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What	did	we	do?
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• We	re-randomize	the	memory	layout	of	the	
cloned	(i.e.,	forked)	processes	at	runtime
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In	this	talk,	I	will	explain…

• Why	we	need	to	re-randomize	cloned	processes?
– To	prevent	clone-probing	attacks

• How to	re-randomize	them?
– A	semantic-preserving	and	runtime-based	approach

• What are	the	results?
– Defeated	clone-probing,	e.g.,	Blind	ROP	attack
– No	performance	overhead	to	cloned	processes
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Background	- ASLR

• Address	Space	Layout	Randomization	(ASLR)
– Mitigating	code	reuses	attacks,	privilege	escalation,	and	
information	leaks
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Background	- ASLR

• Address	Space	Layout	Randomization	(ASLR)
– Mitigating	code	reuses	attacks,	privilege	escalation,	and	
information	leaks

– One	time,	per-process,	load-time
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Background	– Daemon	Servers

• Web	services	are	powered	by	daemon	servers,	
e.g.,	Nginx	web	server
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Designs	of	Daemon	Server
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Designs	of	Daemon	Server
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Designs	of	Daemon	Server
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When	ASLR	meets	daemon	
servers…
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Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability
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Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
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Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability
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Clone-Probing	Attack

RuntimeASLR 15

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
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Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability
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Brute-forcing	complexity	is	reduced	from	264	to	8*28
(From	thousands	of	years	to	2	minutes	J)



This	Attack	is	Critical!
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A	simple	buffer	overflowà bypass	ASLR	(two	
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Preventing	clone-probing	with	
RuntimeASLR

Solution:	re-randomizing	the	memory	
layout	of	cloned	processes
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Challenge

• Remapping	memory	à dangling	pointers

• How	to	track	all	pointers	on	the	fly	and	update	
them?
– Accuracy
– Efficiency
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Pointer	Tracking	Problem

• Treat	it	as	a	taint	tracking	problem
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Source	Pointers

• Kernel	routinely	loads	program
– Easy	to	find	source	pointers

• Only	in	stack	and	registers
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Pointer	Tracking	Policy
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Pointer	Tracking	Policy

• Read	1,513- pages	Intel	ISA	manual	and	
manually	define	them??
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Automatic	Tracking	Policy	Generation

• Automatically	identifying	instructions	
behaviors

• This	way,	we	know	if	it	generates	or	destroys	
some	“values”
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How	to	Determine	a	Pointer?

• Without	type	info,	how	do	we	know	if	a	value	
is	a	pointer?

• Example:	mov rdi,	rsp
– Before:	rsp=0xcafebabe,	and	know	it	is	a	pointer
– After:	rdi=0xcafebabe,	memory	is	unchanged
– How	to	know	if	rdi is	a	pointer?
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Multi-Run	Pointer	Verification
• Observation:	rdi is	likely a	pointer	if	it	points	to	
mapped	memory	on	64-bits	platform,	why?

• Run	program	n times	with	ASLR,	if	rdi always	
points	to	mapped	memory,	rdi is	more	and	more	
likely a	pointer
– Mapping	n runs	with	instruction	execution	sequence
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Accuracy	of	Multi-Run	Verification

• Assume	size	of	mapped	memory	is	b bytes,	
run	n times	on	64-bits	platform,	false	positive	
rate	for	one value	is:
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Accuracy	of	Multi-Run	Verification

• Assume	size	of	mapped	memory	is	b bytes,	
run	n times	on	64-bits	platform,	false	positive	
rate	for	one value	is:

• Say	b is	22MB	(Nginx)	and	run	2	times.	This	
will	result	in	FPR=2−103
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Export	Policy

• Given	mov reg1,	reg2
– if	reg2 is	a	64-bits	register	and	tainted	(i.e.,	a	
pointer)	à taint	reg1 after	execution
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Track	All	Pointers
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Implementation

• Intel’s	PIN—a	dynamic	instrumentation	tool
• Three	modules

• Source	code	
– Coming	soon
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Evaluation

• Correctness
– Applied	to	Nginx	web	server
– Memory	snapshot	analysis	to	find	all	pointers
– RuntimeASLR correctly	finds	all	pointers
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Evaluation

• Security
– Blind	ROP	is	a	clone-probing	attack
– Addresses	of	all	modules	are	re-randomized
– RuntimeASLR successfully	defeats	it
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Evaluation

• Performance
– Pointer	tracking	is	extremely	expensive:	>10,000	times	
on	SPEC	CPU2006
• One	time	overhead	at	startup;	35	seconds	for	Nginx

– However,	no	overhead	on	cloned	worker	processes
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Discussions	and	Limitations

• Ambiguous	policy
• Completeness	of	tracking	policy
• Applicability	for	general	programs
• Supporting	pointer	obfuscation
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Demo

• Defeat	Blind	ROP	attack	with	RuntimeASLR
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Recap

• Clone-probing	attacks	à bypass	ASLR	à control	
daemon	server	or	steal	sensitive	data

• We	proposed	RuntimeASLR to	defeat	clone-probing	
attacks
– Automatic	pointer	tracking	policy	generation
– Support	COTS	binaries,	no	system	modifications
– No	overhead	to	cloned	worker	processes	(after	fork())
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Backup	slides
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Pointer	Tracking	Approaches

• Compiler-based	instrumentation
– Pros:	type	info,	efficient	in	tracking
– Cons:	type-confusion,	hard	to	
decouple	instrumentation,	require	
source

• Dynamic	instrumentation
– Pros:	easy	to	decouple	
instrumentation, support	COTS

– Cons:	lack	of	type	info,	tracking	is	
expensive
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Accuracy	of	Multi-Run	Verification

• Assume	b instructions	in	b bytes	memory.	
Probability	for	at	least	one	non-pointer	value	
misidentified	as	a	pointer	is:
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Accuracy	of	Multi-Run	Verification

• Assume	b instructions	in	b bytes	memory.	
Probability	for	at	least	one	non-pointer	value	
misidentified	as	a	pointer	is:

• Say	b is	100MB	and	run	2 times.	This	will	
result	in	FPR=2−76
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