
How	to	Make	ASLR	Win	the	Clone	Wars:
Runtime	Re-Randomization

Kangjie	Lu,	Stefan	Nürnberger,	Michael	Backes,	and	Wenke	Lee

Georgia	Tech,	CISPA,	Saarland	University,	MPI-SWS,	DFKI

RuntimeASLR 1



What	did	we	do?

RuntimeASLR 2

• We	re-randomize	the	memory	layout	of	the	
cloned	(i.e.,	forked)	processes	at	runtime

Parent Child

fork()

code

data

code

data



In	this	talk,	I	will	explain…

• Why	we	need	to	re-randomize	cloned	processes?
– To	prevent	clone-probing	attacks

• How to	re-randomize	them?
– A	semantic-preserving	and	runtime-based	approach

• What are	the	results?
– Defeated	clone-probing,	e.g.,	Blind	ROP	attack
– No	performance	overhead	to	cloned	processes

RuntimeASLR 3



Background	- ASLR

• Address	Space	Layout	Randomization	(ASLR)
– Mitigating	code	reuses	attacks,	privilege	escalation,	and	
information	leaks

RuntimeASLR 4

code

data

Run	1

code

data

Run	2

code

data

Run	3



Background	- ASLR

• Address	Space	Layout	Randomization	(ASLR)
– Mitigating	code	reuses	attacks,	privilege	escalation,	and	
information	leaks

– One	time,	per-process,	load-time

RuntimeASLR 5

code

data

Run	1

code

data

Run	2

code

data

Run	3



Background	– Daemon	Servers

• Web	services	are	powered	by	daemon	servers,	
e.g.,	Nginx	web	server

RuntimeASLR 6



Designs	of	Daemon	Server

RuntimeASLR 7

Master
code

data

W
or
ke
r

co
de

da
ta

W
or
ke
r

co
de

da
ta

W
or
ke
r

co
de

da
ta

Worker	processes
(with	same	layout)

fork()

fork()

fork()

HTTP/HTTPS

HTTP/HTTPS

HTTP/HTTPS

1) The	daemon	process	pre-forks	multiple	worker	processes	that	handle	users	requests

Daemon	process



Designs	of	Daemon	Server

RuntimeASLR 8

code

data

W
or
ke
r

co
de

da
ta

W
or
ke
r

co
de

da
ta

W
or
ke
r

co
de

da
ta

Worker	processes
(with	same	layout)

fork()

fork()

fork()

HTTP/HTTPS

HTTP/HTTPS

HTTP/HTTPS

1) The	daemon	process	pre-forks	multiple	worker	processes	that	handle	users	requests
2) The	daemon	will	re-fork	a	new	worker	process	if	it	crashes,	to	be	robust

Master

Daemon	process



Designs	of	Daemon	Server

RuntimeASLR 9

code

data

W
or
ke
r

co
de

da
ta

W
or
ke
r

co
de

da
ta

W
or
ke
r

co
de

da
ta

Worker	processes
(with	same	layout)

fork()

fork()

fork()

HTTP/HTTPS

HTTP/HTTPS

HTTP/HTTPS

1) The	daemon	process	pre-forks	multiple	worker	processes	that	handle	users	requests
2) The	daemon	will	re-fork	a	new	worker	process	if	it	crashes,	to	be	robust

Master

Daemon	process

All	forked	worker	processes	share	the	same	
memory	layout	as	the	daemon	process	



When	ASLR	meets	daemon	
servers…

RuntimeASLR 10



Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

RuntimeASLR 11

return	address
12	34	56	78	9a	bc ed f0buffer

Stack	in	remote	server



Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

RuntimeASLR 12

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0

buffer

Stack	in	remote	server

Attack	
payload

Crash,	try	another	one



RuntimeASLR 13

Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0
AAAAAAA 01 34	56	78	9a	bc ed f0

buffer

Stack	in	remote	server

Attack	
payload

Crash,	try	another	one
Crash,	try	another	one



Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

RuntimeASLR 14

…

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0
AAAAAAA 01 34	56	78	9a	bc ed f0

AAAAAAA 12 34	56	78	9a	bc ed f0

buffer

…

Stack	in	remote	server

Attack	
payload

Crash,	try	another	one
Crash,	try	another	one

Bingo,	continue	to	
guess	next	byte



Clone-Probing	Attack

RuntimeASLR 15

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

…

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0
AAAAAAA 01 34	56	78	9a	bc ed f0

AAAAAAA 12 34	56	78	9a	bc ed f0

buffer

…

Stack	in	remote	server

Attack	
payload

Crash,	try	another	one
Crash,	try	another	one

Bingo,	continue	to	
guess	next	byte……

AAAAAAA 12	00 56	78	9a	bc ed f0 …



RuntimeASLR 16

Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

…

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0
AAAAAAA 01 34	56	78	9a	bc ed f0

AAAAAAA 12 34	56	78	9a	bc ed f0

buffer

…

Stack	in	remote	server

Attack	
payload

Crash,	try	another	one
Crash,	try	another	one

Bingo,	continue	to	
guess	next	byte……

AAAAAAA 12	00 56	78	9a	bc ed f0
……

…

AAAAAAA 12	34	56	78	9a	bc ed f0 Finally,		get	all	bytes



RuntimeASLR 17

Clone-Probing	Attack

• Attack	goal:	guess	the	randomized	address	
(e.g.,	return	address),	say	a	web	server	with	a	
stack	buffer	overflow	vulnerability

…

return	address
12	34	56	78	9a	bc ed f0

AAAAAAA 00 34	56	78	9a	bc ed f0
AAAAAAA 01 34	56	78	9a	bc ed f0

AAAAAAA 12 34	56	78	9a	bc ed f0

buffer

…

Stack	in	remote	server

Attack	
payload

Crash,	try	another	one
Crash,	try	another	one

Bingo,	continue	to	
guess	next	byte……

AAAAAAA 12	00 56	78	9a	bc ed f0
……

…

AAAAAAA 12	34	56	78	9a	bc ed f0 Finally,		get	all	bytes

Brute-forcing	complexity	is	reduced	from	264	to	8*28
(From	thousands	of	years	to	2	minutes	J)



This	Attack	is	Critical!

RuntimeASLR 18

A	simple	buffer	overflowà bypass	ASLR	(two	
minutes)à control	daemon	server	L



Preventing	clone-probing	with	
RuntimeASLR

Solution:	re-randomizing	the	memory	
layout	of	cloned	processes

RuntimeASLR 19



Challenge

• Remapping	memory	à dangling	pointers

• How	to	track	all	pointers	on	the	fly	and	update	
them?
– Accuracy
– Efficiency

RuntimeASLR 20



Pointer	Tracking	Problem

• Treat	it	as	a	taint	tracking	problem

RuntimeASLR 21

Source	
pointers

Pointer	
tracking	
policy

All
tracked
pointers



Source	Pointers

• Kernel	routinely	loads	program
– Easy	to	find	source	pointers

• Only	in	stack	and	registers

RuntimeASLR 22

Source	
pointers

Pointer	
tracking	
policy

All
tracked
pointers



Pointer	Tracking	Policy

RuntimeASLR 23

Source	
pointers

Pointer	
tracking	
policy

All
tracked
pointers



Pointer	Tracking	Policy

• Read	1,513- pages	Intel	ISA	manual	and	
manually	define	them??

RuntimeASLR 24

Source	
pointers

Pointer	
tracking	
policy

All
tracked
pointers



Automatic	Tracking	Policy	Generation

• Automatically	identifying	instructions	
behaviors

• This	way,	we	know	if	it	generates	or	destroys	
some	“values”

RuntimeASLR 25

instruction

Execution
Process
status

Process
status

snapshot
Memory	and	registers

snapshot

Instruction
behaviors

compare



How	to	Determine	a	Pointer?

• Without	type	info,	how	do	we	know	if	a	value	
is	a	pointer?

• Example:	mov rdi,	rsp
– Before:	rsp=0xcafebabe,	and	know	it	is	a	pointer
– After:	rdi=0xcafebabe,	memory	is	unchanged
– How	to	know	if	rdi is	a	pointer?

RuntimeASLR 26



Multi-Run	Pointer	Verification
• Observation:	rdi is	likely a	pointer	if	it	points	to	
mapped	memory	on	64-bits	platform,	why?

• Run	program	n times	with	ASLR,	if	rdi always	
points	to	mapped	memory,	rdi is	more	and	more	
likely a	pointer
– Mapping	n runs	with	instruction	execution	sequence

RuntimeASLR

rdi

Multi-runs	with
ASLR-enabled …

Run	1 Run	2 Run	n



Accuracy	of	Multi-Run	Verification

• Assume	size	of	mapped	memory	is	b bytes,	
run	n times	on	64-bits	platform,	false	positive	
rate	for	one value	is:

RuntimeASLR 28

b			2-64			n b
264

264
b n

Pfpr . .



Accuracy	of	Multi-Run	Verification

• Assume	size	of	mapped	memory	is	b bytes,	
run	n times	on	64-bits	platform,	false	positive	
rate	for	one value	is:

• Say	b is	22MB	(Nginx)	and	run	2	times.	This	
will	result	in	FPR=2−103

RuntimeASLR 29

b			2-64			n b
264

264
b n

Pfpr . .



Export	Policy

• Given	mov reg1,	reg2
– if	reg2 is	a	64-bits	register	and	tainted	(i.e.,	a	
pointer)	à taint	reg1 after	execution

RuntimeASLR 30



Track	All	Pointers

RuntimeASLR 31

Source	
pointers

Pointer	
tracking	
policy

All
tracked
pointers



Implementation

• Intel’s	PIN—a	dynamic	instrumentation	tool
• Three	modules

• Source	code	
– Coming	soon

RuntimeASLR 32

Policy	
generator	
(pintool)

Pointer	
tracker	
(pintool)

Randomizer
(shared	lib)



Evaluation

• Correctness
– Applied	to	Nginx	web	server
– Memory	snapshot	analysis	to	find	all	pointers
– RuntimeASLR correctly	finds	all	pointers

RuntimeASLR 33



Evaluation

• Security
– Blind	ROP	is	a	clone-probing	attack
– Addresses	of	all	modules	are	re-randomized
– RuntimeASLR successfully	defeats	it

RuntimeASLR 34

Without	RuntimeASLR With	RuntimeASLR



Evaluation

• Performance
– Pointer	tracking	is	extremely	expensive:	>10,000	times	
on	SPEC	CPU2006
• One	time	overhead	at	startup;	35	seconds	for	Nginx

– However,	no	overhead	on	cloned	worker	processes

RuntimeASLR 35



Discussions	and	Limitations

• Ambiguous	policy
• Completeness	of	tracking	policy
• Applicability	for	general	programs
• Supporting	pointer	obfuscation

RuntimeASLR 36



Demo

• Defeat	Blind	ROP	attack	with	RuntimeASLR

RuntimeASLR 37



Recap

• Clone-probing	attacks	à bypass	ASLR	à control	
daemon	server	or	steal	sensitive	data

• We	proposed	RuntimeASLR to	defeat	clone-probing	
attacks
– Automatic	pointer	tracking	policy	generation
– Support	COTS	binaries,	no	system	modifications
– No	overhead	to	cloned	worker	processes	(after	fork())

RuntimeASLR 38



Recap

• Clone-probing	attacks	à bypass	ASLR	à control	
daemon	server	or	steal	sensitive	data

• We	proposed	RuntimeASLR to	defeat	clone-probing	
attacks
– Automatic	pointer	tracking	policy	generation
– Support	COTS	binaries,	no	system	modifications
– No	overhead	to	cloned	worker	processes	(after	fork())

RuntimeASLR 39



Backup	slides

RuntimeASLR 40



Pointer	Tracking	Approaches

• Compiler-based	instrumentation
– Pros:	type	info,	efficient	in	tracking
– Cons:	type-confusion,	hard	to	
decouple	instrumentation,	require	
source

• Dynamic	instrumentation
– Pros:	easy	to	decouple	
instrumentation, support	COTS

– Cons:	lack	of	type	info,	tracking	is	
expensive

RuntimeASLR 41



Pointer	Tracking	Approaches

• Compiler-based	instrumentation
– Pros:	type	info,	efficient	in	tracking
– Cons:	type-confusion,	hard	to	
decouple	instrumentation,	require	
source

• Dynamic	instrumentation
– Pros:	easy	to	decouple	
instrumentation, support	COTS

– Cons:	lack	of	type	info,	tracking	is	
expensive

RuntimeASLR 42



Accuracy	of	Multi-Run	Verification

• Assume	b instructions	in	b bytes	memory.	
Probability	for	at	least	one	non-pointer	value	
misidentified	as	a	pointer	is:

RuntimeASLR 43

b2	 2-64			n1	- (1	- Pfpr)b . .



Accuracy	of	Multi-Run	Verification

• Assume	b instructions	in	b bytes	memory.	
Probability	for	at	least	one	non-pointer	value	
misidentified	as	a	pointer	is:

• Say	b is	100MB	and	run	2 times.	This	will	
result	in	FPR=2−76

RuntimeASLR 44

b2	 2-64			n1	- (1	- Pfpr)b . .


