier for static verification. For example, because

pushing/popping data onto/from stack is always safe, once we isolate the stack slots used

to store return addresses, we can guarantee memory safety for return addresses without

any runtime check. With these two advantages, we can significantly reduce the number of

runtime checks, thereby making memory safety more affordable. However, implementing this

strategy on commodity hardware is non-trivial due to the lack of an efficient, fine-grained

mechanism for data isolation.

Table 10 compares existing software-based (top half) and hardware-based (bottom

half) isolation mechanisms on commodity hardware over seven criteria: (1) whether data

shadowing is required, (2) whether context switch is required for data access, (3) whether

liveness tracking is required, (4) is available on 64-bit mode, (5) whether they can be used

for self-protection, (6) is vulnerable to information leak, and (7) performance overhead.

Self-protection means whether the mechanism can be used to prevent attacks from the

same privilege-level. Performance overhead is measured by comparing one instrumented

read/write operation against a normal memory read/write operation. And as there is no

public benchmark result for ADI, so this conclusion is purely based on their presentation [148].

The most apparent problem is that the two most efficient hardware-based mechanisms—

segment in x86 and access domain in ARM processors, are absent on 64-bit mode. As
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a result, security solutions in modern processors must make a trade-off between security

and performance—solutions that opt for performance (e.g., by using randomization based

protection) are usually subject to information disclosure or brute-force based attacks [76, 51];

while solutions that opt for security (e.g., by leveraging context switch or masking) usually

yield poorer performance [170, 56, 182].

Moreover, even if we managed to bring back the segment and access domain, these

mechanisms are still inadequate. Specifically, because they are all coarse-grained, if we want to

isolate data at a smaller granularity (e.g., function pointers) and preserve a program’s original

memory layout, then we must perform data shadowing. Unfortunately, data shadowing breaks

data locality and requires extra steps to retrieve the shadow data. This introduces additional

performance overhead [60]. Furthermore, data shadowing also introduces unavoidable

memory overhead.

To overcome these limitations, we propose hardware-assisted data-flow isolation (Hdfi),

a new fine-grained data isolation mechanism. To eliminate data shadowing, Hdfi enforces

isolation at machine word granularity by virtually extending each memory unit with an

additional tag. Hdfi’s tags are associated with memory units’ physical addresses, so attackers

cannot tamper or bypass the protection by mapping the same physical page to different

virtual addresses. Moreover, instead of using static partition, the tag is defined by data-flow.

Inspired by the idea of data-flow integrity [34], Hdfi defines the tag of a memory unit by

the last instruction that writes to this memory location; then at memory read, it allows a

program to check if the tag matches what is expected. This capability allows developers to

enforce different security models. For example, to protect the integrity of sensitive data,

we can enforce the Biba Integrity Model [24]. In particular, we can use the tag to indicate

integrity level (IL) of the corresponding data: sensitive data has IL1 and normal data

has IL0. Next, we assign IL to write operations based on the data-flow. That is, we use

static analysis to identify write operations that can manipulate sensitive data, and allow

them to set the memory tag to IL1; all other write operations will assign to the tag to IL0.

Finally, when loading sensitive data from memory, we check if the tag is IL1 (see §5.3 for a

concrete example). Hdfi can also be used to enforce confidentiality, i.e., the Bell–LaPadula
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Model [21]. For instance, to protect sensitive data like encryption keys, we can set their tag

to SL1 (secret level 1), and enforce that all untrusted read operations (e.g., when copy data

to an output buffer) can only read data with tag SL0.

5.2 Threat Model and Assumptions

In this work, we focus on preventing memory corruption based attacks; therefore we follow

the typical threat model of most related work. That is, we assume that software may

contain one or more memory vulnerabilities that, once triggered would allow attackers to

perform arbitrary memory reads and writes. We do not limit what attackers would do

with this capability, as there are many different attack vectors given this capability. As a

hardware-based solution, we also do not limit where the vulnerabilities are: they can be

in user-mode applications, OS kernel, hypervisor, etc. However, we assume all hardware

components are trusted and bug free, so attacks that exploit hardware vulnerabilities, such

as the row hammer attack [106], are out-of-scope.

Similar to NX-bit, Hdfi requires software modifications to obtain its benefits. This can

be done in many ways: manual modification, compiler-based modification, static binary

rewriting, dynamic binary rewriting, etc. For the example applications we demonstrated in

this paper, we either manually modified the source or leveraged compiler-based approaches.

However, we must emphasize that this is not a limitation of Hdfi and source code is not

always necessary.

5.3 Background and Related Work

This section provides the background of Hdfi and compares Hdfi with related work.

5.3.1 Data-flow Integrity

The goal of Hdfi is to prevent attackers from exploiting memory corruption vulnerabilities to

tamper/leak sensitive data. To achieve this goal, we leverage data-flow integrity (DFI) [34].

DFI ensures that the runtime data-flow cannot deviate from the data-flow graph generated

from static analysis. In particular, DFI assigns an identifier to each write instruction and

records the ID of the last instruction that writes to a memory position; then at each read
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instruction, DFI checks whether the ID of the last writer belongs to the set allowed by static

analysis. Take Example 3. This code snippet contains a buffer overflow vulnerability at line

6, which allows attackers to use strcpy() to overwrite the return address saved at line 3

and launch control-flow hijacking attacks. Such attacks can be prevented by checking if the

return address read at line 8 is defined by the store instruction at line 3.

1 main:

2 add sp,sp,-32

3 sd ra,24(sp)

4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0

8 ld ra,24(sp)

9 add sp,sp,32

10 jr ra ; return

Example 3: A typical stack buffer overflow example, in RISC-V assembly.

In Hdfi, we extend the ISA to perform DFI-style checks with hardware. Specifically,

we leverage memory tagging to record the last writer of a memory word and provide new

instructions to set and check the tag. However, instead of trying to fully replicate DFI,

which would require supporting arbitrary tag size, we focus on providing isolation, i.e., using

a one-bit tag to indicate the trustworthiness of the writer. Using the same example, Hdfi

can be utilized to prevent the attack by (1) using a new instruction sdset1 (store and set

tag) to set the tag of memory used to store return address to 1 (line 3); and (2) when loading

the return address from memory for function return, using another instruction ldchk1 (load

and check tag) to check if the memory tag is still 1. Since normal store instructions (e.g., sd)

would set the tag to 0, if attackers try to overwrite the return address, the ldchk1 instruction

would fail and generate a memory exception.

5.3.2 Tag-based Memory Protection

Tag-based memory protection is not new and has been explored in many previous works.

For example, lowRISC [28] uses a 2-bit tag to specify if a memory address is readable and

writable. Loki [229] also allows developers to specify permission with a memory address, but

is more flexible, as the permission is related to the current protection domain. The problem

with these approaches (including the Mondriaan protection model [216]) is that, although the
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objects (memory addresses) are fine-grained, the subjects are still coarse-grained—the access

permissions are applied to the whole program or the whole protection domain. However, the

subjects are individual instructions in Hdfi.

An alternative approach is to associate the access permission with pointers instead

of memory locations. For example, Watchdog [133] and the application data integrity

(ADI) [148] mechanism on SPARC M7 processors allow a program to associate memory

addresses and pointers with versions (tags) and require that when accessing the memory

the version of the pointer must match the version of the memory. The tricky part of this

approach is how to maintain the tag of a pointer, because every pointer should have two

tags: one indicating the tag of the target memory, and the other indicating the tag of the

memory where the pointer is stored. Without this, attackers can still tamper with the

pointers. Watchdog handles this by using shadow memory to maintain the first type of tags,

but it is unclear whether or how ADI handles this issue.

Write integrity test [4] is another tag-based memory safety enforcement mechanism. It

enforces that each write operation (instead of pointer) can only write to objects that are

allowed by the static data-flow graph. However, since the integrity test is only enforced on

write operations, WIT can only enforce data integrity, but not data confidentiality.

A common issue with all the aforementioned approaches is that they must track the

liveness of memory objects, which makes the protection more complicated. For instance,

in Example 3, to protect the return address, all aforementioned systems must tag the

memory used for return address at prologue. Here we must pay special attention to the

order of tagging and store: if store happens before tagging, the system would be vulnerable

to time-of-check-to-time-of-use (TOCTTOU) attack, because the address might be modified

unless the two operations are guaranteed to be atomic. Then, after the function finishes

execution and returns, the current stack frame is freed, so the old memory position used

to store the return address must be unprotected for future re-use. Here is another tricky

part—if the capability system is location-based, or does not assign a new version for every

memory allocation (which is very challenging for fixed tag size), then it would be subject

to use-after-free (UAF) based attacks. Moreover, for software that heavily utilizes custom
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memory allocators, such as browsers and OS kernels, tracking object allocation is non-trivial.

Fortunately, Hdfi does not need to track liveness of memory objects.

Among existing hardware features, Minos [55] and CHERI [212] are the closest to Hdfi.

Specifically, Minos uses one-bit tags to indicate the integrity of code pointers and updates

the tag based on the Biba model [24]. CHERI [212] also uses one-bit tags to indicate whether

a memory address stores a valid capability (fat pointer). This bit can only be set when the

memory content is written by a capability-related instructions and is cleared when written

by normal store instructions. Comparing to them, the advantage of Hdfi is flexibility—as

will be shown in §5.5, besides pointers, Hdfi can also be used to protect generic data like

uid; and along with the Biba model, Hdfi can also be used to enforce the Bell–LaPadula

model [21].

5.3.3 Tag-based Hardware

Because memory tagging is widely used for dynamic information flow tracking (DIFT),

which can be very expensive when purely done in software [142]. For this reason, numerous

hardware solutions have been proposed, including pure DIFT-oriented [59, 190, 55, 102],

and more general, programmable metadata processing [202, 40, 67, 70]. The most significant

difference of Hdfi from these solutions is our emphasis on minimizing hardware changes so

as to make Hdfi more likely to be adopted in practice. In particular, Hdfi does not require

modifying register files, ALU, main memory, or the bandwidth between cache and main

memory. More importantly, instead of requiring half of all physical memory dedicated to

store tags (i.e., an overhead of 100%), Hdfi only impose 1.56% memory overhead.

5.3.4 Memory Safety

Since memory safety issues are the root cause of many attacks [192], researchers have proposed

many solutions to address this problem, including automated code transformation [137],

instrumentation-based [34, 4, 135, 136], and hardware-based [69, 133, 134, 94, 212]. The

biggest hurdle for adopting these solutions is their performance overhead—even with hardware

assistance, the average overhead is still 29% on benchmark workloads [134]. To help further

reduce the overhead, Hdfi is designed to enable another optimization direction—using
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isolation to limit the protection scope and only enforcing memory safety over the isolated

data. Such data could be security sensitive, e.g., code pointers [108], generic pointers [54, 212],

or important kernel data [182]. It could also be data that can be statically proved to be

memory safe, e.g., safe stack [108]. We believe such a combination would allow us to build

powerful yet efficient solutions to eliminate all memory corruption based attacks.

5.4 HDFI Architecture

In this section, we present the design of Hdfi, which includes two major components: the

ISA extension and the memory tagger. Our current design tags memory at machine-word

granularity because most sensitive data we want to protect are of this size (e.g., pointers).

For data not of this size, we can manually extend the size, or leverage compilers. To prevent

attackers from creating inconsistent views of data and its corresponding tag and launching

TOCTTOU attacks in a multi-core/-processor system, we require all Hdfi instructions to be

atomic (i.e., data and tag must always be loaded and stored together) and comply with the

same cache consistency model as other memory accessing instructions. To avoid changing

the main memory system and the data link between main memory and the processor, our

current design stores all the tag information at a dedicated area called tag table. In our

current design, tag table is allocated and initialized by the OS kernel during boot, similar to

how Intel SGX reserves the secure pages (i.e., EPC pages) for enclaves [94]. Once allocated,

the memory region for the tag table will be protected from malicious modification (§5.4.4).

5.4.1 ISA Extension

To enforce DFI, the authors added two high-level instructions: SETDEF and CHECKDEF [34].

Since Hdfi only supports one-bit tags, in order to allow programs to use DFI-style checks

to enforce the integrity/confidentiality level of memory contents, we introduce three new

instructions:

• sdset1 rs,imm(rb): store word and set tag to 1.

• ldchk0 rd,imm(rb): load word and check if tag equals 0.

• ldchk1 rd,imm(rb): load word and check if tag equals 1.
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Note that we do not have an instruction that explicitly sets the tag to 0 (or sdset0 per our

naming convention). Instead, Hdfi implicitly sets the tag of the destination memory to 0

when written by regular store instructions, such as sd (i.e., store double words), sw (i.e.,

store a word), and sb (i.e., store a byte). However, Hdfi preserves the semantics of regular

load instructions, i.e., tag is not checked on regular load operations. To check the tag bit

of the target memory region, Hdfi provides ldchk0 and ldchk1. To enable the OS kernel

to capture tag mismatch, we also introduced a new memory exception, which is similar to

other memory faults except for the error code.

Hdfi also provides a special instruction alias mvwtag 1 for copying the memory from a

source to a destination along with the corresponding tag bits. This special operation is

necessary to achieve optimal performance in modern system software. Specifically, modern

OS kernels like Linux use copy-on-write (CoW) to share memory between the parent process

and its child processes. However, if we use normal sd operations to perform the copy, it

could break Hdfi-protected applications because the tag information is lost; on the other

hand, we also cannot use sdset1 because it allows attackers to abuse this feature to tag

arbitrary data. To solve this problem, we introduced the mvwtag instruction to allow OS

kernels to copy data while preserving the tag. Please also note that because memcpy can

cause memory corruption, we do not recommend using mvwtag to implement memcpy unless

the developer can guarantee memory safety for all the invocations of memcpy.

5.4.2 Memory Tagger

Our hardware extension is similar to lowRISC [28]. Specifically, to simplify the implemen-

tation of the new instructions and support atomicity in a multi-core/-processor system,

we modified the interface between the processor core and the cache system (including the

coherence interconnect) to associate each data with its tag. In particular, when the processor

core executes a memory related instruction such as sd, sdset1 or ld, it sends a request to

the data cache(s). This request includes a data field and a command field. Hdfi adds one

tag bit to the data field, so for every memory write request, data is always stored with the

1Since we do not extend general register files with tag, this operation is an alias for two instructions: load
data and tag from source into a special register then store them to the destination.
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tag; and for memory load requests, tags can be (not always, see §5.4.3 for detail) loaded

with data.

To facilitate this, we augmented the caches to hold the tags for the cached memory units,

as shown in Figure 11. To hold the tag bits for the cached memory units, the caches have a

one-bit register for each machine word to store the corresponding tag. When the processor

core sends a store request, the L1 cache can simply update the data and tag value with the

incoming value from the core; and when the core sends a read request, the L1 data cache

provides the core with the tag bit, with which the core can check whether the tag matches

expected value or not.

While the L2 cache can also be augmented similarly to hold the tags for each memory

unit, we believe it is not feasible to add the tag bits physically to the external main memory.

For this reason, we added an additional module DfiTagger in between the L2 cache and

the main memory, which decomposes memory accesses from the L2 cache to separate data

accesses and tag accesses. Data accesses are handled as usual and tag accesses are handled as

follows. Hdfi preserves a memory chunk to be used as tag table (Figure 11), which acts as

a huge bit vector to store tag bits. When the L2 cache issues a memory access, DfiTagger

maps the physical address to a table entry of the tag table and generates a tag access.
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5.4.3 Optimizations

Unfortunately, the additional memory accesses to the tag table introduce non-negligible

performance overhead. More specifically, without any optimization, Hdfi will double the

memory accesses because for every cache miss, DfiTagger needs to issue one data access and

another tag access. To minimize this impact, we developed several optimization techniques.

5.4.3.1 Tag Cache

The most straightforward way of reducing the overhead is caching, so we introduced a tag

cache within the DfiTagger to exploit the locality of memory accesses. Moreover, tag

cache also allows DfiTagger to fetch a set of tags from the main memory in the cache line

granularity to reuse the existing memory interface. For example, a cache line in the Rocket

Core is 64 bytes. To handle one cache miss, DfiTagger only needs 8 tag bits (one bit per

eight bytes), but for the fixed size of memory interface, it has to fetch 64 bytes from the tag

table. In fact, this 64-byte unit, which we call one tag table entry, naturally stores the tags

for a 4 KB memory block; so tag cache allows us to generate only one memory access per

4 KB data access.

5.4.3.2 Tag Valid Bits

The second optimization technique takes advantage of the fact that most of the memory

loads are not checked, so there is no need to always refill the cache line with corresponding

tag bits. Leveraging this observation, we add a Tag Valid Bit (TVB) to each memory unit

in the caches to further reduce unnecessary accesses to the tag table. TVB is updated as

follows. When the cache has to refill a line but the request from the inner cache or the

processor core does not explicitly asks for tag bits, the cache generates a refill request to the

outer cache or DfiTagger, and clears the TVB for the memory units in the line. Later, if

an incoming load (with tag) request hits in the cache, but the TVB for the corresponding

memory unit is not set, the cache will refill the line again with the valid tags. Note that

any write hit will set the TVB because store operations always update the tag bit. Finally,

when a cache line is evicted and written back to main memory, the cache forwards TVB to
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DfiTagger, so the later can update the tag cache accordingly.

5.4.3.3 Meta Tag Table

The third technique leverages the fact that most of the memory units are tagged with 0

and only a few ones will be tagged with 1. This means that most tag table entries would

be filled with 0. To take advantage of this observation, DfiTagger maintains a Meta Tag

Table (MTT) in the main memory and a Meta Tag Directory (MTD) as a register. Each

bit of the MTT entries is set to 1 if the corresponding tag table entry contains 1, and each

bit of MTD is set to 1 if the corresponding MTT entry has 1. Utilizing them, DfiTagger

can avoid fetching tag table entries from the main memory if they are filled with 0. It also

enables DfiTagger to avoid (1) updating the tag table entry for a given write miss if that

entry is filled with 0; and (2) write back to main memory if both the evicted tag cache and

the main memory copy are filled with 0.

5.4.4 Protecting the Tag Tables

The design of Hdfi requires that the tag table and the meta tag table in the main memory are

protected from the malicious modifications. To do so, we leverage the fact that DfiTagger

is sitting between the cache and the main memory, hence we can use it to mediate all

modifications to the main memory. That is, once the memory chunk used for tag tables are

assigned to DfiTagger, it drops any access to this memory chunk. Because tag is always

provided by DfiTagger, this effectively prevents any malicious modifications to the tag

tables. Note that our current design cannot prevent DMA-based attacks; we will discuss

this issue in §5.9.

5.5 Security Applications

In this section, we demonstrate how Hdfi can be utilized to build security solutions with

simplified designs, improved performance, and better security. We want to use these examples

to highlight the generality of Hdfi (i.e., the ability to support different security applications),

as well as its ease of adoption. Regarding backward compatibility, it completely depends

on the security solution. Some security mechanisms like shadow stack could allow mixing
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protected and unprotected code, but other solutions like VTable protection will not allow

such mixing.

In each application example, we focus on protecting one type of security critical data,

such as return addresses, function pointers, etc. However, as there is no overlapping between

the protected data (i.e., the meaning of the tag bit is not ambiguous), we can integrate all

mechanisms together to maximize the defense against memory corruption based attacks.

To implement these examples, we either directly modified the source code or augmented

compilers to emit Hdfi’s new instructions. However, we want to emphasize again that this

is not a limitation of Hdfi—as long as a security solution can make the target program use

Hdfi’s new instructions, it will be able to leverage the isolation provided by Hdfi.

5.5.1 Shadow Stack

In Example 3, we have demonstrated how to use Hdfi to implement a virtual shadow stack

for protecting the return addresses. To implement this scheme, we just need to change 6

lines in GCC (Example 4). Implementation in the LLVM toolchain is similarly simple, with

only 4 lines of changes—in function storeRegToStackSlot/loadRegFromStackSlot, which are

invoked at function prologues/epilogues, we use sdset1/ldchk1 instead of normal store/load.

Because these functions are also used to handle register spills/restores, our (LLVM-based)

shadow stack also protects spilled registers, which can also be an attack vector [51].

1 char *riscv_output_move (rtx dest, rtx src) {
2 // if dest == REG && src == MEM

3 if (flag_safe_stack && (REGNO (dest) == RETURN_ADDR_REGNUM))
4 return "ldchk1\t%0,%1";
5 else
6 return "ld\t%0,%1";
7 // if dest == MEM && src == REG

8 if (flag_safe_stack && (REGNO (src) == RETURN_ADDR_REGNUM))
9 return "sdset1\t%z1,%0";

10 else
11 return "sd\t%z1,%0";
12 }

Example 4: How to use Hdfi to implement shadow stack in GCC, with only 6 lines of changes.

Supporting context saving and restoring like setjmp/longjmp has always been a challenge

for hardware-based shadow stacks [218, 114, 150]. However, for a Hdfi-based shadow

stack, supporting this feature is straightforward—just like saving registers to the stack,
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when saving current context to jmp_buf, we set the tag of the corresponding memory to 1.

Then, when restoring the context, we check if the memory tag is still 1. If attackers try to

overwrite jmp_buf, the load check will fail. Furthermore, because Hdfi-based shadow stack

is still memory-based, it naturally supports deep recursion. It can even support modifying

return addresses as long as they are always stored using sdset1 and loaded with ldchk1.

Finally, unlike SmashGuard [150], because Hdfi is orthogonal to the execution privilege

level, Hdfi-based shadow stack does not need any support from the OS kernel and can also

be used to protect kernel stacks.

5.5.2 Standard Library Enhancement

Runtime libraries like the dynamic linker (ld.so) and the standard C library are important

parts of every program’s runtime security. Unfortunately, many compiler-based security

solutions neglected them, thus leave holes for attacks [101, 164, 30]. In this subsection, we

describe enhancements made to the libraries to prevent attacks.

Heap Metadata Protection. Many standard C libraries like glibc (GNU C Library)

uses a variant of Doug Lea’s Malloc [112] that supports multi-threading, called (ptmalloc).

ptmalloc uses double-linked lists to manage freed memory chunks. When removing a memory

chunk from this list, it performs a general unlinking process (Example 5). If there exist a

heap buffer overflow vulnerability, attackers can exploit this vulnerability to tamper with

these metadata (pointers), which will allow attackers to overwrite an arbitrary address with

arbitrary data [101]. Moreover, despite that many integrity checks have been applied to the

heap implementation to stop heap-based attacks, attackers still find their ways to bypass

them [75, 78].

To prevent such attacks, we can leverage Hdfi to protect the integrity of these metadata—

similar to return addresses, when linking a freed chunk, we set the tags of forward and

backward pointers to 1; then when unlinking a chunk, we check if the tag is still 1. By doing

so, if attackers overwrite these pointers (with normal writes), the tag will be set to 0, which

will be captured by the load check.

Global Offset Table Protection. Global Offset Table (GOT) is a data structure for
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1 void unlink(P, BK, FD) {
2 FD = P->fd;

3 BK = P->bk;

4 if (__builtin_expect (FD->bk != P || BK->fd != P, 0))
5 malloc_printerr (check_action, "corrupted double-linked list", P);

6 else {
7 FD->bk = BK;

8 BK->fd = FD;

9 if (!in_smallbin_range (P->size)
10 && __builtin_expect (P->fd_nextsize != NULL, 0)) {

11 assert (P->fd_nextsize->bk_nextsize == P);

12 assert (P->bk_nextsize->fd_nextsize == P);

13 if (FD->fd_nextsize == NULL) {
14 if (P->fd_nextsize == P)
15 FD->fd_nextsize = FD->bk_nextsize = FD;

16 else {
17 FD->fd_nextsize = P->fd_nextsize;

18 FD->bk_nextsize = P->bk_nextsize;

19 P->fd_nextsize->bk_nextsize = FD;

20 P->bk_nextsize->fd_nextsize = FD;

21 }

22 } else {
23 P->fd_nextsize->bk_nextsize = P->bk_nextsize;

24 P->bk_nextsize->fd_nextsize = P->fd_nextsize;

25 }

26 }

27 }

28 }

Example 5: Unlinking function when a heap memory chunk is re-allocated or merged.

dynamic linking. Since GOT is modifiable by default and affects the program’s control flow,

GOT overwriting [164] has been used for changing control flow with memory corruption

based attacks. Although GNU loader’s RELocation Read-Only (RELRO) [193] provides

protection for GOT, it requires to resolve all symbols at start up time of the program, leading

to unavoidable performance degradation. To overcome the limitation, we implemented GOT

protection enforce that whenever a dynamic linked function is invoked, the target address is

loaded by ldchk1. To tag the initial pointer (i.e., the call to the resolver), we leveraged the

fact that for position-independent executables (PIE), GOT table entries need to be patched

due to ASLR; so we modified the relocation routine to tag the initial GOT values with 1.

Then during runtime, after resolving a real function address, we make the loader use sdset1

to update the GOT value. Compared with RELRO, GOT protection keeps the advantage of

lazy loading and prevents it from malicious overwriting.

Exit Handler Protection. To execute arbitrary code in the Full RELRO enabled binary

which is not attackable by GOT overwriting, another attack surface is the exit handler [30].

To prevent attackers from manipulating the exit handler, pointer encryption [72] is applied
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in glibc. However, because performance was top priority when designing this scheme, the

encryption is implemented in an ad hoc manner and can be easily bypassed with information

leakage. To protect the exit handler, we use Hdfi to enforce that it is always registered

with sdset1 and loaded with ldchk1. Since attackers cannot tag an exit handler with 1, they

cannot abuse it to execute arbitrary code.

5.5.3 VTable Pointer Protection

As virtual function calls comprise a large portion of indirect control transfer in large

C++ programs like browsers [197], virtual function table pointers (a.k.a., vfptr) have

become a popular attack target [232]. In these attacks, attackers try to exploit memory

corruption vulnerabilities to control the vfptr so as to invoke arbitrary code, which has been

demonstrated to be very powerful [167]. For this reason, many systems have been proposed

to defeat such attacks [97, 197, 232, 230, 27].

Leveraging Hdfi, we also implemented a protection mechanism based on one security

invariant: only a constructor function can initialize a vfptr. This invariant can be enforced

in two simple steps: (1) when initializing a C++ object, we use sdset1 to initialize its vfptr;

and (2) when performing a virtual call, we always use ldchk1 to load the vfptr.

Compared with existing protection mechanisms, our implementation is much simpler

in that it requires no sophisticated static analysis and/or runtime instrumentation. At

the same time, it is also very effective. More specifically, there are two typical attacks

against VTable: injection attacks and reuse attacks. In VTable injection attacks, attackers

try to forge a vfptr pointing to a crafted VTable. With our protection, this is no longer

feasible because the values assigned to vfptr are always static/constant. In VTable reuse

attacks, attackers try to make the vfptr point to an existing VTable, but usually at a

wrong offset [167]. Although our mechanism cannot fully prevent all VTable reuse attacks,

it significantly increases the difficulty of attacks, because (1) making the vfptr point to a

wrong offset is no longer feasible, because constructors always assign the correct value; and

more importantly, (2) crafting a counterfeit object is also much more difficult, i.e., once

combined with techniques that can prevent illegal jumping to the middle of a function (e.g.,
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shadow stack and CPS), the only way to modify the vfptr is to invoke a constructor, who

will initialize a legitimate object and overwrites the crafted data from attackers.

5.5.4 Code Pointer Separation

Control flow hijacking is one of the most popular and powerful attacks. In all control flow

hijacking attacks, attackers seize control by corrupting one or more code pointers. Based on

this observation, researchers have proposed code pointer separation (CPS) [108], a technique

that isolates code pointers into a safe region to prevent attackers from tampering with

them. In their original implementation, the isolation is enforced using segment on 32-bit

x86 processors or randomization (or masking) on 64-bit x86 processors and ARM processors.

As discussed in §5.1, these approaches introduce (1) additional memory overhead for data

shadowing, and (2) additional performance overhead for shadow data lookup, which is

very problematic on benchmarks where code pointer dereference is more frequent, such as

C++ programs and language interpreters. Moreover, their randomization-based approach

is subject to brute-force attacks [76], and their masking-based approach introduces an

additional 5% performance overhead [108].

By utilizing Hdfi, we can eliminate all these drawbacks. Specifically, using the same

static analysis from CPS, we can identify all code pointers that need to be protected. With

this information, instead of instrumenting the target program to load/store code pointers

from the safe region with an additional runtime library, we instrument the program to (1)

always use sdset1 instructions to store code pointers, and (2) always use ldchk1 instructions

to load code pointers. Because no other instructions can store code pointers, our approach

has the same effectiveness as segments and masking based approaches. However, because

there is no additional lookup step(s), the performance of our approach is better when there

are many indirect calls.

One drawback of our solution is that we need to add one additional step to tag static code

pointers that are initialized by the OS kernel or the dynamic loader, e.g., virtual function

pointers in the VTables. For PIE code, we can reuse our modification to the relocation

procedure to perform this task.
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Table 11: Components of Hdfi and their complexities in terms of their lines of code.

Components Language
Lines of Code

Modified Added Total

Architecture Scala (Chisel) 395 1,803 2,198
Assembler C - 16 16
Linux Kernel C 8 52 60

Total 403 1,871 2,274

5.5.5 Kernel Protection

In §4, we presented Kenali, a kernel protection mechanism aims to prevent memory

corruption based privilege escalation attacks. Unfortunately, due to the lack of efficient

isolation mechanism, our original implementation (§4.7) imposes high performance overhead.

As a generic data isolation mechanism, Hdfi can also be used to replace those expensive

isolation mechanisms thus reduce the performance overhead.

Similar to CPS, porting Kenali to utilize Hdfi is straightforward. Specifically, we

replace: (1) its randomization-based stack protection with the shadow stack described

in §5.5.1; (2) the expensive, context switch-based update operations with sdset1; (3) all

read to sensitive data with ldchk1; (4) global object shadowing with tagging (i.e., similar to

function pointers in the VTable, we wrote a small early initialization routine to tag sensitive

global object); and (5) we eliminate its complicated object shadowing mechanism.

5.5.6 Information Leak

In all of the above applications, we try to prevent attackers from injecting data into the

trusted region, but Hdfi can also be used to prevent attackers from reading sensitive data

from the trusted region. For example, in the Heartbleed attack [47], attackers exploited a

buffer overread vulnerability in the OpenSSL library to steal the private key associated with

the website’s certificate. To prevent such attacks, we can (1) tag the memory used to store

the private key as 1, (2) replace all legitimate read access to the key with ldchk1, and (3)

implement a simple sanitation routine that uses ldchk0 to check if the buffer to be written

to network contains any data with tag 1.
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Figure 12: Encoding of Hdfi’s new instructions.

5.6 Implementation

In this section, we provide the implementation detail of Hdfi. Table 11 shows the lines of

code used to implement Hdfi, excluding empty lines and comments.

5.6.1 Hardware

We implemented a prototype of Hdfi by modifying the Rocket Chip Generator [199]. The

generated system includes a Rocket Core [200] as its main processor, which has 16KB of L1

instruction and data caches. Modifying the generator itself instead of a generated instance

allows us to generate and evaluate multiple versions of Hdfi with various features and

parameters, e.g., different optimization techniques and configuration parameters.

ISA Extensions.

Following the design pattern of RISC-V, we assign a new opcode to our new instructions

that is similar to the RV64I load/store instructions [211]. One difference is funct3 (bit

[14:12]) to distinguish four instructionsHdfi introduce, unlike RV64I load/store instructions

use this field to indicate operand width. Figure 12 shows the new instructions and their

encoding format introduced by Hdfi.

sdset1: We extend the memory request unit’s data field by one-bit to include the tag.

To determine whether the tag should be 0 or 1, we introduce a new configuration to the set

of control signals for memory command type that is unique to sdset1.

ldchkx: We add a new, one-bit field to the memory response unit for the tag bit loaded

with the machine word. To determine whether the tag bit should be loaded, we assigned a

new memory command to these two instructions. Upon a valid response from cache, Hdfi
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Figure 13: A simplified diagram of DfiTagger on a Rocket Chip.

compares the tag to the expected value. This expected value is extracted from bit 12 of

the ldchkx instruction. A tag mismatch generates a new memory exception; otherwise, the

pipeline continues normally.

mvwtag: At the execution stage, Hdfi first calculates the source address from the second

register’s value and the immediate offset using the ALU, and sends out a memory read

request to load the data and tag. The result is stored in a new internal register that is

capable of storing both data and tag. Simultaneously, Hdfi calculates the destination

address from the destination register’s value and the same offset using a separate adder.

Finally, we issue a memory store request to store the internal register’s data and tag to the

destination address.

DFITagger. To avoid adding the tag bits physically to the main memory, which is usually

a set of DRAMs, we implemented DfiTagger to translate memory accesses with tags

from inner caches into data accesses and tag accesses. Figure 13 shows the DfiTagger

we implemented for the Rocket Chip. The DfiTagger is designed to handle the memory

accesses that comply with the TileLink protocol which the rocket chip uses to implement the

cache coherence interconnect. Among the five channels that the protocol defines, DfiTagger

handles two of them because they are used to connect the L2 caches and the outer memory

system.

To initiate a memory access, the inner cache generates one or more beats of transaction

through the Acquire channel, and the DfiTagger selectively intercepts the beats using the
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Acquire Distributor. When the option tagger is enabled, the Acquire Distributor bypasses

the device accesses, drops the access to the tag table or meta tag table (for protection

purpose), and forwards all the transactions heading to the memory to the Acquire Queue,

which simply forwards the incoming transactions to memory. The Acquire Arbiter1 drops

all the tag bits in the transactions; the resulting memory accesses only contain the data part

of the incoming accesses.

In the meantime, the Tracker duplicates the required field of incoming transactions,

including the tag bits, the transaction id, the type of the transaction, and the address. When

the incoming transaction writes to memory, the Tracker updates the corresponding tag bits

in the tag table with the tag bits in the transaction. To do this, the Tracker first check the

Tag Cache, and uses the Fetcher and the Writer modules to fetch and evict tag table entries.

Handling memory read accesses is similar, but the Tracker need to intervene in the Grant

channel as well. In the Rocket Chip, the memory interface (which is a protocol converter)

uses the Grant channel to provide the caches with the read data. To attach the tag bits to

the Grant transactions, the Acquire Queue changes the transaction id of read accesses so that

the corresponding Grant transactions are forwarded to the Grant Queue. In the meantime,

the Tracker accesses the Tag Cache and uses other modules to prepare the corresponding

tag bits. Once the tag bits become available, the Grant Queue forwards the transaction

from the memory interface, after changing the transaction id back to the original one and

attaching the correct tag bits for each machine word.

Tag Valid Bits. To reduce the number of tag table accesses, Hdfi adds a TVB for each

machine word in the caches. Using TVB, the cache can avoid fetching the tag bits when it

refills a cache line. To take advantage of this, the cache uses the union field of an Acquire

transaction to mark if the response to the transaction should have valid tag bits or not. The

Acquire Distributor then uses this field to decide whether a transaction could be directly

forwarded to the Acquire Arbiter2 and bypass the Acquire Queue.

The location of TVBs is also important. A simple solution is to put the TVBs in

the metadata array, where the cache holds the cache tags and the coherence information.

However, this approach would increase the latency of write hits because the cache has to

107



update the metadata for every write operation. To address this issue, we choose to put a tag

fetched bit in the metadata array for each cache line and extend the size of the data array

to store the TVBs for each word. The tag fetched bit is set/cleared by the miss handler,

which is called MSHR in the Rocket Chip. When the handler fetches the cache line with

tags, it sets the bit; otherwise the bit is cleared. Since every write operation should update

the tag, the cache also sets the TVB whenever a machine word is written.

Adding TVBs also requires the DfiTagger to consider a memory write access whose

tag bits are partially valid. To handle this, the cache attaches the TVBs for each machine

word to the Acquire transactions for memory writes. With the TVBs, the DfiTagger can

selectively update the tag bits in the corresponding tag table entry.

An important drawback of this implementation is that the cache refills a cache line to

handle an incoming load with tag access even when the TVB of the requested machine word

is set, but if the Tag Fetched Bit is not set. We believe that we can avoid these cache refills

by augmenting the miss handler, by letting it to consider the TVBs before evicting and

refilling the cache, but the current implementation does not include such feature.

Meta Tag Table. Enabling the Meta Tag Table adds the shaded components and resource

in Figure 13 to the DfiTagger. When handling an incoming tag table read access, the

Tracker checks whether the MTT cache and the tag cache has a matching entry. If the

Tracker fails to find a matching tag table entry, it checks the MTD and the matching MTT

entry (loaded into MTT cache if does not exist) to see if the corresponding tag table entry is

all zero. If so, the Tracker handle the incoming tag table access without really fetching the

entry from the memory. To minimize the miss penalty, the MTTFetcher and the MTTWriter

handles the access to the MTT in the memory in parallel with the existing Writer and

Fetcher.

After updating the tag table entry and the MTT entry, the Tracker checks if it can

clear the corresponding MTT entry bit and MTD bit. In particular, the Tracker clears the

corresponding bit in MTT entry if the updated tag table entry is filled with zeros, and clears

the MTD bit if the MTT entry is filled with zeros.
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Table 12: Required efforts in implementing or porting security schemes in terms of lines of code.

Solutions Language LoC

Shadow Stack C++ (LLVM 3.3) 4
VTable Protection C++ (LLVM 3.3) 40
CPS C++ (LLVM 3.3) 41
Kernel Protection C (Linux 3.14.41) 70
Library Protection C (glibc 2.22) 10
Heartbleed Prevention C (OpenSSL 1.0.1a) 2

5.6.2 Software Support

To utilize Hdfi, we made the following changes to the software.

Assembler. We modified the GNU assembler (gas) so that it recognizes the new instruction

extension and can generate the correct binary.

Kernel Support. Our modifications to the OS kernel include three parts. First, we

modified its exception handler to recognize the new tag mismatch exception. To handle this

exception, we reused the same logic as normal load/store faults, i.e., generate a segment

fault (SIGSEGV) for user mode applications, and panic if the exception happens in kernel

space. Second, as mentioned in §5.4, we implemented a special memory copy routine with

the new mvwtag instruction and modified the CoW handler to invoke this routine to copy

page content, so that the tag information are preserved. Last, we added routines to allocate

the tag table and meta tag table, and initialize the DfiTagger with the base addresses of

the tables.

5.6.3 Security Applications

Most security applications mentioned in §5.5 were implemented based on the llvm-riscv

toolchain [166] (RISCV branch). Table 12 summarizes the effort of implementation/porting.

LLVM Shadow Stack. LLVM-based shadow stack is implemented as part of the frame

lowering process. Specifically, we modified the getLoadStoreOpcodes function to return the

opcode of sdset1 for the storeRegToStackSlot function; and return the opcode of ldchk1 for

the loadRegFromStackSlot function.

VTable Pointer Protection. VTable pointer protection is implemented in two steps.

First, during compilation, we enable the TBAA (type-based alias analysis) option so
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Clang will annotate VTable load/store operations with corresponding TBAA metadata

(‘‘vtable pointer’’). This metadata will be propagated to machine instruction, so in the

second step, we leveraged the DAG to DAG transformation pass to replace sd instructions

with sdset1 instructions, and to replace ld instructions with ldchk1 instructions, if the

machine instruction has the corresponding TBAA of VTables.

Code Pointer Separation. To port CPS [109] to our architecture, we performed

the following modifications. (1) Because code pointers are now protected by Hdfi, we

removed the runtime library required by its original implementation. (2) We modified the

instrumentation, so when a code pointer is stored to or loaded from memory, we annotate the

corresponding operations with a special TBAA metadata and removes the original invocation

to the runtime library. (3) Using the same DAG to DAG transforming function, we replace

the sd and ld instructions with sdset1 and ldchk1, respectively. Unfortunately, lacking link

time optimization support in the llvm-riscv toolchain, we cannot port the original CPS and

CPI implementations.

Kernel Protection. Due to the limitation of llvm-riscv toolchain, even though we were

able to generate LLVM bitcode for the target kernel and apply the static analysis of Kenali,

we cannot use Clang to compile the kernel into executable binary. As a result, we cannot

perform automated instrumentation to protect all the discover data. For proof-of-concept,

we utilize the analysis results to manually instrumented the kernel to protect the uid fields

in the cred structure, which are the most popular target for kernel exploits. Since we have

implemented the shadow stack in GCC, we were able to replace Kenali’s randomization-

based stack protection with our stack shadow.

The rest of the protection mechanisms are implemented through manual modification.

Standard libraries. To protect the integrity of saved context of setjmp/longjmp, we

modified setjmp.S and __longjmp.S so general registers are saved with sdset1, and restored

with ldchk1 to enforce its integrity. To protect the integrity of heap metadata, we manually

modified the linking and unlinking routine to use sdset1 for assigning pointers and ldchk1

110



for loading pointers. To set the tag of static code pointers to 1, we modified the dynamic

loader (elf_machine_rela) so that during the relation process, it stores the patched code

pointer with tag 1. And to protect code pointers in GOT table and the exit handler, we

modified the dynamic loader to use sdset1 to set these pointers, and ldchk1 to load these

pointers.

Heartbleed. To protect sensitive data from Heartbleed attacks, we modified OpenSSL

so that (1) the private key is stored with sdset1; and (2) when building the response

buffer, ldchk0 is used to make sure that all content copied to this buffer has tag 0. To

implement this protection, we used background knowledge about Heartbleed to decide

where to put the checking routine (i.e., when constructing the response buffer). For a

prototype implementation, we believe this is a reasonable limitation. To thoroughly protect

the sensitive data, one could use data flow analysis or taint analysis [221] to determine where

to tag sensitive data, and where to put the check.

5.6.4 Synthesized Attacks

To evaluate the effectiveness of the security applications we implemented/ported, we devel-

oped/ported several synthesized attacks against different targets.

RIPE Benchmark. RIPE [215] is an open sourced intrusion prevention benchmark.

It provides five testbed dimensions: location of the buffer overflow, target code pointers,

overflow technique, attack payload and abused function. Since RIPE was developed for the

x86 platform, we need to modify it to make it work on the RISC-V architecture. However, due

to time limitations, we could not port all the features of RIPE. Specifically, our ported RIPE

benchmarks support all locations of buffer overflow, all target code pointers except the frame

pointer, both overflow techniques (direct and indirect), one attack payload (return-to-libc),

and one abused function (memcpy).

Heap Exploit. To evaluate heap metadata protection, we ported the example exploit

from [101] to overwrite the return address of a function.

VTable Hijacking. Due to the limitations of the FPGA, we could not use real-world

cases like browser attacks to evaluate our VTable pointer protection mechanism. Instead,
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we developed a simple attack that overwrites the VTable pointer with a fake one, so the

next invocation of the virtual function will invoke the attacker controlled function.

Format String Exploit.

Because the RIPE benchmark does not cover attack targets used in recent attacks, we

implemented a simple program with format string vulnerability to evaluate the ported CPS

mechanism. We chose a format string vulnerability because it is one of the most powerful

vulnerabilities that can be used as local stack read (%x), arbitrary memory read (%s), and

arbitrary memory write (%n). For attack targets, we implemented two new attacks: GOT

overwriting and atexit handler overwriting.

Kernel Exploit. In the kernel, overwriting non-control data is sufficient to obtain root

permissions without hijacking control flow. To test the feasibility of using Hdfi to defend

against data-only attacks in the kernel, we back ported CVE-2013-6282 [196], an arbitrary

memory read and write vulnerability to our target kernel. Leveraging this vulnerability, an

attackers can modify the uid of a process and escalate their privilege.

Heartbleed. Heartbleed (CVE-2014-0160) [47] is a heap out-of-bounds read vulnerability

in OpenSSL caused by missing input validation when parsing malicious TLS heartbeat

request. This bug was marked as extremely critical, because researchers have proved that it

can be exploited to reveal private keys [86]. To reliably2 simulate such attacks, we modified

vulnerable OpenSSL (1.0.1a) to insert special characters as a decoy private key. Since the

decoy data is inserted in the affected range of Heartbleed, it can always be leaked in default

settings through a Heartbleed attack.

5.7 Evaluation

In this section, we evaluate our prototype of Hdfi by answering the following questions:

• Correctness. Does our prototype comply with the RISC-V standard (i.e., no backward

compatibility issue)? (§5.7.2)

2Attacking a OpenSSL-powered HTTPS server cannot always reveal the private key because the buffer
used to store the privately may at a lower address, so it cannot be read by a buffer over read.
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• Efficiency. How much performance overhead does Hdfi introduce compared to the

unmodified hardware? (§5.7.3)

• Effectiveness. Can Hdfi-powered security mechanisms accurately prevent attacks?

(§5.7.4)

• Benefits. Compared to their original implementation, does Hdfi-powered implemen-

tation perform better and/or is it more secure? (§5.7.5)

5.7.1 Experimental setup

All evaluations were done on the Xilinx Zynq ZC706 evaluation board [217]. The OS kernel

is Linux 3.14.41 with support for the RISC-V architecture [149]. Unless otherwise stated, all

programs (including the kernel) were compiled with GCC 5.2.0 (-O2) and binutils 2.25, with

a set of patches to support RISC-V (commit 572033b) and default kernel configuration of

RISC-V. While the board is equipped with 1GB of memory, the Rocket Chip can only use

512MB because the co-equipped ARM system requires 256MB. At boot time, the kernel

reserves 8MB for tag tables and 128KB for the meta tag table, respectively. Following the

environment that the RISC-V community built, we use the Frontend Server that runs on the

ARM system and the Berkeley Boot Loader that runs on the Rocket Chip to boot vmlinux.

The Rocket Chip accesses an ext2 file system in an SD card via the Front-end Server.

Although the tape-out Rocket Core chip can operate on 1GHz or higher, the synthesized

FPGA on the ZC706 board can only operate at the maximum frequency of 50MHz. In

addition, because the L2 cache is not mature enough for memory-mapped IO [122], we only

evaluated with the L1 caches. In place of the L2 cache, we used the L2BroadcastHub that

interconnects the L1 caches and the outer memory system. Due to the above limitation and

the memory limitation of the evaluation board, we were not able to run most SPEC CINT

2006 benchmarks, so we used the much lighter SPEC CINT 2000 [187]. For SPEC CINT

2000, some benchmarks (gzip and bzip) cannot run successfully with the reference inputs.

For these benchmarks, we adjusted the parameters of the reference inputs to reduce the size

of the buffer they use to 3MB. We have annotated the results to clarify this.

We used pseudo-LRU (Least Recently Used) as the replacement policy for both tag and
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Table 13: Impact of Hdfi on memory read latency (ns), with different optimization techniques.

Benchmark Baseline Tagger TVB MTT TVB+MTT

L1 hit 40 40 (0%) 40 (0%) 40 (0%) 40 (0%)
L1 miss 760 870 (14.47%) 800 (5.26%) 870 (14.47%) 800 (5.26%)

meta tag caches, and set the size of each cache to 1KB, allowing up to 16 entries of 512-bit

cachelines.

5.7.2 Verification

Hdfi passes the RISC-V verification suite provided by the RISC-V teams, which means our

modifications to the RISC-V complies with the RISC-V standard so unmodified programs

can still run correctly on our modified hardware.

5.7.3 Performance Overhead

In this subsection, we evaluate the performance impact of our hardware extension, as well

as the effectiveness of our optimization techniques. This evaluation includes two part: the

impact of new instructions on the processor core and the impact on memory access. Since

Hdfi did not introduce many changes to the pipeline of the processor core, the focus will be

on memory access.

Pipeline. The sdset1 and two ldchk instructions are treated identically to their normal

store and load counterparts in the pipeline, with the exception of ldchk doing a comparison

at the end of the memory stage. These three instructions can stall the pipeline in the

same manner as their counterparts. However, the special register dedicated to mvwtag for

preserving tags introduces a structural hazard to the pipeline. Because there is only one

special register available, a series of mvwtag instructions have to wait for the previous mvwtag

to finish, stalling the pipeline. Other memory instructions do not have to wait on previous

ones to issue memory requests.

Memory Access. While the ISA extension does not affect the performance of the

processor core, Hdfi inevitably introduces additional memory accesses to fetch/update the

tag table.

Micro benchmark. To measure the performance impact of these additional memory
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Table 14: Impact of Hdfi on memory bandwidth (MB/s), with different optimization techniques.

Name Baseline Tagger TVB MTT TVB+MTT

Copy 1081 939 (13.14%) 1033 (4.44%) 953 (11.84%) 1035 (4.26%)
Scale 857 766 (10.62%) 816 (4.79%) 776 (9.45%) 817 (4.67%)
Add 1671 1598 (4.37%) 1650 (1.26%) 1602 (4.13%) 1651 (1.2%)
Triad 818 739 (9.66%) 802 (1.96%) 764 (8.8%) 803 (1.83%)

Table 15: Performance overhead of a subset of SPEC CINT 2000 benchmarks.

Benchmark Baseline Tagger TVB MTT TVB+MTT

164.gzip 963s 1118s (16.09%) 984s (2.18%) 1029s (6.85%) 981s (1.87%)
175.vpr 14404s 18649s (29.51%) 14869s (3.26%) 15513s (7.71%) 14610s (1.43%)
181.mcf 8397s 11495s (36.89%) 8656s (3.08%) 9544s (13.66%) 8388s (−0.11%)
197.parser 21537s 25005s (16.11%) 22025s (2.27%) 23177s (7.61%) 21866s (1.53%)
254.gap 4224s 4739s (12.19%) 4268s (1.04%) 4500s (6.53%) 4254s (0.71%)
256.bzip2 716s 820s (14.52%) 735s (2.65%) 742s (3.63%) 722s (0.84%)
300.twolf 22240s 28177s (26.71%) 22896s (2.97%) 23883s (7.37%) 22323s (0.36%)

accesses and the logics to deal with them, we used lat_mem_rd from LMBench [127] to

measure memory access latency and STREAMBench [125] to measure memory bandwidth.

Table 13 shows the result of the five configurations. The first row shows that Hdfi does not

affect the cache access latency. As the system operates at 50MHz, the 40ns latency means

that it takes two clock cycles to read from the L1 cache. The second column shows that Hdfi

does increase the memory access latency. When TVB is enabled, DfiTagger simply bypasses

the incoming memory read access unless it explicitly requests the tag bits. However, the

access should be examined by the Acquire Distributor and the Grant Distributor (Figure 13),

which adds 2 clock cycles latency. For memory bandwidth, our results also show that the

optimizations we implemented can effectively reduce overhead.

SPEC CINT 2000. In addition to the micro benchmarks, we also ran a subset of SPEC

CINT 2000 benchmarks on the five configurations of Hdfi, without any security applications

(i.e., no load check and no sdset1). Due to the limited computing power of the Rocket

Chip on FPGA, we chose relatively lighter benchmark. In addition, to be fair, we included

relatively memory bound benchmarks. According to a paper [96], 181.mcf, 175.vpr and

300.twolf are memory bound and showing higher overhead. We used reduced version of

reference input to run 164.gzip and 256.bzip2.

Table 15 shows that even though the unoptimized version of Hdfi causes non-negligible
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Table 16: The number of total memory read/write access (MB) from both the processor and
DfiTagger.

Benchmark T Baseline Tagger TVB MTT TVB+MTT

164.gzip
R 590 799 (35.25%) 606 (2.71%) 589 (−0.17%) 588 (−0.34%)
W 380 1,217 (220.26%) 453 (19.21%) 1,017 (167.63%) 378 (−0.53%)

175.vpr
R 9,816 17,200 (75.15%) 10,930 (11.35%) 9,760 (−0.57%) 9,792 (−0.25%)
W 7,908 37,480 (373.83%) 12,420 (57.06%) 31,890 (303.16%) 7905 (0%)

181.mcf
R 9,778 14,310 (46.35%) 10,503 (7.41%) 9,778 (0%) 9,778 (0%)
W 5,588 23,720 (324.33%) 8,490 (1.11%) 20,300 (263.15%) 5,588 (0%)

197.parser
R 12,770 17,610 (37.9%) 13,220 (3.52%) 12,850 (0.63%) 12777 (0.01%)
W 8,290 27,490 (231.6%) 9,640 (16.28%) 24,440 (194.81%) 8299 (0.11%)

254.gap
R 2,233 2,872 (28.61%) 2,239 (0.27%) 2,225 (0%) 2,206 (−1.21%)
W 1,594 4,237 (165.81%) 1,701 (6.71%) 3,926 (146.3%) 1,592 (−0.13%)

256.bzip2
R 228 390 (71.05%) 268 (17.54%) 229 (0.44%) 229 (0.44%)
W 249 896 (259.84%) 407 (63.45%) 730 (193.17%) 249 (0%)

300.twolf
R 13,600 22,350 (64.34%) 15,820 (16.32%) 13,600 (0%) 13,610 (0%)
W 13,680 48,650 (255.63%) 22,510 (64.55%) 38,090 (178.43%) 13,610 (−0.51%)

performance overhead, our optimizations successfully eliminated a large portion of overhead.

Specifically, since there is no load check, TVB eliminated all read access requests to the tag

table; and since there is no sdset1, MTT eliminated all the write access to the tag table.

Table 16 shows the number of memory accesses reduced by TVB and MTT. Please note

that the 0.11% performance gain on mcf is due to fluctuations.

5.7.4 Security Experiments

In this subsection, we evaluate the effectiveness of Hdfi-powered protection mechanisms. We

evaluated all the security applications described in §5.5, with synthesized attacks described

in §5.6.4. The evaluation result is shown in Table 17, allHdfi-powered protection mechanisms

can successfully mitigate the corresponding attack(s).

RIPE benchmark. With our ported RIPE benchmark, there are 112 possible combina-

tions, with 54 that could proceed and 58 are not possible. Please note that although we

did not port all combinations, all attack targets are supported except the frame pointer,

which behaves quite differently on RISC-V. The supported targets are: return address, stack

function pointer, heap function pointer, .bss section function pointer, .data section function

pointer, jmp_buf on stack, jmp_buf as stack parameter, jmp_buf in heap, jmp_buf in .bss

section, jmp_buf in .data section, function pointer in a structure on stack, in heap, in .bss

section and in .data section. With our ported CPS, we can prevent all 54 attacks.
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Table 17: Security evaluation of applications utilizing Hdfi.

Mechanism Attacks Result

Shadow stack RIPE ✓
Heap metadata protection Heap exploit ✓
VTable protection VTable hijacking ✓
Code pointer separation (CPS) RIPE ✓
Code pointer separation (CPS) Format string exploit ✓
Kernel protection Privilege escalation ✓
Private key leak prevention Heartbleed ✓

Heap exploit. Without protection, our basic version of heap attack targeting newlibc (a

lightweight libc) was able to overwrite the return address to launch a return-to-libc attack

to invoke the “evil” function. With our enhanced library, we were able to stop the attack.

VTable hijacking. Without protection, our simple VTable hijacking attack was able to

invoke the “evil” function. With our VTable protection mechanism, we were able to prevent

the loading of attacker-crafted vfptr.

Format string exploit. Without protection, our format string exploit can overwrite the

GOT table entry and the exit handler to invoke the “evil” function. With our enhanced

library, both attacks were stopped.

Kernel exploit. Without protection, the exploit can change the uid of the attack process

to a arbitrary number. With our protection, the attack causes a kernel panic when trying to

access the uid.

Heartbleed. : without protection, we can leak the decoy secret by exploiting the Heartbleed

vulnerability. With our protection, the attack was stopped when constructing the response

buffer.

5.7.5 Impact on Existing Security Solutions

As a fine-grained hardware-based isolation mechanism, we expect Hdfi to provide the

following benefits:

I Security: Hdfi should provide non-bypassable protection for the isolated data;

II Efficiency: Hdfi should provide the protection with low performance overhead;
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III Elegance: Hdfi should enable the building of elegant security solutions, e.g., no data

shadowing, which as discussed in the introduction, has many drawbacks;

IV Usability: Hdfi should be flexible, capable of supporting different security solutions;

it should also be easy to use, so as to increase the chance of real-world adoption.

In this subsection, we evaluate whether Hdfi achieves these design goals or not. As

described in §5.5, none of the Hdfi-powered security applications requires data shadowing,

including three solutions (stack protection, CPS and Kenali) whose previous implementa-

tions rely heavily on data shadowing. For this reason, we consider Hdfi to have achieved

goal III. And as shown in Table 12, implementing/porting security solutions with Hdfi is

very easy, so we consider goal IV to be achieved as well. Next, we analyze the security and

efficiency benefit.

Security Improvement. Compare with software-based shadow stacks [60], our stack

protection provides better security than platforms that do not have efficient isolation

mechanisms, such as x86 64 and ARM64. Compared with existing hardware-based shadow

stacks [218, 114, 150], our solution provides the same security guarantee but is more

flexible and supports kernel stack. Compared to active callsite based solutions [64, 63], our

stack protection provide better security. For standard libraries, existing heap metadata

integrity checks can be bypassed under certain conditions. For example, Google project

zero team has successfully compromised ptmalloc with NULL off-by-one [75]; and existing

encryption-based exit handler protection is vulnerable to information leak based attacks.

However, Our Hdfi-based library enhancement cannot be bypassed because attackers

cannot control the hardware-managed tags. Compared with existing VTable protection

mechanisms [97, 197, 232, 230, 27], our Hdfi-based solution has both advantages and

limitations. On the positive side, our approach makes it much harder to overwrite the vfptr;

while in all other solutions, attackers can easily tamper with vfptr. However, because our

approach does not involve any class hierarchy analysis, we cannot guarantee type safety (i.e.,

semantic correctness). Compared to the original CPS implementation, our ported version

provides the same security guarantee as segment-based isolation but is stronger than its
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Table 18: LMBench results of baseline system and Hdfi with kernel stack protection.

Benchmark Baseline Kernel Stack Protection

null syscall 8.91µs 8.934µs (0.27%)
open/close 160.6µs 168.7µs (5.04%)
select 285.6µs 287.5µs (0.67%)
signal install 19.3µs 21.5µs (11.4%)
signal catch 99.8µs 105.6µs (5.81%)
pipe 273.6µs 306.6µs (12.06%)
fork+exit 5892µs 6308µs (7.06%)
fork+execv 6510µs 6972µs (7.1%)
page fault 50.0µs 52.6µs (5.2%)
mmap 800µs 880µs (10%)

randomization-based isolation, which has been proven to be vulnerable [76]. Compared to

the original implementation of Kenali §4.7, our ported version provides stronger guarantees

than its randomization-based stack. Based on the above analysis, we also consider Hdfi to

achieve goal I.

Performance Improvement. Because we can neither fully port the original implementa-

tion of CPS and Kenali to our testbed due to problems with the official llvm-riscv toolchain

nor run the C++ benchmarks of SPEC CINT 2000, we designed the following benchmarks

to evaluate the performance improvement of Hdfi-based security solutions.

Micro benchmarks. Compared with the original implementation of CPS, our ported

version would be more efficient because it does not need to access the shadow data. To

demonstrate this benefit, we implemented a micro benchmark that measures the overhead

for performing an indirect call for 1,000 times. To simulate CPS, we used their own hash

table implementation and performed the same look up before the indirect call. For our

implementation, we just replaced the load instruction with a checked load. Note, although

our implementation sounds simpler, it provides the same level of security guarantee as the

original segment-based CPS implementation. The result showed that our protection only

incurs 1.6% overhead, whereas the hash table lookup incurred 971.8% overhead. Note, this

micro benchmark only shows the worst case performance of both approaches. Depending on

the running application, the real end-user performance impacts could be much less than this.

Because we cannot perform automated instrumentation to fully replicate Kenali, here

we only measured the performance overhead of kernel stack protection. The result is shown
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Table 19: Performance overhead of Hdfi-based shadow stack CPS.

Benchmark GCC Shadow Stack Clang CPS+SS

164.gzip 981s 992s (1.12%) 1734s 1776s (2.42%)
181.mcf 8388s 8536s (1.76%) 11014s 11403s (3.54%)
254.gap 4254s 4396s (3.34%) 20783s 23526s (13.23%)
256.bzip2 722s 744s (3.05%) 1454s 1521s (4.61%)

in Table 18. Although our prototype implementation has higher a performance overhead,

it is also more secure than the randomization-based stack protection used in the original

implementation.

SPEC CINT 2000. To measure the performance overhead of Hdfi under the existence of

load check and store set, we ran four benchmarks from SPEC CINT 2000 with two security

protections: GCC-based shadow stack and CPS plus LLVM-based shadow stack. The result

is shown in Table 19. As we can see, the performance overhead is also low. Please note that

because Clang cannot compile the benchmarks with -O2, they are compiled with -O0. As a

result, the performance is much worse than GCC. More importantly, because Clang did not

optimize redundant stack access with -O0, it caused trouble for our current implementation

of TVB (§5.6.1); this is the reason why the gap benchmark behaved so badly on CPS.

5.8 Security Analysis

Being an isolation mechanism, Hdfi cannot guarantee memory safety by itself, so it cannot

prevent all memory corruption-based attacks. In this section, we analyze the security

guarantee provided by Hdfi and provide our recommendations on how to utilize Hdfi

properly in security solutions.

5.8.1 Attack Surface

The security guarantee of Hdfi is in data-flow isolation, i.e., preventing data flowing from

one region to another. This is enforced by (1) partitioning write operations into two groups:

those who can set the memory tag to 1, and those who set the memory tag to 0; and (2)

when loading, checking if the tag matches the expected value. In this regard, Hdfi has the

following attack surfaces:

Inaccuracy of Data-flow Analysis. The first challenge for utilizing Hdfi is how to
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correctly perform partitioning and checking. To do so, we rely on data-flow analysis. For

some security-critical data, such as return addresses and VTable pointers, their data-flow is

quite simple, so the accuracy can be easily guaranteed even without any program analysis.

For data like code pointers, because their data-flow is more complicated, it would require

thorough static analysis to guarantee the accuracy. Fortunately, because these data are

usually self-contained, i.e., not provided by external input, the accuracy, to some extent,

can still be guaranteed. However, for data that exhibits complicated data-flow, it may not

always be possible to guarantee the accuracy of static analysis. In this case, the common

strategy is to avoid false positives by allowing false negatives, i.e., allowing some attacker

controllable write operations to set the memory tags. As a result, Hdfi itself is not sufficient

to guarantee data integrity, so one must employ other runtime protection techniques to

compensate for such inaccuracies.

Deputy Attacks. After partitioning, the next challenge is how to guarantee the trustwor-

thiness of each write operation. More specifically, a write operation takes two parameters, a

value and an address. The integrity of a write operation thus relies on the integrity of both

the value and the address. If either of them can be controlled by attackers or the instruction

gets executed under wrong context (e.g., via control flow hijacking), then they can launch

deputy attacks. Please note that the control here means both direct and indirect control.

For example, if attackers can control the object pointer used to invoke a C++ constructor,

then even though our VTable pointer protection can prevent them from directly overwriting

the VTable pointer, they can still leverage this constructor to overwrite the VTable pointer

of an existing C++ object. Similarly, if a piece of sensitive data may propagate from one

memory location to another, and one forgets to check the tag of the source before setting

the tag of the destination to 1, then an attack can leverage this bug to overwrite sensitive

data with a value controlled by the attacker.

5.8.2 Best Practices

To mitigate the aforementioned attacks, we recommend utilizing Hdfi in the following ways:

(1) To prevent write operations from executing under the wrong context, it is important

121



to enforce the integrity of the control flow, which is also required by other systems that

enforces write capability [34, 4]. With Hdfi, this can be easily achieved through protecting

all the control data (e.g., CPS + shadow stack).

(2) To prevent attackers from controlling the address parameter of write operations, it is

important to recursively protect all pointers that are part of the dereference chain [108, 182].

It is worth noting that because Hdfi is designed to be fine-grained and its protection is

enforced efficiently by hardware, including more pointers would not be a big performance

issue.

(3) To prevent attackers from controlling the value parameter of write operations, one

must ensure that the value is trusted. A value is trusted if any of these conditions hold:

(1) it is a constant; (2) it is from a trusted register (e.g., the link register); (3) it is loaded

from a memory location with the expected tag; or (4) the semantic of the current program

context guarantees the trustworthiness of the value (e.g., during early kernel initialization or

when the program is being initialized by the dynamic loader). Moreover, if the value may

have both tags (e.g., unions in C), one should use the special memory copy instruction to

propagate data with the tag when the data is not modified or leverage a exception handler

when the data needs to be modified between load and store.

(4) To compensate the potential inaccuracy of data-flow analysis, we recommend com-

bining Hdfi with a runtime memory safety enforcement mechanism like [134, 94]. By doing

so, even if we allow attackers to control some write operations, the memory safety protection

mechanism would prevent attackers from abusing those write operations to launch attacks.

5.9 Limitations and Future Work

5.9.1 DMA Attacks

Since our current prototype of Hdfi only handles memory accesses from the processor core,

it is vulnerable to DMA-based attacks. Attackers can leverage DMA to (1) corrupt the data

without changing the tag and (2) directly attack the tag table. To mitigate this threat, we

could leverage features like IOMMU to confine the memory that can be accessed through

DMA [173]. Alternatively, we can choose to add our own hardware module in between the
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interconnect and the memory controller such that all memory accesses would pass through

the hardware module. By doing so, our hardware module would be able to determine

whether or not the access is from DfiTagger, thus prevents malicious access to the tag

table. It is worth noting that similar hardware modules have already been introduced [132]

and deployed in commodity hardware [94, 11].

5.9.2 Configurable Tag Table

Our current implementation completely blocks accesses to the tag table. Although this

provides a stronger security guarantee, it also comes with some drawbacks. The first problem

is that we cannot save the page to disk because the tag information will lost. To support

these features, we must allow the kernel to access the tag table. However, to protect the tag

table from tampering, we must implement some protection techniques like [62] or integrity

measurements like [94]. Another drawback of our current design is that we must allocate

the whole tag table in advance. In the future, we could provide other options for the OS

kernel or the hypervisor to manage the tag table depending on the security requirement by

users. On such a model, we can implement an on-demand allocation mechanism to reduce

the memory overheads, i.e., we allocate the tag memory only when DfiTagger modifies a

tag entry.

5.9.3 Further Optimizations

Although the Rocket Chip Generator is a great tool for prototype verification, the Rocket

Core is a very limited processor compared to x86 processors. With a more powerful processor

core like the Berkeley out-of-order machine (BOOM) [36] and a more sophisticated cache,

we could further reduce the memory access overhead using the following techniques.

Tag Prefetch. Just like prefetching data that is likely to be used in the future due to

program locality, we could also prefetch the tag. We could both prefetch the tag from

DfiTagger to avoid possible read miss hit due to TVB and prefetch the tag entries from

the main memory when the bus is free.

Delayed Check. Just like speculating a branch, as most tag checks should not triggering
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the exception, with an out-of-order machine we could speculate the execution even when the

tag is not ready (i.e., TVB miss hit). By doing so, we could avoid stalling the pipeline and

further reduce the overhead of Hdfi.

Better Cache Design. In our prototype implementation, we did not extend our modifi-

cation to the L2 cache. At the same time, as mentioned in §5.6.1, out current design of TVB

is not ideal, which may cause some obvious performance overhead for unoptimized programs

(§5.7.5). For future work, we plan to extend our modification to the L2 cache with better

TVB implementation.

5.9.4 Dynamic Code Generation

Dynamic code generation is an important technique that has been widely utilized in browsers

and OS kernels to improve performance. However, because this technique requires memory

to be both writable and executable, it may be vulnerable to code cache injection attacks

(§3); and unlike static code, it is not always possible to detect malicious modification to the

generated code. In the future, we can perform tag checking for instruction fetching, i.e.,

provide a configuration flag that once enabled, only allows tagged memory to be fetched as

code.

5.10 Summary

In this chapter, we have presented Hdfi, a new fine-grained data isolation mechanism. Hdfi

uses new machine instructions and hardware features to enforce isolation at the machine

word granularity, by virtually extending each memory unit with an additional tag that

is defined by data-flow. To implement Hdfi, we extended the RISC-V instruction set

architecture and instantiated it on the Xilinx Zynq ZC706 evaluation board. Our evaluation

using benchmarks including SPEC CINT 2000 showed that the performance overhead due

to our hardware modification is low (< 2%). We also implemented security mechanisms

including stack protection, standard library enhancement, virtual function table protection,

code pointer protection, kernel data protection, and information leak prevention on Hdfi.

Our results show that Hdfi is easy to use, imposes low performance overhead, and improves

security.
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CHAPTER VI

CONCLUSION

6.1 Summary

Exploits against memory corruption vulnerabilities is one of the most popular attack vector to

compromise computer systems. Despite much effort spent on preventing such attacks, existing

solutions still suffers from two main limitations. That is, solutions that can provide strong

security guarantees are too slow for practical deployment and efficient solutions can only

provide limited security guarantee against this threat. This dissertation proposed several new

techniques that advanced the state-of-the-art on defending against memory-corruption-based

exploits.

First, we proposed Sdcg, a novel system design which enables dynamic code generation

to comply with the W⊕X policy and fundamentally eliminated the possibility of code

injection attacks. We implemented Sdcg for two types of popular code generators: JS

engine (V8 [85]) and DBT (Strata [169]). Our implementation experience showed that

porting code generators to Sdcg only requires a small modification. The security and

performance evaluation of our two prototype implementations showed that Sdcg is secure

under our threat model and the performance overhead is small: around 6.90% (32-bit) and

5.65% (64-bit) for V8 benchmark suite; and around 1.64% for SPEC CINT 2006 (additional

to Strata’s own overhead).

Second, we proposed Kenali, a new defense system against memory-corruption-based

kernel privilege escalation attacks. Kenali utilizes data-flow integrity (DFI) to enforce two

basic security invariants of access control mechanisms—complete mediation and tamper

proof. To reduce the performance overhead of DFI enforcement, Kenali leverages two new

techniques. The first technique InferDists soundly and automatically infers memory objects

that are vital to enforce the two security invariants. The second technique ProtectDists

selectively enforces DFI over the inference results. The combination of these two techniques

125



significantly reduced the performance overhead without sacrificing the security guarantees.

For demonstration, we implemented a prototype of Kenali that protects the Linux kernel

for the 64-bit ARM architecture that powers Android devices, for its popularity and long

update cycle. The security and performance evaluation of our prototype implementation

showed that Kenali is able to prevent a large variety of privilege escalation attacks; at the

same time, its performance overhead is also moderate, around 7-15% for standard Android

benchmarks.

Third and last, we proposed Hdfi, a new fine-grained hardware isolation mechanism.

Hdfi enforces data isolation at machine word granularity by virtually extending each

physical address with an additional tag. Inspired by the idea of DFI, Hdfi defines the

tag of a memory unit by the last instruction that writes to this memory location; then

at memory read, it allows a program to check if the tag matches what is expected. This

capability allows developers to enforce different security models. For example, to protect

the integrity of sensitive data, we can enforce the Biba Integrity Model and to enforce the

confidentiality of sensitive data, we can use it to enforce the Bell–LaPadula Model. We

implemented a prototype of Hdfi by extending the RISC-V instruction set architecture

(ISA) with support of one-bit tag. In order to demonstrate the benefit of Hdfi to security

solutions, we developed and ported six representative security mechanisms to leverage Hdfi,

including stack protection, standard library enhancement (protection for setjmp/longjmp,

heap metadata, GOT, and the exit handler), virtual function table protection, code pointer

separation, kernel data protection, and information leak prevention. Compared to existing

solution, Hdfi-based solutions have several advantages: (1) our development experience

shows that Hdfi is easy to use and usually allows us to create simpler solutions; (2) as a

hardware-enforced isolation mechanism, Hdfi can help improve the security guarantees;

(3) by eliminating data shadowing and context switching, Hdfi can also help reduce the

performance overhead for security mechanisms.

6.2 Thesis Contributions

We recap the thesis contributions:
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• New Threats Highlighting With real exploits, we highlighted the threats of code

cache injection attacks and data-oriented attacks.

• New Software Design We presented a new software design to resolve the conflict

between W⊕X policy and dynamic code generation and to block all code injection

attacks.

• New Program Analysis Technique The key challenge for building practical defense

mechanisms against data-oriented attacks is how to identify data that are vital to those

attacks. To solve this challenge, we have developed an automated program analysis

technique that can infer data that is critical to kernel privilege escalation attacks.

• New Isolation Techniques We developed several techniques to enforce efficient

protection over selective memory content and applied them to the Android kernel.

• New Hardware Design We developed a new hardware feature to overcome the

limitation of the isolation mechanisms provided by commodity hardware. We further

demonstrated the benefits of our new hardware feature via developing and evaluating

of several defense techniques against memory-corruption-based exploits.

• Open Source We will open source all prototype implementations of the techniques

presented in this thesis for better real world adoption.

6.3 Future Work

Among the five exploit techniques discussed in §2.2, code injection attacks can be prevented

by W⊕X and Sdcg, control-flow hijacking attacks can be prevented by the combination

of shadow stack and code-pointer protection, and with Kenali and Hdfi, we have made

promising progress against data-oriented attacks. However, the two remaining exploit

techniques still lack enough research.

Information Leak. Information leak, especially generic, memory corruption-based

information leak is still a considerable threat to cyber systems. At the same time, preventing

this attack is also more challenging, as read operations are usually much more common than
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write operations, which means checking reads is likely to impose much higher performance

overhead than checking writes. For this reason, developing practical defense mechanisms

against generic information leak attacks is still an open and critical research problem.

Data Overlapping. As exploits against use-after-free vulnerabilities have been very

popular for the past few years, many techniques have been proposed and deployed to

defeat this threat. However, much less effort has been spent on detecting and preventing

uninitialized data use. Although most compilers has provided the -Wuninitialized option

to detect accessing uninitialized stack variable, its scope is limited to current function. As a

result, there still exist many uninitialized data use in programs. Moreover, the consequence

of uninitialized data use can also be dangerous, ranging from leaking security-critical data to

arbitrary code execution. Therefore, more effort should be spent on detecting and mitigating

this attack vector.

6.4 Closing Remarks

This thesis documented our research on building principled and practical defense techniques

against memory-corruption-base exploits. We first proposed, implemented, and evaluated

a novel system design (Sdcg) that can block all code injection attacks with small per-

formance overhead. Then we studied the key challenges to defend against data-oriented

attacks and proposed, implemented, and evaluated two novel techniques (InferDists and

ProtectDists) that can block all memory-corruption-based kernel privilege escalation

attacks. Finally, we proposed, implemented, and evaluated a novel hardware feature (Hdfi)

that enables us to build simpler, more secure, and more efficient defense mechanisms against

memory-corruption-based exploits. While my thesis work has advanced the state-of-the-art

on the defense against memory-corruption-based exploits and covers the three most popular

exploit techniques, there are open problems for future research.
.
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ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2002.

[217] Xilinx, “ZC706 evaluation board for the Zynq-7000 XC7Z045 all programmable SoC
user guide.” http://www.xilinx.com/support/documentation/boards_and_kits/
zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf, 2015.

143

http://www.w3.org/TR/workers/
http://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf


[218] Xu, J., Kalbarczyk, Z., Patel, S., and Iyer, R. K., “Architecture support for
defending against buffer overflow attacks,” in Workshop on Evaluating and Architecting
Systems for Dependability, 2002.

[219] Xu, W., DuVarney, D. C., and Sekar, R., “An efficient and backwards-compatible
transformation to ensure memory safety of c programs,” in ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), 2004.

[220] Yang, J., Kremenek, T., Xie, Y., and Engler, D., “Meca: an extensible, expressive
system and language for statically checking security properties,” in ACM Conference
on Computer and Communications Security (CCS), 2003.

[221] Yang, Z. and Yang, M., “Leakminer: Detect information leakage on android with
static taint analysis,” in International Workshop on Computer Science and Engineering
(WCSE), 2012.

[222] Ye, D., Sui, Y., and Xue, J., “Accelerating dynamic detection of uses of undefined
values with static value-flow analysis,” in International Symposium on Code Generation
and Optimization (CGO), 2014.

[223] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka,
S., Narula, N., and Fullagar, N., “Native client: A sandbox for portable, untrusted
x86 native code,” in IEEE Symposium on Security and Privacy (Oakland), 2009.

[224] Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E., “Panorama: capturing
system-wide information flow for malware detection and analysis,” in ACM Conference
on Computer and Communications Security (CCS), 2007.

[225] Yong, S. H. and Horwitz, S., “Protecting c programs from attacks via invalid
pointer dereferences,” in ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2003.

[226] Younan, Y., “Freesentry: protecting against use-after-free vulnerabilities due to
dangling pointers,” in Annual Network and Distributed System Security Symposium
(NDSS), 2015.

[227] Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., and
Joosen, W., “Paricheck: an efficient pointer arithmetic checker for c programs,” in
ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS), 2010.

[228] Yu, Y., “Write once, pwn anywhere,” in BlackHat USA, 2014.

[229] Zeldovich, N., Kannan, H., Dalton, M., , andKozyrakis, C., “Hardware enforce-
ment of application security policies using tagged memory,” in USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2008.

[230] Zhang, C., Carr, S. A., Li, T., Ding, Y., Song, C., Payer, M., and Song, D.,
“VTrust: Regaining trust on virtual calls,” in Annual Network and Distributed System
Security Symposium (NDSS), 2016.

144



[231] Zhang, C., Niknami, M., Chen, K. Z., Song, C., Chen, Z., and Song, D.,
“Jitscope: Protecting web users from control-flow hijacking attacks,” in IEEE Conference
on Computer Communications (INFOCOM), 2015.

[232] Zhang, C., Song, C., Chen, K. Z., Chen, Z., and Song, D., “VTint: Protecting
virtual function tables’ integrity,” in Annual Network and Distributed System Security
Symposium (NDSS), 2015.

[233] Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song,
D., and Zou, W., “Practical control flow integrity and randomization for binary
executables,” in IEEE Symposium on Security and Privacy (Oakland), 2013.

[234] Zhang, M. and Sekar, R., “Control flow integrity for cots binaries,” in USENIX
Security Symposium (Security), 2013.

[235] Zhou, Y., Wang, X., Chen, Y., and Wang, Z., “Armlock: Hardware-based fault
isolation for arm,” in ACM Conference on Computer and Communications Security
(CCS), 2014.

145


	Dedication
	Acknowledgements
	List of Tables 
	List of Figures 
	Summary
	Chapter 1 — Introduction
	Problem Statement and Our Approach
	Thesis Contributions
	Thesis Outline

	Chapter 2 — Background
	Memory Corruption Vulnerabilities
	Exploit Techniques
	Existing Defense Mechanisms
	Exploit Prevention
	Memory Error Detection


	Chapter 3 — Preventing Code Injection Attacks against Dynamic Code Generator
	Motivation
	Assumptions and Threat Model
	Related Work
	Software-based Fault Isolation
	Memory Safety
	Control Flow Integrity
	Process Sandbox
	Attacks on JIT engines

	Attacking the Code Cache
	Code Cache Injection Attacks
	Exploiting Race Conditions

	System Design
	Overview and Challenges
	Memory Map Synchronization
	Remote Procedure Call
	Permission Enforcement
	Security Analysis

	Implementation
	Shared Infrastructure
	SDT Specific Handling

	Evaluation
	Setup
	Effectiveness
	Micro Benchmark
	Macro Benchmark

	Limitations and Future Work
	Reliability of Race Condition
	RPC Stub Generation
	Performance Tuning

	Summary

	Chapter 4 — Preventing Kernel Privilege Escalation Attacks with Data-flow Integrity
	Motivation
	Threat Model and Assumptions
	Related work
	Kernel Integrity
	Software Fault Isolation
	Data-flow Integrity
	Dynamic Taint Analysis
	Memory Safety
	Control-flow Integrity

	Demonstration Attacks
	Simple rooting attacks
	Bypassing CFI with non-control-data attacks
	Bypassing CFI with control-data attacks
	Diversity of non-control-data attacks

	Technical Approach
	Inferring Distinguishing Regions
	Protecting Distinguishing Regions

	Formal Model
	Problem Definition
	Inferring distinguishing regions
	Protecting distinguishing regions
	Protected monitors as refinements

	A Prototype for Android
	Data-flow Isolation
	MMU Integrity
	Shadow Objects
	Kernel Stack Randomization

	Evaluation
	Experimental setup
	Distinguishing Regions Discovery
	Security Evaluation
	Performance Evaluation

	Limitations and Future Work
	Cross-platform
	Better architecture support
	Reliability of assumptions
	Use-after-free
	DMA protection

	Summary

	Chapter 5 — Improve Security and Performance with Hardware-assisted Data-flow Isolation
	Motivation
	Threat Model and Assumptions
	Background and Related Work
	Data-flow Integrity
	Tag-based Memory Protection
	Tag-based Hardware
	Memory Safety

	HDFI Architecture
	ISA Extension
	Memory Tagger
	Optimizations
	Protecting the Tag Tables

	Security Applications
	Shadow Stack
	Standard Library Enhancement
	VTable Pointer Protection
	Code Pointer Separation
	Kernel Protection
	Information Leak

	Implementation
	Hardware
	Software Support
	Security Applications
	Synthesized Attacks

	Evaluation
	Experimental setup
	Verification
	Performance Overhead
	Security Experiments
	Impact on Existing Security Solutions

	Security Analysis
	Attack Surface
	Best Practices

	Limitations and Future Work
	DMA Attacks
	Configurable Tag Table
	Further Optimizations
	Dynamic Code Generation

	Summary

	Chapter 6 — Conclusion
	Summary
	Thesis Contributions
	Future Work
	Closing Remarks

	References

