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Kernel	Memory	Corruption	Vulnerability

• Kernel is important
• The de-facto trusted computing base (TCB)

• Foundation of upper level security mechanisms 
(e.g., app sandbox)

• Kernel vulnerabilities are not rare
• Written in C

• Emphasize on performance
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Privilege	escalation	attacks

• One of the most powerful attacks

• Most popular attack against kernel

• Hard to prevent
• Chrome sandbox bypass

• iOS jailbreak

• Android rooting
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Challenge	1:	many	ways	to	exploit

Control-flow hijacking
Bypass the check

Data-oriented attacks
Manipulate the check

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.
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Challenge	2:	performance

• Protecting all data is not practical
• Secure Virtual Architecture (SVA) [SOSP’07]

• Enforces kernel-wide memory safety

• Performance overhead: 5.34x ~ 13.10x (LMBench)
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Our	approach

• Only protects a subset of data that is large enough to 
enforce access control invariants [NTIS	AD-758	206]
• Complete mediation

• Control-data à Code Pointer Integrity [OSDI’14]

• Tamper proof

• Non-control-data used in security checks à this work

• Correctness
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Step	1:	discover	all	related	data	

• Observation: OS kernels have well defined error code 
for security checks (when they fail)
• POSIX: EPERM, EACCESS, etc.
• Windows: ERROR_ACCESS_DENIED, etc.

• Solution: leverage this implicit semantic to 
automatically infer security checks

• Benefits
• Soundness: capable of detecting all security related data (as 

long as there is no semantic errors)

• Automated: no manual annotation required
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A	simple	example

Step	1:	collect	return	values

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.
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A	simple	example

Step	2:	collect	conditional	branches

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.
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A	simple	example

Collect	Dominators

Step	2:	collect	conditional	branches

if (condition1 || condition2)
return 0;

else
return -EACCESS;
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A	simple	example

Avoid	Explosion

Step	2:	collect	conditional	branches

if (condition)
return -EINVAL;

if (uid_eq)
mode >> 6;

else
mode >> 3;
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A	simple	example

Step	3:	collect	dependencies

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.
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Be	complete

• Collects data- and control-dependencies transitively

• Collects sensitive pointers recursively
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Step	2:	protect	the	integrity	of	data

• Data-flow integrity [OSDI’06]
• Runtime data-flow should not deviate from static data-flow 

graph (similar to control-flow integrity)

• For example, string should not flow to return address or uid

• How

• Check the last writer at every memory read

• Challenge 

• Performance! (104%)
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How	to	reduce	performance	overhead

• Observation 1: reads are more frequent than writes
• Check write instead of read

• Observation 2: most writes are not relevant
• Use isolation instead of inlined checks

• Observation 3: most relevant write are safe
• Use static analysis to verify

Write	
Integrity	
Test	
[S&P’08]
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Two-layered	protection

• Layer one: data-flow isolation
• Prevents unrelated writes from tampering sensitive data

• Mechanisms: segment (x86-32), WP flag (x86-64), access 
domain (ARM32), virtual address space, virtualization, 
TrustZone, etc.

• Layer two: WIT
• Prevents related but unrestricted writes from tampering 

sensitive data
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Additional	building	blocks

• Shadow objects
• Lacks fine-grained isolation mechanisms

• Sensitive data is mixed with non-sensitive data

• Safe stack
• Certain critical data is no visible at language level, e.g., return 

address, register spills

• Access pattern of stack is different

• Safety is easier to verify
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Prototype

• ARM64 Android
• For its practical importance and long updating cycle
• Enough entropy for stack randomization

• Data-flow isolation
• Heap: virtual address space based, uses ASID to reduce 

overhead
• Stack: randomization based

• Shadow objects
• Modified the SLUB allocator
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Implementation

• Kernel
• Nexus 9 lollipop-release + LLVMLinux patches

• Our modifications: 1900 LoC

• Static Analysis
• Framework: KINT [OSDI’12]

• Point-to analysis: J. Chen’s field-sens [GitHub]

• Context sensitive from KOP [CCS’09]

• Safe stack: CPI [OSDI’14]

• Our analysis + modifications: 4400 LoC

• Instrumentation: 500 LoC
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How	many	sensitive	data	structures

• Control data: 3699 fields (783 structs), 1490 global objects

• Non-control data: 1731 fields (855 structs), 279 global objects
• False positives: 491 fields (221 structs) / 61 fields (25 structs)
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How	secure	is	our	approach

• Inference
• Sound à no false negatives
• Catch: no semantic errors

• Data-flow (point-to) analysis
• Sound but not complete à over permissive
• Improve the accuracy with context and field sensitivity

• Against existing attacks
• All prevented
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Performance	impact

• Write operations
• 26645 (4.30%) allowed, 2 checked

• Context switch
• 1700 cycles

• Benchmarks
• LMBench (syscalls): 1.42x ~ 3.13x (0% for null syscall)
• Android benchmarks: 7% ~ 15%
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Conclusion

• Data-oriented attacks are very practical, especially in 
kernel

• Leveraging implicit semantics to avoid annotation

• Combining program analysis with system design is a 
great way to build principled and practical security 
solution
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Thank	you!
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Q & A


