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Enter through the narrow gate. For wide is the gate and broad is the road

that leads to destruction, and many enter through it.

Matthew 7:13-14
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SUMMARY

There have been tremendous efforts to build fully secure computer systems, but it is

not an easy goal. Making a simple mistake introduces a vulnerability, which can critically

endanger a whole system’s security.

This thesis aims at protecting computer systems from vulnerabilities. We take two

complementary approaches in achieving this goal, eliminating or analyzing vulnerabilities.

In the vulnerability elimination approach, we eliminate a certain class of memory corruption

vulnerabilities to completely close attack vectors from such vulnerabilities. In particular,

we develop tools DANGNULL and CAVER, each of which eliminates popular and emerging

vulnerabilities, use-after-free and bad-casting, respectively. DANGNULL relies on the

key observation that the root cause of use-after-free is that pointers are not nullified after

the target object is freed. Thus, DangNull instruments a program to trace the object’s

relationships via pointers and automatically nullifies all pointers when the target object is

freed. Similarly, CAVER relies on the key observation that the root cause of bad-casting

is that casting operations are not properly verified. Thus, CaVer uses a new runtime

type tracing mechanism to overcome the limitation of existing approaches, and performs

efficient verification on all type casting operations dynamically. We have implemented these

protection solutions and successfully applied them to Chrome and Firefox browsers. Our

evaluation showed that DangNull and CaVer imposes 29% and 7.6% benchmark overheads

in Chrome, respectively. We have also tested seven use-after-free and five bad-casting

exploits in Chrome, and DangNull and CaVer safely prevented them all.

In the vulnerability analysis approach, we focus on a timing-channel vulnerability which

allows an attacker to learn information about program’s sensitive data without causing a

xii



program to perform unsafe operations. It is challenging to test and further confirm the timing-

channel vulnerability as it typically involves complex algorithmic operations. We imple-

mented SIDEFINDER, an assistant tool identifying timing-channel vulnerabilities in a hash

table. Empowered with symbolic execution techniques, SIDEFINDER semi-automatically

synthesizes inputs attacking timing-channels, and thus confirms the vulnerability. Using

SIDEFINDER, we analyzed and further synthesized two real-world attacks in the Linux

kernel, and showed it can break one important security mechanism, Address Space Layout

Randomization (ASLR).
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CHAPTER I

INTRODUCTION

1.1 Thesis Overview

Today’s computer systems are large and complex. There have been tremendous research

efforts to fully defend these systems, but it is still an elusive goal. Introducing radical design

changes for security is not practical, or adding a small security enhancing component easily

breaks the critical functionality of a system. Even if these issues are resolved, attackers are

ever evolving, and they always find a vulnerability from tiny little corner cases.

This thesis aims at protecting computer systems through two complementary approaches,

eliminating or analyzing vulnerabilities. Eliminating critical vulnerabilities provides strong

notion of system protections. Unlike preventing certain side-effects caused by vulnerabilities,

this elimination approach directly fixes a root cause of vulnerabilities, thereby leaving no

security holes that attackers may attempt to abuse in the future. In particular, this thesis

focuses on eliminating two popular and emerging vulnerabilities, use-after-free and bad-

casting, each of which is addressed by DANGNULL and CAVER, respectively. DANGNULL

and CAVER have been implemented and then applied to popular web browsers such as

Chrome and Firefox, and demonstrated its effectiveness in terms of both performances and

security. More importantly, these tools helped to identify eleven new security vulnerabilities

in Firefox and GNU Libc++, all of which have been fixed by respected vendors.

In addition, analyzing vulnerabilities is an important asset to protect computer systems.

In particular, this thesis develops a tool, SIDEFINDER, which helps to unveil a timing-

channel vulnerability in hash tables. While timing-channels can be critical security issues if

abused by an attacker to leak security sensitive data, but it is challenging to identify such

vulnerabilities. This is largely because suspecting a program/algorithm to be vulnerable to

1



timing-channel may be easy, but generating concrete input to verify such a hypothesis is

difficult. Using SIDEFINDER, this thesis analyzes two new instances of such vulnerabilities

in the Linux kernel, and show these problems can break traditional security issues including

Address Space Layout Randomization (ASLR).

The following three subsections introduce the problem scope and research approaches

taken in this thesis. Then we summarize the contribution of this thesis.

1.2 Eliminating Use-after-free Vulnerability

Use-after-free remains one of the most critical and popular attack vectors because existing

proposals have not adequately addressed the challenging program analysis and runtime

performance issues. DANGNULL (§2) is a system that detects temporal memory safety

violations—in particular, use-after-free and double-free—during runtime. DANGNULL

relies on the key observation that the root cause of these violations is that pointers are not

nullified after the target object is freed. Based on this observation, DANGNULL automati-

cally traces the object’s relationships via pointers and automatically nullifies all pointers

when the target object is freed. DANGNULL offers several benefits. First, DANGNULL

addresses the root cause of temporal memory safety violations. It does not rely on the side

effects of violations, which can vary and may be masked by attacks. Thus, DANGNULL is

effective against even the most sophisticated exploitation techniques. Second, DANGNULL

checks object relationship information using runtime object range analysis on pointers, and

thus is able to keep track of pointer semantics more robustly even in complex and large

scale software. Lastly, DANGNULL does not require numerous explicit sanity checks on

memory accesses because it can detect a violation with implicit exception handling, and

thus its detection capabilities only incur moderate performance overhead.
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1.3 Eliminating Bad-casting Vulnerability

Many applications such as the Chrome and Firefox browsers are largely implemented

in C++ for its performance and modularity. Type casting, which converts one type of an

object to another, plays an essential role in enabling polymorphism in C++ because it allows

a program to utilize certain general or specific implementations in the class hierarchies.

However, if not correctly used, it may return unsafe and incorrectly casted values, leading to

so-called bad-casting or type-confusion vulnerabilities. Since a bad-casted pointer violates

a programmer’s intended pointer semantics and enables an attacker to corrupt memory,

bad-casting has critical security implications similar to those of other memory corruption

vulnerabilities. Despite the increasing number of bad-casting vulnerabilities, the bad-casting

detection problem has not been addressed by the security community.

CAVER (§3) is a runtime bad-casting detection tool. It performs program instrumentation

at compile time and uses a new runtime type tracing mechanism—the type hierarchy

table—to overcome the limitation of existing approaches and efficiently verify type casting

dynamically. In particular, CAVER can be easily and automatically adopted to target

applications, achieves broader detection coverage, and incurs reasonable runtime overhead.

1.4 Analyzing Hash Table Timing-channel Vulnerability

Timing-channel vulnerabilities allow an attacker to learn information about program’s

sensitive data without causing a program to perform unsafe operations. We particularly

focus on a class of timing-channel vulnerabilities in programs that use deterministic hash

tables to store sensitive data as keys. It is challenging to test and further confirm such

vulnerabilities because it requires heavy manual reverse engineering efforts given the

complexity of underlying software.

We develop SIDEFINDER (§4), which automatically synthesizes inputs attacking timing-

channel vulnerabilities in hash tables. Using SIDEFINDER, we analyzed two new instances

of such vulnerabilities in the Linux kernel that allows an attacker to learn the values of

3



private data or addresses of key system objects, in some cases breaking Address Space

Layout Randomization (ASLR), and show these problems can be reduced to SIDEFINDER.

We implemented and evaluated SIDEFINDER for timing-channel vulnerabilities in the Linux

Kernel, and confirmed that SIDEFINDER is able to synthesize inputs attacking timing-

channels.

1.5 Thesis Contributions

In summary, this thesis makes the following technical contributions.

• Analysis and formalization of vulnerabilities: This thesis presents the analysis and

formalization on emerging vulnerabilities, namely use-after-free, bad-casting, and

side-channel timing attacks. The analysis includes details on its security impacts

in details so that security researchers and practitioners can better understand these

vulnerabilities.

• Practical security enhancing tools: This thesis develops three tools eliminating or

analyzing vulnerabilities. We have thoroughly evaluated its performance aspects as

well as security effectiveness in the commodity software (i.e., Chrome, Firefox, and

the Linux kernel) to maximize its practical impacts.

• New vulnerabilities: This thesis discovered fourteen previously unknown vulnera-

bilities in the commodity software. Most of vulnerabilities have been reported to the

corresponding vendors, which helped them to fix and secure their products.

4



CHAPTER II

DANGNULL:NULLIFYING DANGLING POINTERS TO

PREVENT USE-AFTER-FREE

2.1 Eliminating Use-after-free Vulnerability

Many system components and network applications are written in the unsafe C/C++ lan-

guages that are prone to memory corruption vulnerabilities. To address this problem, a large

number of techniques have been developed to improve memory safety and prevent memory

corruption bugs from being exploited [3, 12, 43, 55, 87, 88, 91, 92, 101, 124]. However,

the problem of detecting and preventing use-after-free bugs remains unsolved. Among

the CVE identifiers of the Chromium browser that we collected from Oct. 2011 to Oct.

2013 in Table 1, use-after-free vulnerabilities are not only 40x/3x more than stack and heap

overflows in quantity, but also have more severe security impacts than traditional vulner-

abilities: 88% of use-after-free bugs are rated critical or high in severity, while only 51%

of heap overflows are considered as high severity. Not only are there many use-after-free

vulnerabilities, they have also become a significant attack vector. In Pwn2Own 2014 [58], an

annual contest among hackers and security research groups, the VUPEN team was awarded

with the largest cash amount, $100,000, for a single use-after-free exploit that affects all

major WebKit-based browsers.

Compared with many other vulnerability types, including stack buffer overflows or heap

buffer overflows, use-after-free is generally known as one of the most difficult vulnerability

type to identify using static analysis. In modern C/C++ applications (especially under object-

oriented or event-driven designs), the resource free (i.e., memory deallocation) and use (i.e.,

memory dereference) are well separated and heavily complicated. Statically identifying

use-after-free vulnerabilities under this difficult conditions involves solving challenging
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Table 1: The number of security vulnerabilities in the Chromium browser for two years (2011–2013),
classified by types of vulnerabilities and their severity.

Severity Use-after-free Stack Heap Othersoverflow overflow

Critical 13 0 0 0
High 582 12 107 11
Medium 80 5 98 12
Low 5 0 3 1

Total 680 17 208 24

static analysis problems (e.g., inter-procedural and point-to analysis while also considering

multi-threading effects), and is therefore feasible only for small size programs [45, 94].

Most research efforts to detect use-after-free vulnerabilities are relying on either addi-

tional runtime checks or dynamic analysis (listed in Table 2). For instance, use-after-free

detectors including [87, 124] have been proposed to address dangling pointer issues. By

maintaining metadata for each pointer and tracking precise pointer semantics (i.e., which

pointer points to which memory region), these tools can identify dangling pointers or pre-

vent memory accesses through dangling pointers. However, precisely tracking runtime

semantics on a per-pointer bases is non-trivial as there would be a huge number of pointers

and their metadata in runtime, which may result in high false positive rates (i.e., identifying

benign program behavior as use-after-free) or significant performance degradation. Such

shortcomings would limit the potential for these techniques to be deployed for large scale

software.

Memory error detectors [55, 91, 101] are also able to capture use-after-free bugs during

the software testing phase. By maintaining the allocated/freed status of memory, these tools

can prevent accesses to freed memory. However, these tools are not suitable for detecting

real-world exploits against use-after-free vulnerabilities if attackers can partially control the

heap memory allocation process, especially for web browsers. For example, by using Heap

Spraying [39, 97] or Heap Fengshui [105] like techniques, attackers can force the target

program to reuse certain freed memory.

In addition, Control Flow Integrity (CFI) tools can be used to prevent use-after-free

6



Table 2: Comparing the proposed system DANGNULL with other protection techniques detecting use-
after-free. The Explicit checks column represents whether the technique explicitly instruments
checks to detect use-after-free except via pointer propagation. The Liveness support column
represents whether the technique may continuously run an instrumented application as if use-after-free
vulnerabilities are patched. The False positive rates column represents whether the technique
would generate the high/low number of false alarms on benign inputs, and high false positive rates
imply that it would be difficult to be deployed for large scale software. The Bypassable column
shows whether the protection technique can be bypassable with the following column’s exploitation
technique. Overall, while all other protection techniques show either high false positive rates or being
bypassable, DANGNULL achieves both low false positive rates and being non-bypassable against
sophisticated exploitation techniques. §2.7 describes more details on each protection technique.

Category Protection Explicit Liveness False positive Bypassable Bypassing
Technique Checks Support Rates Technique

Use-after-free detectors

DANGNULL No Yes Low No N/A
CETS [87] Yes No High No N/A
Undangle [18] Yes No Low No N/A
Xu et al. [124] Yes No Low No N/A

Memory error detectors AddressSanitizer [101] Yes No Low Yes Heap manipulation
Memcheck [91] Yes No High No N/A
Purify [55] Yes No High No N/A

Control Flow Integrity
CCFIR [126] Yes No Low Yes Corrupting
bin-CFI [129] Yes No Low Yes non-function
SafeDispatch [61] Yes No Low Yes pointers

Safe memory allocators Cling [3] No No Low Yes Heap manipulation
DieHarder [92] No No Low Yes Heap manipulation

vulnerabilities from being exploited to hijack the control-flow because the majority of

vulnerability exploitations hijack the control flow to execute malicious code with Return-

Oriented Programming (ROP) [95]. However, due to the inherent limitations of these

tools, most of them only enforce coarse-grained CFI, which leaves some control-flows

exploitable [21, 40, 51, 52]. Moreover, since control-flow hijacks are not the only method

to compromise a program, it is still possible to bypass these techniques even if they can

enforce perfect CFI, e.g., via non-control data attacks [25, 80].

Overall, all of the previous protection techniques show either high false positive rates or

are bypassable using certain exploitation techniques. In other words, there is currently no

use-after-free mitigation solution that works well for large scale software and can also stop

all known forms of use-after-free exploitation techniques.

In this regard, we present DANGNULL, a system that prevents temporal memory safety

violations (i.e., use-after-free and double-free) at runtime. As suggested by many secure

7



programming books [99], a pointer should be set to NULL after the target object is freed.

Motivated by the fact that dangling pointers obviously violate this rule, DANGNULL auto-

matically traces the object relationships and nullifies their pointers when the object they

pointed to is freed. In particular, rather than relying on a heavy dynamic taint analysis,

DANGNULL incorporates a runtime object range analysis on pointers to efficiently keep

track of both pointer semantics and object relationships. Based on the collected object

relationship information, DANGNULL nullifies dangling pointers when the target memory

is freed. After this nullification, any temporal memory safety violation (i.e., dereferencing

the dangling pointers) turns into a null-dereference that can be safely contained.

This unique design choice of DANGNULL offers several benefits. First, since nullifica-

tion immediately eliminates any possible negative security impacts at the moment dangling

pointers are created, DANGNULL does not rely on the side effects from use-after-free or

double-free, and thus cannot be bypassed by sophisticated exploit techniques. Second, a run-

time object range analysis on pointers allows DANGNULL to efficiently keep track of pointer

semantics. Instead of tracing complicated full pointer semantics, DANGNULL only tracks

abstracted pointer semantics sufficient to identify dangling pointers with the understandings

on runtime object ranges. This allows DANGNULL to overcome the difficulty of pointer

semantic tracking and scale even for complex and large software. Third, DANGNULL does

not require any explicit sanity checks on memory accesses, which are a common perfor-

mance bottleneck in other mitigation tools. Instead, it relies on implicit null-dereference

exceptions, which are safely contained by DANGNULL. Lastly, DANGNULL can continue

running correctly even after use-after-free exploits (i.e., as if a program is patched for the

exploiting vulnerability) in some cases. Since nullified dangling pointers have identical

semantics with existing null-pointer checks in programs, it can utilize such existing checks

and survive use-after-free exploits.

We implemented DANGNULL and applied it to SPEC CPU 2006 and Chromium, and

evaluated its effectiveness and performance overhead. In particular, for the Chromium
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browser, all seven real-world use-after-free exploits we tested were safely prevented with

DANGNULL. Moreover, DANGNULL only imposed an average of 4.8% increase in overhead

in JavaScript benchmarks and an average of 53.1% increase in overhead in rendering

benchmarks, while a page loading time on Alexa top 100 websites showed a 7.4% slowdown

on average. DANGNULL also showed no false positives while running more than 30,000

benign test cases (including both unit tests and end-to-end testing web pages).

To summarize, this chapter makes the following contributions:

• We proposed DANGNULL, a system that detects temporal memory safety violations,

and is resilient to sophisticated bypassing techniques.

• We implemented DANGNULL and apply it to the Chromium browser, a well known

complex and large scale software.

• We thoroughly evaluated various aspects of DANGNULL: attack mitigation accuracy,

runtime performance overheads, and compatibility.

2.2 Background

From dangling pointers to use-after-free. Dangling pointers refer to pointers that point

to freed memory, and lead to memory safety errors when accessed. To be precise, a dangling

pointer itself does not cause any memory safety problem, but accessing memory through a

dangling pointer can lead to unsafe program behaviors and even security compromises, such

as control-flow hijacking or information leakage.

For example, as illustrated in Figure 1, body and doc→child pointers become dangling

pointers after body is deleted; the object body is allocated, assigned to doc→child, and

freed after the propagation. Since doc→child now points to the invalid memory region

(which is freed or already reused by the memory allocator), if the memory is accessed by

doc→child, a use-after-free error occurs. Unfortunately, use-after-free errors often lead to

security exploits. For example, if an adversary can manipulate (directly or probabilistically)
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the memory region, he can then use the pointer to obtain sensitive data or even change the

program’s control flows.

Challenges in identifying dangling pointers. The example we described above is very

simple. In practice, however, real-world use-after-free vulnerabilities can be complicated.

First, the allocation, propagation, free, and dereference operations could all be located in

separate functions and modules. Second, at runtime, the execution of these operations

could occur in different threads. Especially for applications with event-driven designs

and object-oriented programming paradigms in mind, the situation becomes even worse.

For example, web browsers need to handle various events from JavaScript or DOM, UI

applications need to handle user generated events, and server side applications implement

event-loops to handle massive client requests. Given the complicated and disconnected

component relationships, developers are prone to make mistakes when implementing object

pointer operations and thus leave the door open for dangling pointer problems.

In addition, not all dangling pointers violate temporal memory safety. In our experiments

(§2.5), we found numerous benign dangling pointers in practice (e.g., there were between

7,000 and 32,000 benign dangling pointers while visiting benign web pages in the Chromium

browser). Thus, in order to clarify dangling pointer problems, we first define the following

notions:

Definition 1. Dangling pointer. A pointer variable p is a dangling pointer if and only if

(x := allocate(size)) ∧ p ∈ [x, x+ size− 1]

⊢ deallocate(x)

for any pointer variables x and p, and a value size.

This definition simply captures the fact that a dangling pointer points to a freed memory

area; if the variable p points to the freed memory area ([x, x+ size− 1]), p is a dangling

pointer. Without loss of generality, we assume that allocate() and deallocate() functions

denote all memory allocation and deallocation functions, respectively. Based on this
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definition, we further define unsafe and benign dangling pointers.

Definition 2. Unsafe dangling pointer. A pointer variable p is an unsafe dangling pointer

if p is a dangling pointer and there exists memory read or write dereferences on p

Definition 3. Benign dangling pointer. A pointer variable p is a benign dangling pointer

if p is a dangling pointer but not an unsafe dangling pointer.

Note that only unsafe dangling pointers violate temporal memory safety and should

thus be prevented or detected. On the other hand, an alarm on a benign dangling pointer is

considered a false alarm (i.e., false positive).

Exploiting dangling pointers. In order to abuse unsafe dangling pointers for security

compromises (e.g., to achieve control flow hijacking or information leak), an attacker needs

to place useful data in the freed memory region where an unsafe dangling pointer points.

Depending on how unsafe dangling pointers are subsequently used, different exploitation

techniques are employed. For example, attackers can place a crafted virtual function table

pointer in the freed region; and when a virtual function in the table is invoked later (i.e.,

memory read dereference on unsafe dangling pointers), a control flow hijacking attack

is accomplished. As another example, if the attacker places a root-privileged flag for

checking the access rights in the freed region, a privilege escalation attack is accomplished.

Moreover, if the attacker places corrupted string length metadata in the freed region and the

corresponding string is retrieved, an information leakage attack is accomplished.

It should be clear now that the exploitability of unsafe dangling pointers depends on

whether an attacker can place crafted data where a dangling pointer points. Specifically, an

attacker needs to place useful objects where the freed memory region is located (e.g., an

extra memory allocation is one popular exploitation technique). This implies that the extra

operations controlled by an attacker should be performed between free and use operations

(e.g., between line 17 and 21 in Figure 1) because it is the only time window that the freed

memory region can be overwritten. In this sense, security professionals determine the

exploitability of use-after-free or double-free based on whether an attacker can gain control
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between the free and use operations. For example, the Chromium security team uses this

notion to determine the amount of bug bounty rewards [112].

2.3 Design

DANGNULL aims to detect unsafe dangling pointers without false positives and false

negatives in practice, so that it cannot be bypassed with sophisticated exploitation techniques

while supporting large scale software. To achieve this goal, DANGNULL addresses the root

cause of the unsafe dangling pointer problem. As discussed in §2.2, the root cause of unsafe

dangling pointers is that pointers—including both 1) the pointer that an allocated memory

object is initially assigned to and 2) all pointers that are propagated from the initial pointer

through direct copy and pointer arithmetic —are not nullified after the target memory is

freed.

Based on this observation, DANGNULL is designed to 1) automatically trace the point-to

relations between pointers and memory objects, and 2) nullify all pointers that point to a

freed memory object. By nullifying pointers that would otherwise have become unsafe

dangling pointers, DANGNULL not only prevents reads and writes of the freed memory,

which may contain security-sensitive meta-data (e.g, function pointers or vector length

variables), but also, in many cases, shepherds the execution of applications as if the detected

use-after-free or double-free bug had already been patched.

2.3.1 System Overview

An overview of DANGNULL’s design is illustrated in Figure 2. To generate a binary secured

against use-after-free vulnerabilities, developers should compile the source code of the target

program with DANGNULL. Given the source code, DANGNULL first identifies instructions

that involve pointer assignments and then inserts a call to the tracing routine (a static

instrumentation in §2.3.2). At runtime, with the help of instrumented trace instructions,

DANGNULL keeps track of point-to relations in a thread-safe red-black tree, shadowObjTree,

that efficiently maintains shadow objects representing the state of corresponding memory
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objects (a runtime library in §2.3.3).

On every memory allocation, DANGNULL initializes a shadow object for the target

object being created. Upon freeing an object, DANGNULL retrieves all pointers that point

to this object (from shadowObjTree) and nullifies those pointers, to prevent potential use-

after-free or double-free.

Later in this section, we describe each component of DANGNULL (the static instru-

mentation and the runtime library), and explain how we maintain shadowObjTree with a

concrete running example (Figure 1).

2.3.2 Static Instrumentation

The static instrumentation of DANGNULL is done at the LLVM IR [75] level and is designed

to achieve one primary goal: to monitor pointer assignments to maintain the point-to relations.

To balance security, performance, and engineering efforts, only appropriate pointers are

instrumented. More specifically, DANGNULL only tracks pointers located on the heap (e.g.,

doc→child in Figure 1) but not on the stack (e.g., doc in Figure 1). From our preliminary

experiment on the Chromium browser, we found that stack-located pointers are unlikely

to be exploitable, even though are many dangling pointers. This is because stack-located

pointers tend to have a very short lifetime since the scope of stack variables are bounded

by the scope of a function and accesses to those variables are limited in the programming

language. Heap-located pointers generally have much a longer lifetime (i.e., the number

of instructions between free and use is larger). In other words, unsafe dangling pointers

located in the heap offer better controls between the free and dereference operations, and

are thus are more likely to be exploited (§2.2). Therefore, to reduce performance overhead

and keep our engineering efforts effective and moderate, we focus on heap-located pointers.

Note that the nullification idea of DANGNULL has no dependencies on the pointer locations,

and is generally applicable to both heap- and stack-located pointers.

The algorithm for the static instrumentation is described in Figure 3. At lines 1-4, all
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store instructions 1 in each function are iterated. With the pointer information obtained

at lines 5-6, DANGNULL first opts out if lhs is a stack variable, using a intra-procedure

backward data-flow analysis (line 9-10). Specifically, given a lhs variable, we leveraged

a def-use chain provided by LLVM to see if this variable is allocated on the stack via the

allocation statement. Since this analysis is conservative, it is possible that DANGNULL

still instruments some pointer assignments in the stack. However, as DANGNULL does not

instrument allocations and deallocations of stack variables, such assignments will be ignored

by the runtime library. Next, DANGNULL performs a simple type signature check to see

if rhs is not of a pointer type (line 11-12) 2. With these two opt-out checks, DANGNULL

ignores all uninteresting cases as the current version of DANGNULL only targets the heap

located pointers. Because the location of a heap pointer cannot always be statically known

due to pointer aliasing issues, store instructions are conservatively instrumented unless it is

soundly determined to be a stack-located pointer. Any possible over-instrumentation due to

this conservative choice will be handled using the runtime object range analysis, which we

will describe in the next subsection (§2.3.3).

Once all these sanity checks are passed, a trace() function call is inserted after the store

instruction. For example, to instrument doc->child = body in Figure 1, DANGNULL in-

serts trace(&doc->child, body) after its assignment instruction. In this way, the DANGNULL’s

runtime library can later correctly trace the pointer references originating from doc->child.

Note that DANGNULL relies on the type signature of C/C++. Coercing type signatures

in the code might cause some false negatives, meaning that DANGNULL can miss some

propagation of pointers at runtime. In particular, if developers convert types of pointer

objects (by casting) into a value of non-pointer types, then DANGNULL will not be able

to trace the pointer propagation via that value. Moreover, if some libraries are not built

using DANGNULL (e.g., proprietary libraries), DANGNULL would still be able to run them

1In the LLVM IR, store instructions are always in the form of lhs := rhs.
2In the LLVM IR, the type of lhs of a store instruction is always the pointer of the rhs’s type.
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together, but the protection domain will be limited only to the instrumented code or modules.

2.3.3 Runtime Library

The runtime library of DANGNULL maintains all the object relationship information with

an efficient variant of a red-black tree, called shadowObjTree. Object layout information

(i.e., address ranges of an object) is populated by interposing all memory allocation and

deallocation functions (e.g., malloc and free, new and delete, etc). Object relationships

(i.e., an object refers to another object) are captured with the help of trace() added during

the static instrumentation. Based on the collected object relationship information, the

runtime library automatically nullifies all dangling pointers when the target memory is freed.

In this subsection, we first describe shadowObjTree, a data structure designed for main-

taining the complex object relationships (§2.3.3.1). We then further describe how these data

structures are populated and how dangling pointers are immediately nullified during runtime

(§2.3.3.2).

2.3.3.1 Shadow Object Tree

DANGNULL records and maintains the relationships between objects3 in shadowObjTree. It

has a hierarchical structure because the object relationship itself is hierarchical: each running

process has multiple objects, and each object has multiple in/out-bound pointers. Thus,

shadowObjTree is composed of several sub-data structures as nodes, to better represent this

hierarchical structure.

Figure 4 shows a structural view of shadowObjTree. A node of shadowObjTree is a

shadow object, which holds the object’s memory layout information (i.e., the object boundary

with base and end addresses) and in/out-bound pointers (i.e., directed references between

objects). To find a shadow object for the given pointer p, shadowObjTree searches for a

shadow object such that the corresponding object’s base ≤ p < end. In other words, as long

3Since DANGNULL only tracks pointers stored on heap, the point-to relationship effectively becomes a
relationship between heap objects.
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as the pointer p points to a corresponding object’s address range, shadowObjTree returns

the shadow object.

To efficiently support operations like insert, remove, and search, shadowObjTree uses a

variant of the red-black tree as the underlying data structure, which generally excels if 1) the

insertion order of keys shows random patterns and 2) the number of search operations is

significantly more than that of insertion and remove operations. In shadowObjTree, the key

is the address of the object, and the order of allocated objects’ addresses eventually depends

on the mmap() system call, which shows random behavior in modern ASLR enabled systems.

Moreover, DANGNULL requires significantly more find() operations than allocObj() and

freeObj() operations to soundly trace the object relationships.

Note that a hash table would not be an appropriate data structure for shadowObjTree

because it cannot efficiently handle the size information of an object. To be specific, a find

operation of shadowObjTree must answer range-based queries (i.e., finding a corresponding

shadow object given the address, where the address can point to the middle of a shadow

object), but a hash function of a hash table cannot be efficiently designed to incorporate

such range information.

In addition, shadowObjTree has two sub-trees to maintain in/out-bound pointer infor-

mation, and each sub-tree uses a red-black tree as the underlying data structure for the

same reason described for shadowObjTree. As the pointer reference is directed, an in-bound

reference of the object denotes that the object is pointed to by some other object and an

out-bound reference denotes that it points to some other object. For example, the body object

in Figure 1 has doc→child as an in-bound sub-tree and div as an out-bound sub-tree.

2.3.3.2 Runtime Operations and Nullification

Upon running the instrumented binary, the runtime library of DANGNULL interposes all

memory allocations and deallocations, and redirects their invocations to allocObj() and
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freeObj(). In addition, trace() instructions were inserted at pointer propagation instruc-

tions from the static instrumentation. As a running example, Figure 5 illustrates how

DANGNULL interposes and instruments the example code in Figure 1 where + marked lines

show the interposed or instrumented code.

The algorithm for the runtime library, which populates shadowObjTree, is described in

Figure 6. Upon the memory allocation invocation, allocObj() first invokes corresponding

real allocation functions (line 2). With the base pointer address from the real allocation,

a shadow object is created and inserted to shadowObjTree as a node (lines 3-4). When

trace() is invoked, the object relationship is added to the shadow objects. It first fetches

two shadow objects representing lhs and rhs pointers, respectively (line 9-10). Next, with

the concrete runtime values on pointers, DANGNULL uses the object range analysis to check

whether lhs and rhs truly point to live heap objects (line 13). It is worth noting that this

object range analysis not only helps DANGNULL avoid tracing any incorrect or unnecessary

pointer semantics that are not related to dangling pointer issues, but also makes DANGNULL

more robust on object relationship tracings, since it is based on concrete values and reasons

about the correctness of pointer semantics with the liveness of source and destination heap

objects. If the check passes, DANGNULL first removes an existing relationship, if there is

any (line 14). It then inserts the shadow pointer to both shadow objects (line 16-17).

Note, by using shadowObjTree, DANGNULL does not need to handle pointer arithmetic

to trace pointers. Specifically, because shadowObjTree contains information (base and

size) of all live heap objects, given any pointer p, DANGNULL can locate the corresponding

object through a search query (shadowObjTree.find()), i.e., finding object that has its

base ≤ q < (base + size). For the same reason, although DANGNULL does not trace

non-heap-located pointers (i.e., pointers in the stack or global variables), DANGNULL can

still trace correctly when the pointer value is copied through them and brought back to the

heap.

When an object is freed with freeObj(), the actual nullification starts. DANGNULL first
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fetches its shadow object (line 21). Next, it iterates over all in-bound pointers (pointing to

the current object to be freed), and nullifies them with a pre-defined value (NULLIFY_VALUE

at line 27). Note that these in-bound pointers are the pointers that would become dangling

otherwise, and the pre-defined value can be set as any relatively small non-negative integer

value (e.g., 0, 1, 2, ...). To avoid the erroneous nullification due to later deallocation of

objects that the current object points to, DANGNULL also removes the current object from

the sub-tree of the out-bound pointers (lines 29-31).

It is worth noting that DANGNULL nullifies not only unsafe dangling pointers, but

also benign dangling pointers. In spite of this extra nullification, DANGNULL can still

retain the same program behavior semantics because benign dangling pointers should not

have any pointer semantics (i.e., never be used). In most cases as we quantified in §2.5,

DANGNULL behaves correctly without false positives. We have found one rare false positive

case, described in detail in §2.6.

In our secured binary (Figure 5), doc→child is automatically nullified when body is

freed: the shadow object representing body was created (line 3), propagated to doc→child

(line 8), and nullified when the body is deallocated (line 15). As a result, depending on

NULLIFY_VALUE, the example would raise the SIGSEGV exception (if NULLIFY_VALUE > 0) or

continuously run (if NULLIFY_VALUE == 0), both of which safely mitigates negative security

impacts by unsafe dangling pointers.

For the SIGSEGV exception cases, DANGNULL guarantees that the program securely

ends in a safe-dereference, which is defined as follows.

Definition 4. Safe-dereference. If a dereference instruction accesses the memory address

in the range of [0, N] where it is preoccupied as non-readable and non-writable memory

pages for a given constant N, such a dereference is a safe-dereference.

A safe-dereference guarantees that a dereference on nullified unsafe dangling pointers

turns into a secured crash handled either by the operating system or DANGNULL’s SIGSEGV

exception handler. In modern operating systems, it is common that the first several virtual
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memory pages are protected to avoid any potential null-dereference attacks (e.g., virtual

address spaces from 0 to 64K are protected in Ubuntu [120]). In other words, DANGNULL

can utilize this existing null address padding to guarantee safe-dereferences (64K in Ubuntu).

Even if this null address padding is not supported by the operating system, DANGNULL

can still pre-allocate these spaces using the mmap() system call to be non-readable and

non-writable before any other code runs.

For continuously running cases, DANGNULL utilized the existing sanity check at line

18. This is because the semantic on invalid pointers is identical to both DANGNULL’s

nullification and typical programming practices. In other words, because it is common for

developers to check whether the pointer value is null before accessing it, DANGNULL’s

nullification can utilize such existing checks and keep the application running as if there

were no unsafe dangling pointers.

This example is oversimplified for the purpose of clarifying the problem scope and show-

ing how DANGNULL can nullify dangling pointers. In §2.5.1, we show that DANGNULL

is effective when applied to real, complex use-after-free bugs in Chromium.

2.4 Implementation

We implemented DANGNULL based on the LLVM Compiler project [114]. The static

instrumentation module is implemented as an extra LLVM pass, and the runtime library

is implemented based on LLVM compiler-rt with the LLVM Sanitizer code base. Table 3

shows the lines of code to implement DANGNULL, excluding empty lines and comments.

We placed the initialization function into .preinit_array as a ELF file format so that

the initialization of DANGNULL is done before any other function4. In this function, all

standard allocation and deallocation functions (e.g., malloc and free, new and delete,

etc) are interposed. In total, DANGNULL interposed 18 different allocation functions in the

current implementation, and any additional customized allocators for the target application

4DANGNULL’s prototype is implemented on a Linux platform. Although several implementation details
are specific to Linux, these can be generally handled in other platforms as well.
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Table 3: Components of DANGNULL and their complexities, in terms of their lines of code. All
components are written in C++.

Components Lines of code

Static Instrumentation 389
Runtime Library 3,955
shadowObjTree 1,303
Red-black tree 476
Runtime function redirection 233
Others 1,943

Total 4,344

can be easily added with one line of its function signature.

To avoid multi-threading issues when running DANGNULL, we used mutex locks for

any data structures with the potential for data racing. One global mutex lock is used for

shadowObjTree, and all shadow objects and their in/out–bound pointer sub-trees also hold

their own mutex locks.

To retain the target program’s original memory layout, DANGNULL uses a dedicated

allocator from Sanitizer that has dedicated memory pages. All memory for metadata,

including shadowObjTree and its pointer sub-trees, is allocated from this allocator. Thus,

DANGNULL does not interfere with the original memory layout, and it can avoid any

potential side effects by manipulating the original allocators [46].

We also modified the front-end of LLVM so that users of DANGNULL can easily build

and secure their target applications with one extra compilation option and linker option. To

build SPEC CPU 2006 benchmarks, we added one line to the build configuration file. To

build the Chromium browser, we added 21 lines to the .gyp build configuration files.

2.5 Evaluation

We evaluated DANGNULL on two program sets, the SPEC CPU2006 benchmarks [107]

and the Chromium browser [110] 5. First, we tested how accurately DANGNULL mitigates

known use-after-free exploits (§2.5.1). Next, we measured how much overhead DANGNULL

5The Chromium browser is the open source project behind the Chrome browser, and these two are largely
identical.
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imposes during the instrumentation phase (§2.5.2) and the runtime phase (§2.5.3). Finally,

we conducted a stress test to see if DANGNULL runs well without breaking compatibility

(§2.5.4). All experiments were conducted on an Ubuntu 13.10 system (Linux Kernel 3.11.0)

with a quad-core 3.40 GHz CPU (Intel Xeon E3-1245), 16 GB RAM, and 1 TB SSD-based

storage.

2.5.1 Attack Mitigation

The goal of DANGNULL is to turn use-after-free or double-free attempts into safe-dereferences

by nullifying dangling pointers. In order to test how DANGNULL accurately nullified unsafe

dangling pointers and eventually protected the system from temporal memory safety viola-

tions, we tested the DANGNULL-hardened Chromium browser with real-world use-after-free

exploits. Given the Chromium version instrumented (29.0.1457.65), we first collected all

publicly available use-after-free exploits from the Chromium bug tracking system [112],

which opens vulnerability information to the public after mitigation and includes a proof of

concept exploit6.

Table 4 lists seven use-after-free vulnerabilities that existed in the targeted Chromium

version. All of these were marked as high severity vulnerabilities by the Chromium team,

which suggests that these have a high potential to be used for arbitrary code execution. Bug

ID 162835 was specifically selected to later demonstrate that DANGNULL can mitigate this

sophisticated exploit technique.

Before applying DANGNULL, all proofs-of-concept can trigger SIGSEGV exceptions at

invalid addresses (No-Nullify column in Table 4). These invalid addresses are memory ad-

dresses that are dereferenced, i.e., the values of unsafe dangling pointers. Although we only

present one value for each vulnerability, this value would randomly change between different

executions due to ASLR and the order of memory allocations. These seemingly random

6We have not found any double-free vulnerabilities for the given Chromium version. However, we believe
DANGNULL would be equally effective against double-free exploits because DANGNULL nullifies exploit
attempts where both use-after-free and double-free share common erroneous behaviors (i.e., at the moment
when the unsafe dangling pointer is created).
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SIGSEGV exceptions can be abused to launch control-flow hijacking attacks, information

leaks, etc. They are particularly dangerous if the vulnerability offers a control between

free and use (the right-most column, Control b/w free and use). For example, with

this control, malicious JavaScript code can place crafted data in freed memory and turn the

SIGSEGV exception (i.e., deference the unsafe dangling pointer) into control-flow hijacking

attacks or information leakages depending on the context of dereference operations. More-

over, this control between free and use also implies that the attackers can bypass memory

error detection tools (e.g., AddressSanitizer [101]) because it allows the attackers to force

the reuse of a freed memory region (see more details in §2.7 and a concrete bypassing case

(Figure 10)).

Once Chromium is instrumented with DANGNULL, all of these cases were safely miti-

gated (Nullify-value column). Depending on the nullify value provided as a parameter,

all 28 cases (7 rows by 4 columns) result in the following three categories: 1) integer values

represent that DANGNULL securely contained SIGSEGV exceptions with safe-dereference;

2) stopped by assertion represents that DANGNULL re-utilized existing safe assertions

in Chromium; and 3) check marks (✓) represent that Chromium continuously runs as if

Chromium is already patched.

For the safe-dereference cases, it is worth noting that the dereferenced address values

are quite small (at most 0x2e8). Although these seven exploits would not be enough to

represent all use-after-free behaviors, we believe this implies that the moderate size of null

address padding for safe-dereference (§2.3.3.2) would be effective enough. DANGNULL’s

null address padding can be easily extended without actual physical memory overheads

if necessary, and 64-bit x86 architectures can allow even more aggressive pre-mappings.

Moreover, unlike the case before applying DANGNULL, these dereferenced addresses did

not change between different executions. This indicates that unsafe dangling pointers were

successfully nullified using DANGNULL and thus the random factor of the object’s base

address is canceled out.
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In addition, the dereferenced address values show certain patterns depending on the

nullify value. While address values are different when the nullify value is 0 (explained later

in this section), address values generally show linear relationships with nullify values. For

example, in Bug ID 261836, address values were {0x21, 0x22, 0x23} when nullify values

were {1, 2, 3}, respectively. This pattern presents another clue that unsafe dangling pointers

were actually nullified by DANGNULL because the difference of each address value and

the nullify value is the same between different executions. We manually verified that the

difference is actually the index offsets of the dereference operations by analyzing the crash

call stacks and the source code. Bug ID 282088, which has 0xf0 for all different nullify

values, was an exception. This is caused by aligned memory access in the dereference

operation (i.e., the pointer is AND masked with 0xfffffff0).

As we mentioned in §2.3.3.2, DANGNULL can also utilize existing sanity checking code.

These cases are shown as a check mark (✓) indicating that Chromium correctly handled

the exploit as if it was patched. Because program developers usually insert null pointer

checks before pointer dereferences, unsafe dangling pointers nullified by DANGNULL did

not flow into the dereference instructions which would cause safe-dereference. Instead,

it was handled as an expected error and Chromium displayed the same output as a later

patched version. We admit that it would be premature to argue that unsafe dangling point-

ers nullified by DANGNULL can always be handled in this way, but we believe this is an

interesting direction for future work. Existing research [78] also showed that skipping erro-

neous null-dereference instructions can keep the target application safely running. Besides

normal checks, DANGNULL was also able to re-utilize existing null pointer assertions, as

demonstrated in Bug ID 162835.

To clearly illustrate how DANGNULL mitigates these use-after-free exploits on the

Chromium browser, Figure 7 shows the simplified vulnerable code snippet and its object

relationships for Bug ID 286975. Two class objects hold mutual relationships with their

own member variables. The root cause of the vulnerability is in that the in-bound pointer
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Table 4: DANGNULL safely nullified all seven real-world use-after-free exploits for Chromium.
Among these seven cases, three correctly run even after use-after-free exploits as if it was patched
(represented as a ✓), and one is safely prevented as DANGNULL re-utilized existing assertions in
Chromium (represented as stopped by assertion). Without DANGNULL, all exploits are potential
threats, leading to control-flow hijacking attacks, information leakages, etc. To be concrete, we also
include invalid pointers causing an exception with various nullification values (0-3), and their threat
in terms of the chances of an attacker’s control between free and use.

Bug ID CVE Severity No-Nullify Nullify-value Control b/w

0 1 2 3 free and use

261836 - High 0x7f27000001a8 0x2e8 0x21 0x22 0x23 yes
265838 2013-2909 High 0x1bfc9901ece1 ✓ 0x1 0x2 0x3 yes
279277 2013-2909 High 0x7f2f57260968 ✓ 0x1 0x2 0x3 yes
282088 2013-2918 High 0x490341400000 0xf0 0xf0 0xf0 0xf0 difficult
286975 2013-2922 High 0x60b000006da4 ✓ 0x15 0x16 0x17 yes
295010 2013-6625 High 0x897ccce6951 0x30 0x1 0x2 0x3 yes
162835 2012-5137 High 0x612000046c18 stopped by assertion yes

(m_host) of HTMLTemplateElement is not nullified when it is freed (patches are shown as +

marked lines). As a result, use-after-free occurs when containsIncludingHostElements()

dereferences m_host. Under DANGNULL, it immediately eliminates the root cause of the

vulnerability by nullifying m_host when the object is freed. Thus, DANGNULL not only

mitigated Use-After-Free, but also utilized the existing null pointer checks at line 24 and

helped the browser run as if it were patched.

2.5.2 Instrumentation

To see how DANGNULL’s static instrumentation changes the output binary, we measured

the number of inserted instructions and the file sizes of both the original and instrumented

binaries. The number of inserted instructions depends on the number of pointer propagation

instructions as described in Figure 3. Accordingly, file size increments in instrumented

binaries are proportional to the number of inserted instructions (excepting the 370KB

runtime library).

The results for SPEC CPU 2006 benchmarks are shown in Table 5. A total of 16

programs were instrumented (eleven C programs and five C++ programs). The number of

inserted instructions varied across each program. This variance is not only influenced by
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Table 5: Details of instrumented binaries (the left half) and their runtime properties (the right half)
in SPEC CPU2006. The left half describes the details of incremented file size due to newly inserted
instrumentation instructions. The runtime library of DANGNULL is about 370 KB; DANGNULL

requires approximately 40 B per instrumentation to trace pointer propagation. The right half
represents the details of the programs’ runtime behavior (e.g., increase of memory usage and the
number of pointers and objects in each benchmark). The increase of memory (due to shadowObjTree)
depends on the number of objects and pointers created and freed in total; bzip2, which has minimal
memory allocation, imposed no extra memory overhead, while gcc, which has many memory
operations, imposes about 80 MB of extra memory overhead with DANGNULL.

Name File Size (KB) # of instructions # of objects # of pointers # Nullify Memory (MB)
before after inserted total total peak total peak before after

bzip2 172 549 13 15k 7 2 0 0 0 34 34
gcc 8k 9k 9k 606k 165k 3k 3167k 178k 104k 316 397
mcf 53 429 95 2k 2 1 0 0 0 569 570
milc 351 737 71 24k 38 33 0 0 0 2k 2k
namd 1k 1k 45 77k 964 953 0 0 0 44 114
gobmk 5k 6k 201 156k 12k 47 0 0 0 23 28
soplex 4k 4k 264 74k 1k 88 14k 172 140 7 14
povray 3k 3k 941 194k 15k 9k 7923k 26k 6k 38 81
hmmer 814 1k 94 60k 84k 28 0 0 0 1 18
sjeng 276 662 17 22k 1 1 0 0 0 171 171
libquantum 106 483 21 7k 49 2 0 0 0 0 2
h264ref 1k 1k 154 115k 9k 7k 906 111 101 44 208
lbm 37 411 9 2k 2 1 0 0 0 408 409
astar 195 574 54 8k 130k 5k 2k 148 20 13 135
sphinx3 541 931 170 34k 6k 703 814k 14k 0 46 62
xalancbmk 48k 51k 7k 645k 28k 4k 256k 18k 10k 7 76

the total number of instructions, but also by a program’s characteristics (some programs

have more pointer propagation than others). For example, although mcf has fewer total

instructions, DANGNULL inserted more than 10 times the number of instructions into mcf

than lbm, a similarly-sized application. The file size increments were proportional to the

number of inserted instructions as expected after subtracting the size of the runtime library.

The result for the Chromium browser is shown in Table 6. A total of 140,000 instructions

were inserted, which is less than 1% of the whole program. This implies that pointer

propagation instructions appeared with less than 1% probability. The file size is increased

by about 0.5%, for a total size of 1,868 MB. Note that the Chromium build process uses

static linking, and thus the resultant binary includes all shared libraries. We believe the

file size increment (0.5%) should not be a concern for distribution or management of the

instrumented binary.
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Table 6: Static instrumentation results on Chromium

Name File Size (MB) # of instructions
before after incr. inserted total

Chromium 1858 1868 10 140k 16,831k

2.5.3 Runtime Overheads

As DANGNULL must trace object relationships for nullification, it increases both execution

time and memory usage. To determine how much runtime overhead DANGNULL imposes

on target applications, we measured various runtime overheads of SPEC CPU2006 and the

Chromium browser.

Figure 8 shows the runtime performance overheads of DANGNULL running SPEC

CPU2006 benchmarks. The overheads largely depend on the number of objects and pointers

that DANGNULL traced and stored in shadowObjTree. These metadata tracing measure-

ments are shown in the right half of Table 5. As we described in §2.5.2, each application has

a different number of object allocations and degree of pointer propagation. Accordingly, each

object allocation and pointer propagation would insert extra metadata into shadowObjTree

unless it fails runtime range analysis. DANGNULL imposed an average performance over-

head of 80%. DANGNULL caused more runtime overhead if the application had to trace a

large number of pointers. For example, in the povray case, a total of 7,923,000 pointers

were traced because it maintains a large number of pointers to render image pixels, and thus

increased execution time by 270% with 213% memory overhead. On the other hand, in

h264ref, only 906 pointers were traced and resulted in a 1% increase in execution time and

472% memory overhead.

To obtain a practical measurement of performance impacts of DANGNULL, we also

tested the DANGNULL-hardened Chromium browser to see how much DANGNULL would

affect web navigation experiences. First, seven different browser benchmarks listed in

Table 7 are tested. Among them, Octane 2.0 [53], SunSpider 1.0.2 [122], and Dromaeo

JS [83] evaluate the JavaScript engine performance. Balls [117], Dromaeo DOM, JS Lib,
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and html5 [117] evaluate rendering performance. For the JavaScript engine benchmarks,

DANGNULL showed only 4.8% averaged overhead. This is because heavy JavaScript com-

putations are mostly executed in the form of JIT-compiled code, which is not instrumented by

DANGNULL. For rendering benchmarks, DANGNULL showed 53.1% overhead on average,

which implies that rendering computations (i.e., DOM or HTML related computations) were

affected by DANGNULL to some extent.

Note that the actual overhead for most end-users would be the combined overheads

of both JavaScript and rendering computations. Therefore, we also measured the page

loading time for the Alexa top 100 websites [5], as this would be representative of the actual

overhead an end user would experience. To measure the page loading time, we developed a

simple Chromium extension which computes the time difference between the initial fetch

event and the end of page loading event. Each website is visited three times while the

browser is newly spawned and the user profile directory is deleted before each visit to avoid

page cache effects. On average, DANGNULL showed 7% increased load time. DANGNULL

showed 2326 ms page loading time with 317.6ms standard deviation. Original Chromium

showed 2165 ms with 377.9ms standard deviation. Due to the variability of network traversal

and the response time of web servers, most performance impacts of DANGNULL introduce

no greater magnitude of load time variability than those introduced by factors unrelated to

DANGNULL.

To illustrate how DANGNULL behaves for web page loading, Table 8 shows detailed

overheads. Four popular websites are visited, of which two were logged in using active

accounts. When visiting youtube.com, page load time increased 32.8% as it renders many

images. For login pages, DANGNULL maintained a similar overhead ratio even though it

traced a relatively large number of objects and pointers.
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Table 7: Chromium Benchmark results with and without DANGNULL. High/low denotes whether
performance was higher or lower when compared to the unmodified test. For JavaScript benchmarks,
DANGNULL imposes negligible overheads, varying from 2.7-8.6%. For rendering benchmarks
requiring lots of memory operations (e.g., allocating DOM elements), DANGNULL exhibits 22.2%-
105.3% overhead depending on type.

Benchmarks JavaScript Rendering

Octane SunSpider Dromaeo JS Dromaeo DOM Dromaeo JS Lib
(unit, [high or low]) (score, high) (ms, low) (runs/s, high) (runs/s, high) (runs/s, high)

Original 13,874 320.0 1,602.1 857.8 216.0
DANGNULL 13,431 347.5 1,559.6 509.1 168.1

Slowdown 3.2% 8.6% 2.7% 40.7% 22.2%

Table 8: Page load time overhead when visiting four popular websites.

Website Action Page Complexity Loading Time (sec)
# Req # DOM Original DANGNULL

gmail.com visit 13 164 0.49 0.60 (22.4%)
twitter.com visit 14 628 1.05 1.16 (10.5%)

amazon.com visit 264 1893 1.37 1.60 (16.8%)
youtube.com visit 43 2293 0.61 0.81 (32.8%)
gmail.com login 177 5040 6.40 7.66 (19.7%)
twitter.com login 60 3124 2.16 2.77 (28.2%)

Table 9: Detailed runtime properties when visiting four popular websites.

Website Action # of objects # of pointers # Nullify Memory (MB)
total peak total peak before after

gmail.com visit 123k 22k 32k 12k 7k 46 171
twitter.com visit 121k 23k 35k 13k 8k 48 178

amazon.com visit 166k 25k 81k 28k 16k 57 200
youtube.com visit 127k 23k 46k 16k 9k 49 178
gmail.com login 295k 31k 165k 49k 32k 96 301
twitter.com login 172k 27k 71k 23k 15k 98 276
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2.5.4 Compatibility

Due to the nullification of benign dangling pointers, it is possible that DANGNULL may

cause false positives by changing program execution semantics (i.e., dangling pointers that

will not be dereferenced, but their address values will be use). To see how much negative

impact DANGNULL would impose on such program execution semantics, we used the

Chromium browser as an example and ran stress tests on DANGNULL with various benign

inputs. These tests include base unit tests, LayoutTests, Acid3 tests, and visiting Alexa top

500 websites. The first three tests are well known tests to verify the correctness of browser

implementations, and we additionally visited Alexa top 500 websites to see if DANGNULL

causes any issues when browsing popular websites.

Base unit tests [31], which are distributed with the Chromium source code, are regression

tests that directly communicate with the native interfaces of Chromium and check whether

basic functions are working correctly. DANGNULL passed all 1,100 test cases.

LayoutTests [31], which are also distributed with the Chromium source code, include

30,120 test cases. These tests are web page files (e.g., .html, .js, etc), and check whether

the browser renders various web pages as expected. Test results for Chromium secured with

DANGNULL were identical to original Chromium. Both passed 30,035 tests, but failed the

same 85 tests. For the failed cases, four tests crashed the browser, 70 tests failed to generate

expected output, and 11 tests caused a timeout. We manually verified the four crashing

tests, and all were to-be-fixed bugs in the Chromium version we evaluated. As the set of

failed tests were the same for original and instrumented Chromium, we believe DANGNULL

would match the rendering conformity of original Chromium.

Acid3 tests [116] check whether the browser conforms with published web standards. It

runs various JavaScript code and compares the rendered output with a reference input to see

if there are any differences. DANGNULL passed the test with the full score (100/100).

We also visited Alexa top 500 websites [5] to see if DANGNULL introduces any un-

expected behavior. Each time the browser visits a website, we waited 10 seconds and
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checked whether DANGNULL raised false alarms during the visit. For all top 500 websites,

DANGNULL displayed all web pages without false alarms.

Based on this compatibility evaluation, we believe that DANGNULL would not impact

original execution semantics in practice. We found one rare false positive case while

manually handling the browser, which is described in §2.6.

2.6 Discussion

Usage scenarios. Because this thesis focuses on the correctness and effectiveness of

DANGNULL against use-after-free and double-free vulnerabilities, we have not specifically

restricted the possible usage scenarios of DANGNULL. In general, we believe DANGNULL

can be applied to the following three scenarios:

• Back-end use-after-free detection: many zero-day attacks are based on use-after-free

vulnerabilities [86]; DANGNULL can be used to detect these attacks. To the best of our

knowledge, DANGNULL is the only mitigation system that can detect use-after-free

exploits carefully developed for complex and large scale software (e.g., Chromium).

• Runtime use-after-free mitigation for end users: if performance overhead is not the

primary concern of end users, DANGNULL is an effective use-after-free mitigation

tool with moderate performance overhead, especially for web browsers.

• Use-after-free resilient programs: we have shown that DANGNULL can utilize existing

sanity check routines and survive use-after-free attempts. By integrating automatic

runtime repair work [78], we believe DANGNULL can evolve to support use-after-free

resilient programs in the future.

Performance optimization. We believe DANGNULL’s performance overhead can be

further improved, especially for performance critical applications. First of all, instrumenta-

tion phases can be further optimized by leveraging more sophisticated static analysis. For

example, if it is certain that the original code already nullifies a pointer, DANGNULL would
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not need to nullify it again. Although we have not heavily explored this direction, this has

to be done carefully because soundly learning this information involves pointer-aliasing

problems, which are well-known difficult problems in program analyses, and any incorrect

analysis results would lead to both false positives and false negatives.

Moreover, we identified that manipulation of shadowObjTree is the main performance

bottleneck, and this can be optimized by 1) leveraging transactional memory [56] to enhance

locking performance on shadowObjTree; 2) designing a software cache for shadowObjTree;

3) using alternative data-structures to implement shadowObjTree (e.g., alignment-based

metadata storage by replacing the memory allocator [54]); or 4) creating a dedicated

analyzing thread or process for shadowObjTree [63].

False negatives. DANGNULL’s static instrumentation assumes that a pointer is propagated

only if either the left– or right–hand side of a variable is a pointer type. This would not

be true if the program is written in a manner such that the propagation is done between

non-pointer-typed variables. Consider the example we introduced in Figure 1. If the

child member variable is typed as long (i.e., long child at line 4) and all the following

operations regarding child are using type casting (i.e., doc->child=(long)body at line 13 and

((Elem*)doc->child)->getAlign() at line 21), then such a pointer propagation would not be

traced. DANGNULL would under-trace object relationships in this case, and there would be

false negatives if child becomes an unsafe dangling pointer.

False positives. To stop dereferencing on unsafe dangling pointers, DANGNULL nul-

lifies not only unsafe dangling pointers but also benign dangling pointers. This implies

DANGNULL additionally nullifies benign dangling pointers, and it is possible it may cause

some false positives, although these should not have any semantic meaning as they are

“dangled”.

While testing DANGNULL for SPEC CPU benchmarks and the Chromium browser, we

found one rare false positive case. This false positive case sporadically occurs when a new

tab is manually created inside the Chromium browser, and it is related to the unique pointer
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hash table design (Figure 9).

We believe this false positive example would not be a critical concern for deploying

DANGNULL due to its rareness. As we described in the compatibility evaluation in §2.5.4,

DANGNULL passed more than 30,000 stress tests with the Chromium browser, a large scale

and highly complicated application.

2.7 Related Work

Memory-related issues, including invalid memory accesses, memory leaks, and use-after-

free bugs, have been studied for many years. Numerous methods have been proposed for

C/C++ programs. In this section, we categorize them and compare them with DANGNULL.

Use-after-free detectors. There is a line of research specifically focusing on detecting use-

after-free vulnerabilities. In general, use-after-free vulnerabilities can be detected through

both static and dynamic analysis. However, since 1) a dangling pointer itself is not erroneous

behavior and 2) statically determining whether a dangling pointer will actually be used in the

future requires precise points-to and reachability analyses across all possible inter-procedure

paths, even state-of-the-art use-after-free detection tools based on the static analysis are only

suitable for analyzing small programs [45, 94].

For this reason, most use-after-free detectors [18, 87, 124] are based on the runtime

dynamic analysis. CETS [87] maintains a unique identifier with each allocated object,

associates this metadata with pointers, and checks that the object is still allocated on pointer

dereferences. To handle pointer arithmetic, CETS uses taint propagation (i.e., the resulting

pointer will inherit the metadata from the base pointer of the corresponding arithmetic

operation). Unfortunately, the assumption behind this design choice —the propagated

pointer should point to the same object—does not always hold, which results in high false

positive rates. From our experiments, CETS raised false alarms on 5 out of 16 tested

programs while DANGNULL was able to correctly run all 16 programs. In addition to high

false positive rates, CETS relies on explicit checks to guarantee the memory access validity
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for all memory operations, thus imposing higher performance overhead in SPEC CPU2006

compared to DANGNULL. For 4 programs (bzip2, milc, sjeng, h264ref, and lbm) that CETS

was able to run7, on average it incurred 40% slow down, while DANGNULL incurred 1%

slow down.

Undangle [18] is another runtime dynamic analysis tool to detect use-after-free. It

assigns each return value of memory allocation functions a unique label, and employs a

dynamic taint analysis to track the propagation of these labels. On memory deallocation,

Undangle checks which memory slots are still associated with the corresponding label, and

then determines the unsafe dangling pointers based on the lifetime of dangling pointers

(i.e., if the lifetime of a dangling pointer is higher than the certain threshold number, it is

identified as an unsafe dangling pointer). While this approach can collect more complete

pointer propagation information than DANGNULL (which would better help a bug triage or

debugging process), a significant performance cost is required.

Control flow integrity. Control flow integrity (CFI) [1, 125, 126, 129] enforces indirect

function calls to be legitimate (i.e., enforcing integrity of the control-flows). Similarly,

SafeDispatch [61] prevents illegal control flows from virtual function call sites. Unlike

use-after-free and memory error detectors, CFI makes use-after-free vulnerabilities difficult

to exploit. Specifically, CFI only shepherds function pointers to guarantee legitimate control

flows. In practice, however, most CFI implementations enforce coarse-grained CFI to avoid

heavy performance overheads and false positive alarms, but recent research [21, 40, 51, 52]

has demonstrated that all the aforementioned coarse-grained CFI implementations can be

bypassed. Moreover, dangling pointers can also be abused to corrupt non-control data (e.g.,

vector length variables, user privilege bits, or sandbox enforcing flags) in objects [25], all of

which are not function pointers, which makes CFI based protection techniques bypassable.

For example, a recent attack [80] overwrote user permission bits in the metadata to bypass

user authorizations, including all other defense mechanisms. As an another example, vector

7CETS failed to compile 7 programs out of 16 SPEC CPU2006 programs we tested.
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length variable corruption is one popular technique to exploit use-after-free vulnerabilities

that lead to information leakage attacks or additional heap buffer overflows.

DANGNULL eliminates dangling pointers at the moment they are created. Thus, it can

protect not only control flows but also any other security sensitive metadata in the objects

from being abused by use-after-free or double-free vulnerabilities.

Memory error detectors. Memcheck (Valgrind) [91] and Purify [55] are popular solutions

for detecting memory errors. Since their main goal is to help debugging, they are designed

to be complete (incurring no false negatives) and general (detecting all classes of memory

problems) in identifying memory-leak vulnerabilities, imposing very high memory and CPU

overheads.

AddressSanitizer [101] is another popular tool developed recently that optimizes the

method of representing and probing the status of allocated memory. However, due to an

assumption to support this optimization (a quarantine zone that prevents reuse of previ-

ously freed memory blocks), it cannot detect use-after-free bugs if the assumption does

not hold (i.e., heap objects are reallocated). Specifically, attackers can easily leverage

various techniques to force reallocation of previously freed memory blocks, such as Heap

Spraying [39, 97] and Heap Fengshui [105]. To clearly demonstrate this issue, we devel-

oped a proof-of-concept exploit bypassing the detection of AddressSanitizer (Figure 10).

However, with DANGNULL, all dangling pointers will be nullified upon the deallocation of

their objects, rendering use-after-free vulnerabilities unexploitable, even with sophisticated

manipulations.

Safe memory allocators. Many safe memory allocators have been proposed to prevent

dangling pointer issues. Cling [3] can disrupt a large class of exploits targeting use-after-

free vulnerabilities by restricting memory reuse to objects of the same type. Diehard and

Dieharder [12, 92] mitigate dangling pointer issues by approximating an infinite-sized heap.

Smart pointers. A smart pointer is an abstract data type that encapsulates a pointer to

support automatic resource management. Theoretically, an application would not suffer
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from use-after-free issues if all the pointers are represented with smart pointers (i.e., no raw

pointers are used in the application code). However, it is common to expose raw pointers

even in applications heavily using smart pointers. For example, in order to break the resource

graph cycle connected with shared pointers (e.g., std::shared_ptr in C++11), browser

rendering engines including WebKit [117] and Blink [15] usually expose a raw pointer

instead of using weak pointers (e.g., std::weak_ptr in C++11) to avoid extra performance

overheads and be compatible with legacy code [79], and these exposed raw pointers have

been major use-after-free vulnerability sources for those engines. Note that automatically

wrapping raw pointers with smart pointers is another challenging static analysis problem, as

this requires understanding precise raw pointer semantics to be properly implemented.
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1 class Div: Element;
2 class Body: Element;
3 class Document {
4 Element* child;
5 };
6

7 // (a) memory allocations
8 Document *doc = new Document();
9 Body *body = new Body();

10 Div *div = new Div();
11

12 // (b) using memory: propagating pointers
13 doc->child = body;
14 body->child = div;
15

16 // (c) memory free: doc->child is now dangled
17 delete body;
18

19 // (d) use-after-free: dereference the dangled pointer
20 if (doc->child)
21 doc->child->getAlign();

(i) Vulnerable code

Document

child

Body

invalid

Div

doc body div

child child

Document

child

Body Div

doc body div

child child

(a-b) objects are allocated and linked

(c-d) body is freed (so dangled), and doc reads the invliad memory

freed

(ii) Objects and their relations in the course of running (i)

Figure 1: A running example of a use-after-free vulnerability. Document (doc), Body (body), and
Div (div) are allocated and referencing each other. After body is freed by delete, body becomes a
dangling pointer, pointing to an invalid memory region. Attempting to access body via child will
lead to unsafe runtime behaviors.
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LLVM
(compiler)

dom = allocObj(0x100)

doc.div = dom

Secured binary

trace(&dom → dom)

trace(&doc.div → dom)

dom = malloc(0x100)

doc.div = dom

Source code

Compile Link

DangNull
runtime
(§ 4.3)

DangNull
pass

(§ Algorithm 1)

Static Instrumentation

Figure 2: Overview of DANGNULL’s design. DANGNULL consists of two main components, a
static instrumentation (§2.3.2) and a runtime library (§2.3.3). At the static instrumentation stage,
DANGNULL identifies propagation (their dependencies) of object pointers and inserts a call to
the tracing routine to keep track of point-to relations between pointers and memory objects. At
runtime, DANGNULL interposes all memory allocations to maintain the data structure for live objects
(§2.3.3.1), and all memory frees to nullify all the pointers pointing to the object that is about to be
freed (§2.3.3.2).

1 for function in Program:
2 # All store instructions are
3 # in the LLVM IR form of ’lhs := rhs’.
4 for storeInstr in function.allStoreInstructions:
5 lhs = storeInstr.lhs
6 rhs = storeInstr.rhs
7

8 # Only insterested in a pointer on the heap.
9 if mustStackVar(lhs):

10 continue
11 if not isPointerType(rhs):
12 continue
13

14 new = createCallInstr(trace, lhs, rhs)
15 storeInstr.appendInstr(new)

Figure 3: The algorithm for static instrumentation. For every store instruction where the destination
may stay on the heap, DANGNULL inserts trace() to keep track of the relation between the pointer
and the object it points to.

shadowObjTree

... ...

in out in out in out

doc body div

body→childdoc→child

Figure 4: The shadow object tree and three shadow objects (doc, body, and div) corresponding to
Figure 1. To simplify the representation, only in- and out- bound pointers of the body shadow object
are shown. body keeps the in-bound pointer for doc→child, which points to the shadow object of
doc, and the out-bound pointer for body->child, which points to the shadow object of div.
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1 // (a) memory allocations
2 + Document *doc = allocObj(Document);
3 + Body *body = allocObj(Body);
4 + Div *div = allocObj(Div);
5

6 // (b) using memory: propagating pointers
7 doc->child = body;
8 + trace(&doc->child, body);
9

10 body->child = div;
11 + trace(&body->child, div);
12

13 // (c) memory free: unsafe dangling pointer, doc->child,
14 // is automatically nullified
15 + freeObj(body);
16

17 // (d) use-after-free is prevented, avoid dereferencing it
18 if (doc->child)
19 doc->child->getAlign();

Figure 5: Instrumented running example of Figure 1 (actual instrumentation proceeds at the LLVM
Bitcode level). Memory allocations (new) and deallocations (free) are replaced with allocObj()
and freeObj(), and trace() is placed on every memory assignment, according to the static instru-
mentation algorithm (Figure 3).
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1 def allocObj(size):
2 ptr = real_alloc(size)
3 shadowObj = createShadowObj(ptr, size)
4 shadowObjTree.insert(shadowObj)
5 return ptr
6

7 # NOTE. lhs <- rhs
8 def trace(lhs, rhs):
9 lhsShadowObj = shadowObjTree.find(lhs)

10 rhsShadowObj = shadowObjTree.find(rhs)
11

12 # Check if lhs and rhs are eligible targets.
13 if lhsShadowObj and rhsShadowObj:
14 removeOldShadowPtr(lhs, rhs)
15 ptr = createShadowPtr(lhs, rhs)
16 lhsShadowObj.insertOutboundPtr(ptr)
17 rhsShadowObj.insertInboundPtr(ptr)
18 return
19

20 def freeObj(ptr):
21 shadowObj = shadowObjTree.find(ptr)
22

23 for ptr in shadowObj.getInboundPtrs():
24 srcShadowObj = shadowObjTree.find(ptr)
25 srcShadowObj.removeOutboundPtr(ptr)
26 if shadowObj.base <= ptr < shadowObj.end:
27 *ptr = NULLIFY_VALUE
28

29 for ptr in shadowObj.getOutboundPtrs():
30 dstShadowObj = shadowObjTree.find(ptr)
31 dstShadowObj.removeInboundPtr(ptr)
32

33 shadowObjTree.remove(shadowObj)
34

35 return real_free(ptr)

Figure 6: The Runtime library algorithm. All error handling and synchronization code is omitted
for clarity. DANGNULL has a global data structure (thread-safe), shadowObjTree, to maintain
object relations with shadow objects. allocObj() and freeObj() replaced the malloc() and free()
(and their equivalence, new and delete in C++), and trace() will be inserted on every memory
assignments as a result of the static instrumentation (§2.3.2).
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1 class TemplateContentDocumentFragment: public Node {
2 const Element* m_host;
3 // nullify its m_host
4 + void clearHost() { m_host = NULL;}
5 };
6

7 class Element: public Node;
8

9 class HTMLTemplateElement: public Element {
10 mutable RefPtr<Node> m_content;
11 ~HTMLTemplateElement() {
12 // nullify if m_content is alive
13 + if (m_content)
14 + m_content->clearHost();
15 }
16 };
17

18 class Node {
19 void containsIncludingHostElements(Node *node) {
20 TemplateContentDocumentFragment *t = \
21 (TemplateContentDocumentFragment*)node;
22

23 // null-pointer check
24 if (t->m_host)
25 // dereference dangling pointer
26 ((Node*)(t->m_host))->getFlags();
27 }
28 };

(i) Simplified code snippet. Lines marked + are the vulnerability patch.

TemplateContentDocumentFragment

m_host

HTMLTemplateElement

m_content

dangled

(ii) Objects and their relationships while running (i)

Figure 7: The vulnerable code and its object relationships for Bug ID 286975.
TemplateContentDocumentFragment and HTMLTemplateElement have mutual references via m_host
and m_content. In the vulnerable code, even after the HTMLTemplateElement object is freed, the
TemplateContentDocumentFragment object still holds a reference to the object in m_host, result-
ing in a use-after-free vulnerability when containsIncludingHostElements() is invoked. With
DANGNULL, use-after-free is mitigated, and Chromium continues to run correctly.
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Figure 8: Runtime speed overheads when running SPEC CPU2006. y-axis shows slowdowns (%) of
DANGNULL.

1 enum child_status {IN_USE=0, DELETED=1};
2 hash_map <Element*, child_status, ptrHash> allChilds;
3

4 Document *doc = new Document();
5 Element *elem = new Element();
6

7 // hold child reference
8 doc->child = elem;
9

10 // mark it as in-use in the hash_map
11 allChilds[elem] = IN_USE;
12

13 // delete child, nullified accordingly
14 delete doc->child;
15

16 // doc->child is nullified,
17 // but Chromium relies on the stale pointer
18 allChilds[doc->child] = DELETED;
19

20 // makes sure all childs are deleted
21 for (it = allChilds.begin(); it != allChilds.end(); ++ it)
22 if (it->second == IN_USE)
23 delete it->first;

Figure 9: A simplified false positive example of DANGNULL in the Chromium browser. This
sporadically occurred when the tab is manually created inside the browser. If applications rely on the
stale pointer (using the freed pointer as a concrete value, as doc→child in line 18), DANGNULL can
cause a false positive. We fixed this issue for DANGNULL by switching the order of deletion and
marking operations (switching line 14 and line 18).
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1 function onOpened() {
2 buf = ms.addSourceBuffer(...);
3 // disconnect the target obj
4 vid.parentNode.removeChild(vid);
5 vid = null;
6 // free the target obj
7 gc();
8

9 + var drainBuffer = new Uint32Array(1024*1024*512);
10 + drainBuffer = null;
11 + // drain the quarantine zone
12 + gc();
13

14 + for (var i = 0; i < 500; i ++) {
15 + // allocate/fill up the landing zone
16 + var landBuffer = new Uint32Array(44);
17 + for (var j = 0; j < 44; j ++)
18 + landBuffer[j] = 0x1234;
19 + }
20

21 // trigger use-after-free
22 buf.timestampOffset = 100000;
23 }
24

25 ms = new WebKitMediaSource();
26 ms.addEventListener(’webkitsourceopen’, onOpened);
27

28 // NOTE.
29 // <video id="vid"></video>
30 vid = document.getElementById(’vid’);
31 vid.src = window.URL.createObjectURL(ms);

Figure 10: An example of exploits (Bug ID 162835) bypassing AddressSanitizer [101]. Lines with
+ marks show the bypassing routine, which keeps allocating the same sized memory to drain the
quarantine zone of AddressSanitizer. Once the quarantine zone is drained, AddressSanitizer returns
the previously freed memory block (i.e., an object is allocated in the previously freed memory region),
which means it cannot identify memory semantic mismatches introduced by unsafe dangling pointers.
Thus, AddressSanitizer cannot detect use-after-free exploits in this case, and this technique can be
generalized to other use-after-free exploits with a different allocation size. However, DANGNULL

detected this sophisticated exploit.
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CHAPTER III

CAVER: VERIFYING TYPE CASTINGS TO DETECT

BAD-CASTING

3.1 Eliminating Bad-Casting Vulnerability

The programming paradigm popularly known as object-oriented programming (OOP) is

widely used for developing large and complex applications because it encapsulates the

implementation details of data structures and algorithms into objects; this in turn facilitates

cleaner software design, better code reuse, and easier software maintenance. Although

there are many programming languages that support OOP, C++ has been the most popular,

in particular when runtime performance is a key objective. For example, all major web

browsers—Internet Explorer, Chrome, Firefox, and Safari are implemented in C++.

An important OOP feature is type casting that converts one object type to another. Type

conversions play an important role in polymorphism. It allows a program to treat objects of

one type as another so that the code can utilize certain general or specific features within the

class hierarchy. Unlike other OOP languages—such as Java—that always verify the safety

of a type conversion using runtime type information (RTTI), C++ offers two kinds of type

conversions: static_cast, which verifies the correctness of conversion at compile time, and

dynamic_cast, which verifies type safety at runtime using RTTI. static_cast is much more

efficient because runtime type checking by dynamic_cast is an expensive operation (e.g.,

90 times slower than static_cast on average). For this reason, many performance critical

applications like web browsers, Chrome and Firefox in particular, prohibit dynamic_cast in

their code and libraries, and strictly use static_cast.

However, the performance benefit of static_cast comes with a security risk because

information at compile time is by no means sufficient to fully verify the safety of type
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conversions. In particular, upcasting (casting a derived class to its parent class) is always

safe, but downcasting (casting a parent class to one of its derived classes) may not be safe

because the derived class may not be a subobject of a truly allocated object in downcasting.

Unsafe downcasting is better known as bad-casting or type-confusion.

Bad-casting has critical security implications. First, bad-casting is undefined behavior

as specified in the C++ standard (5.2.9/11 [66]). Thus, compilers cannot guarantee the cor-

rectness of a program execution after bad-casting occurs (more detailed security implication

analysis on undefined behavior is provided in §3.2). In addition to undefined behavior,

bad-casting is similar to memory corruption vulnerabilities like stack/heap overflows and

use-after-free. A bad-casted pointer violates a programmer’s intended pointer semantics, and

allows an attacker to corrupt memory beyond the true boundary of an object. For example,

a bad-casting vulnerability in Chrome (CVE-2013-0912) was used to win the Pwn2Own

2013 competition by leaking and corrupting a security sensitive memory region [85]. More

alarmingly, bad-casting is not only security-critical but is also common in applications.

For example, 91 bad-casting vulnerabilities have been reported over the last four years

in Chrome. Moreover, over 90% of these bad-casting bugs were rated as security-high,

meaning that the bug can be directly exploited or indirectly used to mount arbitrary code

execution attacks.

To avoid bad-casting issues, several C++ projects employ custom RTTI, which embeds

code to manually keep type information at runtime and verify the type conversion safety

of static_cast. However, only a few C++ programs are designed with custom RTTI, and

supporting custom RTTI in existing programs requires heavy manual code modifications.

Another approach, as recently implemented by Google in the Undefined Behavior

Sanitizer (UBSAN) [113], optimizes the performance of dynamic_cast and replaces all

static_cast with dynamic_cast. However, this approach is limited because dynamic_cast

only supports polymorphic classes, whereas static_cast is used for both polymorphic and

non-polymorphic classes. Thus, this simple replacement approach changes the program
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semantics and results in runtime crashes when dynamic_cast is applied to non-polymorphic

classes. It is difficult to identify whether a static_cast operation will be used for poly-

morphic or non-polymorphic classes without runtime information. For this reason, tools

following this direction have to rely on manual blacklists (i.e., opt-out and do not check all

non-polymorphic classes) to avoid runtime crashes. For example, UBSAN has to blacklist

250 classes, ten functions, and eight whole source files used for the Chromium browser [30],

which is manually created by repeated trial-and-error processes. Considering the amount

of code in popular C++ projects, creating such a blacklist would require massive manual

engineering efforts.

This chapter presents CAVER, a runtime bad-casting detection tool that can be seamlessly

integrated with large-scale applications such as commodity browsers. It takes a program’s

source code as input and automatically instruments the program to verify type castings at

runtime. We designed a new metadata, the Type Hierarchy Table (THTable) to efficiently

keep track of rich type information. Unlike RTTI, THTable uses a disjoint metadata scheme

(i.e., the reference to an object’s THTable is stored outside the object). This allows CAVER

to overcome all limitations of previous bad-casting detection techniques: it not only supports

both polymorphic classes and non-polymorphic classes, but also preserves the C++ ABI and

works seamlessly with legacy code. More specifically, CAVER achieves three goals:

• Easy-to-deploy. CAVER can be easily adopted to existing C++ programs without any

manual effort. Unlike current state-of-the-art tools like UBSAN, it does not rely on

manual blacklists, which are required to avoid program corruption. To demonstrate,

we have integrated CAVER into two popular web browsers, Chromium and Firefox,

by only modifying its build configurations.

• Coverage. CAVER can protect all type castings of both polymorphic and non-

polymorphic classes. Compared to UBSAN, CAVER covers 241% and 199% more

classes and their castings, respectively.
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• Performance. CAVER also employs optimization techniques to further reduce run-

time overheads (e.g., type-based casting analysis). Our evaluation shows that CAVER

imposes up to 7.6% and 64.6% overheads for performance-intensive benchmarks on

the Chromium and Firefox browsers, respectively. On the contrary, UBSAN is 13.8%

slower than CAVER on the Chromium browser, and it cannot run the Firefox browser

due to a runtime crash.

To summarize, this chapter makes the following contributions:

• Security analysis of bad-casting. We analyzed the bad-casting problem and its

security implications in detail, thus providing security researchers and practitioners a

better understanding of this emerging attack vector.

• Bad-casting detection tool. We designed and implemented CAVER, a general, auto-

mated, and easy-to-deploy tool that can be applied to any C++ application to detect

(and mitigate) bad-casting vulnerabilities. We have shared CAVER with the Firefox

team 1 and made our source code publicly available.

• New vulnerabilities. While evaluating CAVER, we discovered eleven previously

unknown bad-casting vulnerabilities in two mature and widely-used open source

projects, GNU libstdc++ and Firefox. All vulnerabilities have been reported and

fixed in these projects’ latest releases. We expect that integration with unit tests and

fuzzing infrastructure will allow CAVER to discover more bad-casting vulnerabilities

in the future.

3.2 Bad-casting Demystified

Type castings in C++. Type casting in C++ allows an object of one type to be converted to

another so that the program can use different features of the class hierarchy. C++ provides

four explicit casting operations: static, dynamic, const, and reinterpret. In this thesis,

1The Firefox team at Mozilla asked us to share CAVER for regression testing on bad-casting vulnerabilities.
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we focus on the first two types — static_cast and dynamic_cast (5.2.9 and 5.2.7 in

ISO/IEC N3690 [66]) — because they can perform downcasting and result in bad-casting.

static_cast and dynamic_cast have a variety of different usages and subtle issues, but for

the purpose of this thesis, the following two distinctive properties are the most important: (1)

time of verification: as the name of each casting operation implies, the correctness of a type

conversion is checked (statically) at compile time for static_cast, and (dynamically) at

runtime for dynamic_cast; (2) runtime support (RTTI): to verify type checking at runtime,

dynamic_cast requires runtime support, called RTTI, that provides type information of the

polymorphic objects.

Figure 11 illustrates typical usage of both casting operations and their correctness and

safety: (1) casting from a derived class (pCanvas of SVGElement) to a parent class (pEle

of Element) is valid upcasting; (2) casting from the parent class (pEle of Element) to the

original allocated class (pCanvasAgain of SVGElement) is valid downcasting; (3) on the other

hand, the casting from an object allocated as a base class (pDom of Element) to a derived class

(p of SVGElement) is invalid downcasting (i.e., a bad-casting); (4) memory access via the

invalid pointer (p->m_className) can cause memory corruption, and more critically, com-

pilers cannot guarantee any correctness of program execution after this incorrect conversion,

resulting in undefined behavior; and (5) by using dynamic_cast, programmers can check

the correctness of type casting at runtime, that is, since an object allocated as a base class

(pDom of Element) cannot be converted to its derived class (SVGElement), dynamic_cast

will return a NULL pointer and the error-checking code (line 18) can catch this bug, thus

avoiding memory corruption.

Type castings in practice. Although dynamic_cast can guarantee the correctness of type

casting, it is an expensive operation because parsing RTTI involves recursive data structure

traversal and linear string comparison. From our preliminary evaluation, dynamic_cast is,

on average, 90 times slower than static_cast on average. For large applications such as the

Chrome browser, such performance overhead is not acceptable: simply launching Chrome
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SVGElement

Element (3) invalid
downcast

pDom (allocated)1 class SVGElement: public Element { ... };
2

3 Element *pDom = new Element();
4 SVGElement *pCanvas = new SVGElement();
5

6 // (1) valid upcast from pCanvas to pEle
7 Element *pEle = static_cast<Element*>(pCanvas);
8 // (2) valid downcast from pEle to pCanvasAgain (== pCanvas)
9 SVGElement *pCanvasAgain = static_cast<SVGElement*>(pEle);

10

11 // (3) invalid downcast (-> undefined behavior)
12 SVGElement *p = static_cast<SVGElement*>(pDom);
13 // (4) leads to memory corruption
14 p->m_className = "my-canvas";
15

16 // (5) invalid downcast with dynamic_cast, but no corruption
17 SVGElement *p = dynamic_cast<SVGElement*>(pDom);
18 if (p) {
19 p->m_className = "my-canvas";
20 }

Figure 11: Code example using static_cast to convert types of object pointers (e.g., Element↔
SVGElement classes). (1) is valid upcast and (2) is valid downcast. (3) is an invalid downcast. (4)
Memory access via the invalid pointer result in memory corruption; more critically, compilers cannot
guarantee the correctness of program execution after this incorrect conversion, resulting in undefined
behavior. (5) Using dynamic_cast, on the other hand, the program can check the correctness of
downcast by checking the returned pointer.

incurs over 150,000 casts. Therefore, despite its security benefit, the use of dynamic_cast

is strictly forbidden in Chrome development.

A typical workaround is to implement custom RTTI support. For example, most classes

in WebKit-based browsers have an isType() method (e.g., isSVGElement()), which indi-

cates the true allocated type of an object. Having this support, programmers can decouple

a dynamic_cast into an explicit type check, followed by static_cast. For example, to

prevent the bad-casting (line 12) in Figure 11, the program could invoke the isSVGElement()

method to check the validity of casting. However, this sort of type tracking and verification

has to be manually implemented, and thus supporting custom RTTI in existing complex

programs is a challenging problem. Moreover, due to the error-prone nature of manual mod-

ifications (e.g., incorrectly marking the object identity flag, forgetting to check the identity

using isType() function, etc.), bad-casting bugs still occur despite custom RTTI [111].

Security implications of bad-casting. The C++ standard (5.2.9/11 [66]) clearly specifies
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that the behavior of an application becomes undefined after an incorrect static_cast. Be-

cause undefined behavior is an enigmatic issue, understanding the security implications and

exploitability of bad-casting requires deep knowledge of common compiler implementations.

Generally, bad-casting vulnerabilities can be exploited via several means. An incorrectly

casted pointer will either have wider code-wise visibility (e.g., allowing out-of-bound

memory accesses), or become incorrectly adjusted (e.g., corrupting memory semantics

because of misalignment). For example, when bad-casting occurs in proximity to a virtual

function table pointer (vptr), an attacker can directly control input to the member variable

(e.g., by employing abusive memory allocation techniques such as heap-spray techniques [39,

105]), overwrite the vptr and hijack the control flow. Similarly, an attacker can also exploit

bad-casting vulnerabilities to launch non-control-data attacks [25].

The exploitability of a bad-casting bug depends on whether it allows attackers to perform

out-of-bound memory access or manipulate memory semantics. This in turn relies on

the details of object data layout as specified by the C++ application binary interface (ABI).

Because the C++ABI varies depending on the platform (e.g., Itanium C++ABI [33] for Linux-

based platforms and Microsoft C++ ABI [32] for Windows platforms), security implications

for the same bad-casting bug can be different. For example, bad-casting may not crash,

corrupt, or alter the behavior of an application built against the Itanium C++ ABI because

the base pointer of both the base class and derived class always point to the same location

of the object under this ABI. However, the same bad-casting bug can have severe security

implications for other ABI implementations that locate a base pointer of a derived class

differently from that of a base class, such as HP and legacy g++ C++ ABI [34]. In short,

given the number of different compilers and the various architectures supported today, we

want to highlight that bad-casting should be considered as a serious security issue. This

argument is also validated from recent correspondence with the Firefox security team: after

we reported two new bad-casting vulnerabilities in Firefox [10], they also pointed out the

C++ ABI compatibility issue and rated the vulnerability as security-high.
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Running example: CVE-2013-0912. Our illustrative Figure 11 is extracted from a real-

world bad-casting vulnerability—CVE-2013-0912, which was used to exploit the Chrome

web browser in the Pwn2Own 2013 competition. However, the complete vulnerability is

more complicated as it involves a multitude of castings (between siblings and parents).

In HTML5, an SVG image can be embedded directly into an HTML page using the

<svg> tag. This tag is implemented using the SVGElement class, which inherits from the

Element class. At the same time, if a web page happens to contain unknown tags (any tags

other than standard), an object of the HTMLUnknownElement class will be created to represent

this unknown tag. Since both tags are valid HTML elements, objects of these types can be

safely casted to the Element class. Bad-casting occurs when the browser needs to render an

SVG image. Given an Element object, it tries to downcast the object to SVGElement so the

caller function can invoke member functions of the SVGElement class. Unfortunately, since

not all Element objects are initially allocated as SVGElement objects, this static_cast is not

always valid. In the exploit demonstrated in the Pwn2Own 2013 competition [85], attackers

used an object allocated as HTMLUnknownElement. As the size of an SVGElement object (160

bytes) is much larger than an HTMLUnknownElement object (96 bytes), this incorrectly casted

object pointer allowed the attackers to access memory beyond the real boundary of the

allocated HTMLUnknownElement object. They then used this capability to corrupt the vtable

pointer of the object adjacent to the HTMLUnknownElement object, ultimately leading to a

control-flow hijack of the Chrome browser. This example also demonstrates why identifying

bad-casting vulnerabilities is not trivial for real-world applications. As shown in Figure 12,

the HTMLUnknownElement class has more than 56 siblings and the Element class has more

than 10 parent classes in WebKit. Furthermore, allocation and casting locations are far apart

within the source code. Such complicated class hierarchies and disconnections between

allocation and casting sites make it difficult for developers and static analysis techniques to

reason about the true allocation types (i.e., alias analysis).

50



HTMLUnknwonElement
(size: 96 bytes)

...... (56 siblings)

HTMLElement
(size: 96 bytes)

SVGElement
(size: 160 bytes)

Element
(size: 96 bytes)

ContainerNode

...

static_cast
static_cast

(> 10 parent classes)

...

(allocated)

Figure 12: Inheritance hierarchy of classes involved in the CVE-2013-0912 vulnerability. MWR
Labs exploited this vulnerability to hijack the Chrome browser in the Pwn2Own 2013 competi-
tion [85]. The object is allocated as HTMLUnknownElement and eventually converted (static_cast)
to SVGElement. After this incorrect type casting, accessing member variables via this object pointer
will cause memory corruption.

3.3 CAVER Overview

In this thesis, we focus on the correctness and effectiveness of CAVER against bad-casting

bugs, and our main application scenario is as a back-end testing tool for detecting bad-

casting bugs. CAVER’s workflow (Figure 13) is as simple as compiling a program with

one extra compile and link flag (i.e., -fcaver for both). The produced binary becomes

capable of verifying the correctness of every type conversion at runtime. When CAVER

detects an incorrect type cast, it provides detailed information of the bad-cast: the source

class, the destination class, the truly allocated class, and call stacks at the time the bad-cast

is captured. Figure 14 shows a snippet of the actual report of CVE-2013-0912. Our bug

report experience showed that the report generated by CAVER helped upstream maintainers

easily understand, confirm, and fix eleven newly discovered vulnerabilities without further

examination.

51



Secured
 binary

Source 
code

Compile

CaVer
Runtime

CaVer 
Optimization

pass

Clang LLVM

CaVer 
Static

Instrumentation

Link

+

Figure 13: Overview of CAVER’s design and workflow. Given the source code of a program, CAVER

instruments possible castings at compile time, and injects CAVER’s runtime to verify castings when
they are performed.

== CaVer : (Stopped) A bad-casting detected
@SVGViewSpec.cpp:87:12
Casting an object of ’blink::HTMLUnknownElement’
from ’blink::Element
to ’blink::SVGElement’

Pointer 0x60c000008280
Alloc base 0x60c000008280
Offset 0x000000000000
THTable 0x7f7963aa20d0

#1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56
...

Figure 14: A report that CAVER generated on CVE-2013-0912.

3.4 Design

In this section, we introduce the design of CAVER. We first describe how the THTable

is designed to generally represent the type information for both polymorphic and non-

polymorphic classes (§3.4.1), and then explain how CAVER associates the THTable with

runtime objects (§3.4.2). Next, we describe how CAVER verifies the correctness of type

castings (§3.4.3). At the end of this section, we present optimization techniques used to

reduce the runtime overhead of CAVER (§3.4.4).

3.4.1 Type Hierarchy Table

To keep track of the type information required for validating type casting, CAVER incor-

porates a new metadata structure, called the Type Hierarchy Table (THTable). Given a

pointer to an object allocated as type T, the THTable contains the set of all possible types

to which T can be casted. In C++, these possible types are a product of two kinds of class
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relationships: is-a and has-a. The is-a relationship between two objects is implemented as

class inheritance, the has-a relationship is implemented as class composition (i.e., having

a member variable in a class). Thus, for each class in a C++ program, CAVER creates a

corresponding THTable that includes information about both relationships.

To represent class inheritance, the THTable employs two unique design decisions. First,

information on inherited classes (i.e., base classes) is unrolled and serialized. This allows

CAVER to efficiently scan through a set of base classes at runtime while standard RTTI

requires recursive traversal. Second, unlike RTTI, which stores a mangled class name, the

THTable stores the hash value of a class name. This allows CAVER to avoid expensive

string equality comparisons. Note, since all class names are available to CAVER at compile

time, all possible hash collisions can be detected and resolved to avoid false negatives

during runtime. Moreover, because casting is only allowed between classes within the same

inheritance chain, we only need to guarantee the uniqueness of hash values within a set of

those classes, as opposed to guaranteeing global uniqueness.

The THTable also includes information of whether a base class is a phantom class, which

cannot be represented based on RTTI and causes many false alarms in RTTI-based type

verification solutions [30]. We say a class P is a phantom class of a class Q if two conditions

are met: (1) Q is directly or indirectly derived from P; and (2) compared to P, Q does not

have additional member variables or different virtual functions. In other words, they have

the same data layout. Strictly speaking, allocating an object as P and downcasting it to Q is

considered bad-casting as Q is not a base class of P. However, such bad-castings are harmless

from a security standpoint, as the pointer semantic after downcasting is the same. More

importantly, phantom classes are often used in practice to implement object relationships

with empty inheritances. For these reasons, CAVER deliberately allows bad-castings caused

by phantom classes. This is done by reserving a one bit space in the THTable for each base

class, and marking if the base class is a phantom class. We will describe more details on

how the phantom class information is actually leveraged in §3.4.3.
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In addition, the THTable contains information on composited class(es) to generally

represent the type information for both polymorphic and non-polymorphic classes and

overcome the limitation of RTTI-based type verification solutions. RTTI-based solutions

locate a RTTI reference via the virtual function table (VTable). However, since only

polymorphic classes have VTable, these solutions can cause runtime crashes when they try

to locate the VTable for non-polymorphic classes. Unlike RTTI, CAVER binds THTable

references to the allocated object with external metadata (refer §3.4.2 for details). Therefore,

CAVER not only supports non-polymorphic objects, but it also does not break the C++ ABI.

However, composited class(es) now share the same THTable with their container class.

Since a composited class can also have its own inheritances and compositions, we do not

unroll information about composited class(es); instead, CAVER provides a reference to the

composited class’s THTable. The THTable also stores the layout information (offset and

size) of each composited class to determine whether the given pointer points to a certain

composited class.

Other than inheritance and composition information as described above, the THTable

contains basic information on the corresponding type itself: a type size to represent object

ranges; and a type name to generate user-friendly bad-casting reports.

3.4.2 Object Type Binding

To verify the correctness of type casting, CAVER needs to know the actual allocated type

of the object to be casted. In CAVER, we encoded this type information in the THTable. In

this subsection, we describe how CAVER binds the THTable to each allocated object. To

overcome the limitations of RTTI-based solutions, CAVER uses a disjoint metadata scheme

(i.e., the reference to an object’s THTable is stored outside the object). With this unique

metadata management scheme, CAVER not only supports both polymorphic classes and

non-polymorphic classes, but also preserves the C++ ABI and works seamlessly with legacy

code. Overall, type binding is done in two steps. First, CAVER instruments each allocation
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site of an application to pass the allocation metadata to its runtime library. Second, CAVER’s

runtime library maintains the allocation metadata and supports efficient lookup operations.

Instrumentation The goal of the instrumentation is to pass all information of an allocated

object to the runtime library. To bind a THTable to an object, the runtime library needs

two pieces of information: a reference to the THTable and the base address of the allocated

object.

In C++, objects can be allocated in three ways: in heap, on stack, or as global objects. In

all three cases, the type information of the allocated object can be determined statically at

compile time. This is possible because C++ requires programmers to specify the object’s type

at its allocation site, so the corresponding constructor can be invoked to initialize memory.

For global and stack objects, types are specified before variable names; and for heap objects,

types are specified after the new operator. Therefore, CAVER can obtain type information by

statically inspecting the allocation site at compile time. Specifically, CAVER generates the

THTable (or reuses the corresponding THTable if already generated) and passes the reference

of the THTable to the runtime library. An example on how CAVER instruments a program is

shown in Figure 15.

For heap objects, CAVER inserts one extra function invocation (trace_heap() in Fig-

ure 15) to the runtime library after each new operator, and passes the information of the

object allocated by new; a reference to the THTable and the base address of an object. A

special case for the new operator is an array allocation, where a set of objects of the same

type are allocated. To handle this case, we add an extra parameter to inform the runtime

library on how many objects are allocated together at the base address.

Unlike heap objects, stack objects are implicitly allocated and freed. To soundly trace

them, CAVER inserts two function calls for each stack object at the function prologue

and epilogue (trace_stack_begin() and trace_stack_end() in Figure 15), and passes

the same information of the object as is done for heap objects. A particular challenge is

that, besides function returns, a stack unwinding can also happen due to exceptions and
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1 // Heap objects (dynamically allocated)
2 void func_heap_ex() {
3 C *p_heap_var = new C;
4 C *p_heap_array = new C[num_heap_array];
5 + trace_heap(&THTable(C), p_heap_var, 1);
6 + trace_heap(&THTable(C), p_heap_array, num_heap_array);
7 ...
8 }
9

10 // Stack objects
11 void func_stack_ex() {
12 C stack_var;
13 + trace_stack_begin(&THTable(C), &stack_var, 1);
14 ...
15 + trace_stack_end(&stack_var);
16 }
17

18 // Global objects
19 C global_var;
20

21 // @.ctors: (invoked at the program’s initialization)
22 // trace_global_helper_1() and trace_global_helper_2()
23 + void trace_global_helper_1() {
24 + trace_global(&THTable(C), &global_var, 1);
25 + }
26

27 // Verifying the correctness of a static casting
28 void func_verify_ex() {
29 B *afterAddr = static_cast<A>(beforeAddr);
30 + verify_cast(beforeAddr, afterAddr, type_hash(A));
31 }

Figure 15: An example of how CAVER instruments a program. Lines marked with + represent code
introduced by CAVER, and &THTable(T) denotes the reference to the THTable of class T. In this
example, we assume that the THTable of each allocated class has already been generated by CAVER.

setjmp/longjmp. To handle these cases, CAVER leverages existing compiler functionality

(e.g., EHScopeStack::Cleanup in clang) to guarantee that the runtime library is always

invoked once the execution context leaves the given function scope.

To pass information of global objects to the runtime library, we leverage existing

program initialization procedures. In ELF file format files [119], there is a special sec-

tion called .ctors, which holds constructors that must be invoked during an early ini-

tialization of a program. Thus, for each global object, CAVER creates a helper function

(trace_global_helper_1() in Figure 15) that invokes the runtime library with static meta-

data (the reference to the THTable) and dynamic metadata (the base address and the number

of array elements). Then, CAVER adds the pointer to this helper function to the .ctors

section so that the metadata can be conveyed to the runtime library2.

2Although the design detail involving .ctors section is platform dependent, the idea of registering the
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Runtime library The runtime library of CAVER maintains all the metadata (THTable and

base address of an object) passed from tracing functions during the course of an application

execution. Overall, we consider two primary requirements when organizing the metadata.

First, the data structure must support range queries ( i.e., given a pointer pointing to an

address within an object ([base, base+size)) CAVER should be able to find the corresponding

THTable of the object). This is necessary because the object pointer does not always point to

the allocation base. For example, the pointer to be casted can point to a composited object.

In case of multi-inheritance, the pointer can also point to one of the parent classes. Second,

the data structure must support efficient store and retrieve operations. CAVER needs to store

the metadata for every allocation and retrieve the metadata for each casting verification.

As the number of object allocations and type conversions can be huge (see §3.6), these

operations can easily become the performance bottleneck.

We tackle these challenges using a hybrid solution We use red-black trees to trace global

and stack objects and an alignment-based direct mapping scheme to trace heap objects3.

We chose red-black trees for stack and global objects for two reasons. First, tree-like data

structures are well known for supporting efficient range queries. Unlike hash-table-based

data structures, tree-based data structures arrange nodes according to the order of their

keys, whose values can be numerical ranges. Since nodes are already sorted, a balanced

tree structure can guarantee O(logN) complexity for range queries while hash-table-based

data structure requires O(N) complexity. Second, we specifically chose red-black trees

because there are significantly more search operations than update operations (i.e., more

type conversion operations than allocations, see §3.6), thus red-black trees can excel in

performance due to self-balancing.

In CAVER, each node of a red-black tree holds the following metadata: the base address

helper function into the initialization function list can be generalized for other platforms as others also support
.ctors-like features

3The alignment-based direct mapping scheme can be applied for global and stack objects as well, but this
is not implemented in the current version. More details can be found in §3.7.
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and the allocation size as the key of the node, and the THTable reference as the value of the

node.

For global object allocations, metadata is inserted into the global red-black tree when

the object is allocated at runtime, with the key as the base address and the allocation size4,

and the value as the address of the THTable. We maintain a per-process global red-black

tree without locking mechanisms because there are no data races on the global red-black

tree in CAVER. All updates on the global red-black tree occur during early process start-up

(i.e., before executing any user-written code) and update orders are well serialized as listed

in the .ctors section.

For stack object allocations, metadata is inserted to the stack red-black tree similar to the

global object case. Unlike a global object, we maintain a per-thread red-black tree for stack

objects to avoid data races in multi-threaded applications. Because a stack region (and all

operations onto this region) are exclusive to the corresponding thread’s execution context,

this per-thread data structure is sufficient to avoid data races without locks.

For heap objects, we found that red-black trees are not a good design choice, especially

for multi-threaded programs. Different threads in the target programs can update the tree

simultaneously, and using locks to avoid data races resulted in high performance overhead,

as data contention occured too frequently. Per-thread red-black trees used for stack objects

are not appropriate either, because heap objects can be shared by multiple threads. Therefore,

we chose to use a custom memory allocator that can support alignment-based direct mapping

schemes [4, 54]. In this scheme, the metadata can be maintained for a particular object,

and can be retrieved with O(1) complexity on the pointer pointing to anywhere within the

object’s range.

4The allocation size is computed by multiplying the type size represented in THTable and the number of
array elements passed during runtime.
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3.4.3 Casting Safety Verification

This subsection describes how CAVER uses traced information to verify the safety of type

casting. We first describe how the instrumentation is done at compile time, and then describe

how the runtime library eventually verifies castings during runtime.

Instrumentation CAVER instruments static_cast to invoke a runtime library function,

verify_cast(), to verify the casting. Here, CAVER analyzes a type hierarchy involving

source and destination types in static_cast and only instruments for downcast cases.

When invoking verify_cast(), CAVER passes the following three pieces of information:

beforeAddr, the pointer address before the casting; afterAddr, the pointer address after

the casting; and TargetTypeHash, the hash value of the destination class to be casted to

(denoted as type_hash(A) in Figure 15).

Runtime library The casting verification is done in two steps: (1) locating the correspond-

ing THTable associated with the object pointed to by beforeAddr; and (2) verifying the

casting operation by checking whether TargetTypeHash is a valid type where afterAddr

points.

To locate the corresponding THTable, we first check the data storage membership

because we do not know how the object beforeAddr points to is allocated. Checks are

ordered by their expense, and the order is critical for good performance. First, a stack object

membership is checked by determinig whether the beforeAddr is in the range between the

stack top and bottom; then, a heap object membership is checked by whether the beforeAddr

is in the range of pre-mapped address spaces reserved for the custom allocator; finally a

global object membership is checked with a bit vector array for each loaded binary module.

After identifying the data storage membership, CAVER retrieves the metadata containing

the allocation base and the reference to the THTable. For stack and global objects, the

corresponding red-black tree is searched. For heap objects, the metadata is retrieved from

the custom heap.

Next, CAVER verifies the casting operation. Because the THTable includes all possible
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types that the given object can be casted to (i.e., all types from both inheritances and

compositions), CAVER exhaustively matches whether TargetTypeHash is a valid type where

afterAddr points. To be more precise, the afterAddr value is adjusted for each matching

type. Moreover, to avoid false positives due to a phantom class, CAVER tries to match all

phantom classes of the class to be casted to.

3.4.4 Optimization

Since performance overhead is an important factor for adoption, CAVER applies several

optimization techniques. These techniques are applied in two stages, as shown in Figure 13.

First, offline optimizations are applied to remove redundant instrumentations. After that,

additional runtime optimizations are applied to further reduce the performance overhead.

Safe-allocations Clearly, not all allocated objects will be involved in type casting. This

implicates that CAVER does not need to trace type information for objects that would never

be casted. In general, soundly and accurately determining whether objects allocated at a

given allocation site will be casted is a challenging problem because it requires sophisticated

static points-to analysis. Instead, CAVER takes a simple, yet effective, optimization approach

inspired from C type safety checks in CCured [89]. The key idea is that the following two

properties always hold for downcasting operations: (1) bad-casting may happen only if

an object is allocated as a child of the source type or the source type itself; and (2) bad-

casting never happens if an object is allocated as the destination type itself or a child of

the destination type. This is because static_cast guarantees that the corresponding object

must be a derived type of the source type. Since CAVER can observe all allocation sites and

downcasting operations during compilation, it can recursively apply the above properties to

identify safe-allocation sites, i.e., the allocated objects will never cause bad-casting.

Caching verification results Because casting verification involves loops (over the number

of compositions and the number of bases) and recursive checks (in a composition case),

it can be a performance bottleneck. A key observation here is that the verification result
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is always the same for the same allocation type and the same target type (i.e., when the

type of object pointed by afterAddr and TargetTypeHash are the same). Thus, in order

to alleviate this potential bottleneck, we maintain a cache for verification results, which is

inspired by UBSAN [113]. First, a verification result is represented as a concatenation of the

address of a corresponding THTable, the offset of the afterAddr within the object, and the

hash value of target type to be casted into (i.e., &THTable || offset || TargetTypeHash). Next,

this concatenated value is checked for existence in the cache before verify_cast() actually

performs verification. If it does, verify_cast() can conclude that this casting is correct.

Otherwise, verify_cast() performs actual verification using the THTable, and updates the

cache only if the casting is verified to be correct.

3.5 Implementation

We implemented CAVER based on the LLVM Compiler project [114] (revision 212782,

version 3.5.0). The static instrumentation module is implemented in Clang’s CodeGen

module and LLVM’s Instrumentation module. The runtime library is implemented us-

ing the compiler-rt module based on LLVM’s Sanitizer code base. In total, CAVER is

implemented in 3,540 lines of C++ code (excluding empty lines and comments).

CAVER is currently implemented for the Linux x86 platform, and there are a few

platform-dependent mechanisms. For example, the type and tracing functions for global

objects are placed in the .ctors section of ELF. As these platform-dependent features can

also be found in other platforms, we believe CAVER can be ported to other platforms as well.

CAVER interposes threading functions to maintain thread contexts and hold a per-thread

red-black tree for stack objects. CAVER also maintains the top and bottom addresses of

stack segments to efficiently check pointer membership on the stack. We also modified the

front-end drivers of Clang so that users of CAVER can easily build and secure their target

applications with one extra compilation flag and linker flag, respectively.
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3.6 Evaluation

We evaluated CAVER with two popular web browsers, Chromium [110] (revision 295873)

and Firefox [115] (revision 213433), and two benchmarks from SPEC CPU2006 [107]5.

Our evaluation aims to answer the following questions:

• How easy is it to deploy CAVER to applications? (§3.6.1)

• What are the new vulnerabilities CAVER found? (§3.6.2)

• How precise is CAVER’s approach in detecting bad-casting vulnerabilities? (§3.6.3)

• How good is CAVER’s protection coverage? (§3.6.4)

• What are the instrumentation overheads that CAVER imposes and how many type

castings are verified by CAVER? (§3.6.5)

• What are the runtime performance overheads that CAVER imposes? (§3.6.6)

Comparison methods We used UBSAN, the state-of-art tool for detecting bad-casting

bugs, as our comparison target of CAVER. Also, We used CAVER-NAIVE, which disabled

the two optimization techniques described in §3.4.4, to show their effectiveness on runtime

performance optimization.

Experimental setup All experiments were run on Ubuntu 13.10 (Linux Kernel 3.11) with a

quad-core 3.40 GHz CPU (Intel Xeon E3-1245), 16 GB RAM, and 1 TB SSD-based storage.

3.6.1 Deployments

As the main design goal for CAVER is automatic deployments, we describe our experience of

applying CAVER to tested programs including SPEC CPU 2006 benchmarks, the Chromium

browser, and the Firefox browser. CAVER was able to successfully build and run these

programs without any program-specific understanding of the code base. In particular, we

added one line to the build configuration file to build SPEC CPU 2006, 21 lines to the .gyp

build configuration to build the Chromium browser, and 10 lines to the .mozconfig build

5 Although CAVER was able to correctly run all C++ benchmarks in SPEC CPU2006, only 483.xalancbmk
and 450.soplex have downcast operations.
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configuration file to build the Firefox browser. Most of these build configuration changes

were related to replacing gcc with clang.

On the contrary, UBSAN crashed while running xalancbmk in SPEC CPU 2006 and

while running the Firefox browser due to checks on non-polymorphic classes. UBSAN also

crashed the Chromium browser without blacklists, but was able to run once we applied

the blacklists provided by the Chromium project [30]. In particular, to run Chromium, the

blacklist has 32 different rules that account for 250 classes, ten functions, and eight whole

source files. Moreover, this blacklist has to be maintained constantly as newly introduced

code causes new crashes in UBSAN [29]. This is a practical obstacle for adopting UBSAN

in other C++ projects—although UBSAN has been open sourced for some time, Chromium

remains the only major project that uses UBSAN, because there is a dedicated team to

maintain its blacklist.

3.6.2 Newly Discovered Bad-casting Vulnerabilities

To evaluate CAVER’s capability of detecting bad-casting bugs, we ran CAVER-hardened

Chromium and Firefox with their regression tests (mostly checking functional correctness).

During this evaluation, CAVER found eleven previously unknown bad-casting vulnerabilities

in GNU libstdc++ while evaluating Chromium and Firefox. Table 10 summarizes these

vulnerabilities including related class information: allocated type, source, and destination

types in each bad-casting. In addition, we further analyzed their security impacts: potential

compatibility problems due to the C++ ABI (see §3.2) or direct memory corruption, along

with security ratings provided by Mozilla for Firefox.

CAVER found two vulnerabilities in the Firefox browser. The Firefox team at Mozilla

confirmed and fixed these, and rated both as security-high, meaning that the vulnerability

can be abused to trigger memory corruption issues. These two bugs were casting the pointer

into a class which is not a base class of the originally allocated type. More alarmingly, there

were type semantic mismatches after the bad-castings—subsequent code could dereference
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Table 10: A list of vulnerabilities newly discovered by CAVER. All security vulnerabilities listed
here are confirmed, and already fixed by the corresponding development teams. Columns under Types
represent classes causing bad-castings: allocation, source and destination classes. Columns under
Security Implication represents the security impacts of each vulnerability: whether the vulnerability
has C++ ABI incompatibility issues (ABI); whether the vulnerability triggers memory corruption
(Mem); and the actual security assessment ratings assigned by the vendor (Rate). †: The GNU
libstdc++members did not provide security ratings; CVE-2014-1594 is assigned to Bug ID 1074280.

Product (Bug ID) Vulnerable Types Security Implication

Function Allocation / Source / Destination ABI Mem Rate

Firefox (1074280 [10]) PaintLayer BasicThebesLayer / Layer / BasicContainerLayer ✓ ✓ High
Firefox (1089438 [11]) EvictContent PRCListStr / PRCList / nsSHistory ✓ ✓ High
libstdc++ (63345 [84]) _M_const_cast EncodedDescriptorDatabase / Base_Ptr / Rb_Tree_node ✓ - †
libstdc++ (63345 [84]) _M_end EnumValueOptions / Rb_tree_node_base / Link_type ✓ - †
libstdc++ (63345 [84]) _M_end const GeneratorContext / Rb_tree_node_base / Link_type_const ✓ - †
libstdc++ (63345 [84]) _M_insert_unique WaitableEventKernel / Base_ptr / List_type ✓ - †
libstdc++ (63345 [84]) operator* BucketRanges / List_node_base / Node ✓ - †
libstdc++ (63345 [84]) begin FileOptions / Link_type / Rb_Tree_node ✓ - †
libstdc++ (63345 [84]) begin const std::map / Link_type / Rb_Tree_node ✓ - †
libstdc++ (63345 [84]) end MessageOptions / Link_type / Rb_Tree_node ✓ - †
libstdc++ (63345 [84]) end const Importer / Link_type / Rb_Tree_node ✓ - †

the incorrectly casted pointer. Thus the C++ ABI and Memory columns are checked for these

two cases.

CAVER also found nine bugs in GNU libstdc++ while running the Chromium browser.

We reported these bugs to the upstream maintainers, and they have been confirmed and

fixed. Most of these bugs were triggered when libstdc++ converted the type of an object

pointing to its composite objects (e.g., Base_Ptr in libstdc++) into a more derived class

(Rb_Tree_node in libstdc++), but these derived classes were not base classes of what was

originally allocated (e.g., EncodedDescriptorDatabase in Chromium). Since these are

generic bugs, meaning that benign C++ applications will encounter these issues even if they

correctly use libstdc++ or related libraries, it is difficult to directly evaluate their security

impacts without further evaluating the applications themselves.

These vulnerabilities were identified with legitimate functional test cases. Thus, we

believe CAVER has great potential to find more vulnerabilities once it is utilized for more

applications and test cases, as well as integrated with fuzzing infrastructures like Cluster-

Fuzz [2] for Chromium.
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Table 11: Security evaluations of CAVER with known vulnerabilities of the Chromium browser. We
first picked five known bad-casting bugs and wrote test cases for each vulnerability, retaining features
that may affect CAVER’s detection algorithm, including class hierarchy and their compositions, and
related classes including allocation, source, and destination types). CAVER correctly detected all
vulnerabilities.

CVE # Type Names Security Rating Mitigated

Allocation Source Destination by CAVER

CVE-2013-0912 HTMLUnknownElement Element SVGElement High ✓
CVE-2013-2931 MessageEvent Event LocatedEvent High ✓
CVE-2014-1731 RenderListBox RenderBlockFlow RenderMeter High ✓
CVE-2014-3175 SpeechSynthesis EventTarget SpeechSynthesisUtterance High ✓
CVE-2014-3175 ThrobAnimation Animation MultiAnimation Medium ✓

3.6.3 Effectiveness of Bad-casting Detection

To evaluate the correctness of detecting bad-casting vulnerabilities, we tested five bad-

casting exploits of Chromium on the CAVER-hardened Chromium binary (see Table 11).

We backported five bad-casting vulnerabilities as unit tests while preserving important

features that may affect CAVER’s detection algorithm, such as class inheritances and their

compositions, and allocation size. This backporting was due to the limited support for the

LLVM/clang compiler by older Chromium (other than CVE-2013-0912). Table 11 shows

our testing results on these five known bad-casting vulnerabilities. CAVER successfully

detected all vulnerabilities.

In addition to real vulnerabilities, we thoroughly evaluated CAVER with test cases that

we designed based on all possible combinations of bad-casting vulnerabilities: (1) whether

an object is polymorphic or non-polymorphic; and (2) the three object types: allocation,

source, and destination.

|{Poly, non-Poly}||{Alloc, From, To}| = 8

Eight different unit tests were developed and evaluated as shown in 12. Since CAVER’s

design generally handles both polymorphic and non-polymorphic classes, CAVER suc-

cessfully detected all cases. For comparison, UBSAN failed six cases mainly due to its

dependency on RTTI. More severely, among the failed cases, UBSAN crashed for two

cases when it tried to parse RTTI non-polymorphic class objects, showing it is difficult
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Table 12: Evaluation of protection coverage against all possible combinations of bad-castings. P
and Non-P mean polymorphic and non-polymorphic classes, respectively. In each cell, ✓marks a
successful detection, X marks a failure, and Crash marks the program crashed. (a) and (b) show
the results of CAVER with polymorphic class allocations and non-polymorphic class allocations,
respectively, and (c) and (d) show the cases of UBSAN. CAVER correctly detected all cases, while
UBSAN failed for 6 cases including 2 crashes.

(a) CAVER, P Alloc

From
To

P Non-P

P ✓ ✓
Non-P ✓ ✓

(b) CAVER, Non-P Alloc

From
To

P Non-P

P ✓ ✓
Non-P ✓ ✓

(c) UBSAN, P Alloc

From
To

P Non-P

P ✓ X
Non-P ✓ X

(d) UBSAN, Non-P Alloc

From
To

P Non-P

P Crash X
Non-P Crash X

Table 13: Comparisons of protection coverage between UBSAN and CAVER. In the # of tables
column, VTable shows the number of virtual function tables and THTable shows the number of type
hierarchy tables, each of which is generated to build the program. # of verified cast shows the number
static_cast instrumented in UBSAN and CAVER, respectively. Overall, CAVER covers 241% and
199% more classes and their castings, respectively, compared to UBSAN.

Name # of tables # of verified cast

RTTI THTable UBSAN CAVER

483.xalancbmk 881 3,402 1,378 1,967
450.soplex 39 227 0 2

Chromium 24,929 94,386 11,531 15,611
Firefox 9,907 30,303 11,596 71,930

to use without manual blacklists. Considering Firefox contains greater than 60,000 down-

casts, (see Table 13), creating such a blacklist for Firefox would require massive manual

engineering efforts.

3.6.4 Protection Coverage

Table 13 summarizes our evaluation of CAVER’s protection coverage during instrumentation,

including the number of protected types/classes (the left half), and the number of protected

type castings (the right half). In our evaluation with C++ applications in SPEC CPU 2006,

Firefox, and Chromium, CAVER covers 241% more types than UBSAN; and protects 199%

more type castings.
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Table 14: The file size increase of instrumented binaries: CAVER incurs 64% and 49% less storage
overheads in Chromium and Firefox browsers, compared to UBSAN.

Name File Size (KB)

Orig. UBSAN CAVER

483.xalancbmk 6,111 6,674 9% 7,169 17%
450.soplex 466 817 75% 861 84%

Chromium 249,790 612,321 145% 453,449 81%
Firefox 242,704 395,311 62% 274,254 13%

3.6.5 Instrumentation Overheads

There are several sources that increase a program’s binary size (see Table 14), including (1)

the inserted functions for tracing objects’ type and verifying type castings, (2) the THTable

of each class, and (3) CAVER’s runtime library. Although CAVER did not perform much

instrumentation for most SPEC CPU 2006 applications, the file size increase still was

noticeable. This increase was caused by the statically linked runtime library (245 KB). The

CAVER-hardened Chromium requires 6× more storage compared to Firefox because the

Chromium code bases contains more classes than Firefox. The additional THTable overhead

is the dominant source of file size increases. (see Table 13). For comparison, UBSAN

increased the file size by 64% and 49% for Chromium and Firefox, respectively; which

indicates that THTable is an efficient representation of type information compared to RTTI.

3.6.6 Runtime Performance Overheads

In this subsection, we measured the runtime overheads of CAVER by using SPEC CPU

2006’s C++ benchmarks and various browser benchmarks for Chromium and Firefox. For

comparison, we measured runtime overheads of the original, non-instrumented version

(compiled with clang), and the UBSAN-hardened version.

Microbenchmarks To understand the performance characteristics of CAVER-hardened

applications, we first profiled micro-scaled runtime behaviors related to CAVER’s operations

(Table 15). For workloads, we used the built-in input for the two C++ applications of

SPEC CPU 2006, and loaded the default start page of the Chromium and Firefox browsers.
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Table 15: The number of traced objects and type castings verified by CAVER in our benchmarks.
Under the Object Tracing column, Peak and Total denote the maximum number of traced objects
during program execution, and the total number of traced objects until its termination, respectively.
Global, Stack, and Heap under the Verified Casts represent object’s original types (allocation) involved
in castings. Note that Firefox heavily allocates objects on stack, compared to Chromium. Firefox
allocated 4,134% more stack objects, and performs 1,550% more type castings than Chromium.

Name
Object Tracing Verified Castings

Global Stack Heap Global Stack Heap Total
Total Peak Total Peak Total

483.xalancbmk 165 32 190k 8k 88k 0 104 24k 24k
450.soplex 36 1 364 141 658 0 0 0 0

Chromium 3k 274 350k 79k 453k 963 338 150k 151k
Firefox 24k 38k 14,821k 213k 685k 41k 524k 511k 1,077k

Overall, CAVER traced considerable number of objects, especially for the browsers: 783k

in Chromium, and 15,506k in Firefox.

We counted the number of verified castings (see Table 15), and the kinds of allocations

(i.e., global, stack, or heap). In our experiment, Firefox performed 710% more castings than

Chromium, which implies that the total number of verified castings and the corresponding

performance overheads highly depends on the way the application is written and its usage

patterns.

SPEC CPU 2006 With these application characteristics in mind, we first measured runtime

performance impacts of CAVER on two SPEC CPU 2006 programs, xalancbmk and soplex.

CAVER slowed down the execution of xalancbmk and soplex by 29.6% and 20.0%, respec-

tively. CAVER-NAIVE (before applying the optimization techniques described in §3.4.4)

slowed down xalancbmk and soplex by 32.7% and 20.8% respectively. For UBSAN,

xalancbmk crashed because of RTTI limitations in handling non-polymorphic types, and so-

plex becomes 21.1% slower. Note, the runtime overheads of CAVER is highly dependent on

the application characteristics (e.g., the number of downcasts performed in runtime). Thus,

we measured overhead with more realistic workloads on two popular browsers, Chromium

and Firefox.

Browser benchmarks (Chromium) To understand the end-to-end performance of CAVER,
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Figure 16: Browser benchmark results for the Chromium browser. On average, while CAVER-NAIVE

incurs 30.7% overhead, CAVER showed 7.6% runtime overhead after the optimization. UBSAN

exhibits 16.9% overhead on average.
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Figure 17: Browser benchmark results for the Firefox browser. On average, CAVER and
CAVER-NAIVE showed 64.6% and 170.3% overhead, respectively.

we measured the performance overhead of web benchmarks. We tested four browser

benchmarks: Octane [53], SunSpider [122], Dromaeo-JS [83], and Dromaeo-DOM [83],

each of which evaluate either the performance of the JavaScript engine or page rendering.

Figure 16 shows the benchmark results of the Chromium browser. On average, CAVER

showed 7.6% overhead while CAVER-NAIVE showed 30.7%, which implies the optimization

techniques in §3.4.4 provided a 23.1% performance improvement. This performance

improvement is mostly due to the safe-allocation optimization, which identified 76,381

safe-allocation types (81% of all types used for Chromium) and opted-out to instrument

allocation sites on such types. Compared to UBSAN, CAVER is 13.8% faster even though

it offers more wide detection coverage on type casting. Thus, we believe this result shows

that CAVER’s THTable design and optimization techniques are efficient in terms of runtime

performances.

Browser benchmarks (Firefox) We applied CAVER to the Firefox browser and measured
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Table 16: Runtime memory impacts (in KB) while running target programs. UBSAN crashed while
running xalancbmk and Firefox due to the non-polymorhpic typed classes. Peak and Avg columns
denote the maximum and average memory usages, respectively, while running the program. CAVER

used 137% more memory on Chromium, and 23% more memory on Firefox. UBSAN used 158%
more memory on Chromium.

Name Original UBSAN CAVER

Peak Avg Peak Avg Peak Avg

483.xalancbmk 9 8 crash crash 14 12
450.soplex 2 2 2 2 5 5

Chromium 376 311 952 804 878 738
Firefox 165 121 crash crash 208 157

the performance overhead for the web benchmarks used in evaluating the Chromium browser.

On average, CAVER imposed 64.6% overhead while CAVER-NAIVE imposed 170.3%

overhead (Figure 17). Similar to the Chromium case, most of performance improvements

are from safe-allocation optimization, which identified 21,829 safe-allocation types (72%

of all used types for Firefox). UBSAN was unable to run Firefox because it crashed due

to the inability of its RTTI to handle non-polymorphic types, so we do not present the

comparison number. Compared to CAVER’s results on Chromium, the CAVER-enhanced

Firefox showed worse performance, mainly due to the enormous amount of stack objects

allocated by Firefox (Table 15). In order words, the potential performance impacts rely

on the usage pattern of target applications, rather than the inherent overheads of CAVER’s

approaches.

Memory overheads UBSAN and CAVER achieve fast lookup of the metadata of a given

object by using a custom memory allocator that is highly optimized for this purpose, at the

cost of unnecessary memory fragmentation. In our benchmark (Table 16), UBSAN used

2.5× more memory at peak and average; and CAVER used 2.3× more memory at peak and

average, which is an 8% improvement over UBSAN. Considering CAVER’s main purpose

is a diagnosis tool and the amount of required memory is not large (< 1 GB), we believe

that these memory overheads are acceptable cost in practice for the protection gained.

70



3.7 Discussion

Integration with fuzzing tools During our evaluations, we relied on the built-in test inputs

distributed with the target programs, and did not specifically attempt to improve code

coverage. Yet CAVER is capable of discovering dozens of previously unknown bad-casting

bugs. In the future, we plan to integrate CAVER with fuzzing tools like the ClusterFuzz [2]

infrastructure for Chromium to improve code coverage. By doing so, we expect to discover

more bad-casting vulnerabilities.

Optimization In this thesis, we focused on the correctness, effectiveness, and usability of

CAVER. Although we developed several techniques to improve performance, optimization

is not our main focus. With more powerful optimization techniques, we believe CAVER can

also be used for runtime bad-casting mitigation.

For example, one direction we are pursuing is to use static analysis to prove whether a

type casting is always safe. By doing so, we can remove redundant cast verification.

Another direction is to apply alignment-based direct mapping scheme for global and

stack objects as well. Please recall that red-black trees used for global and stack objects

show O(logN) complexity, while alignment-based direct mapping scheme guarantees O(1)

complexity. In order to apply alignment-based direct mapping scheme for global and stack

objects together, there has to be radical semantic changes in allocating stack and global

objects. This is because alignment-based direct mapping scheme requires that all objects

have to be strictly aligned. This may not be difficult for global objects, but designing and

implementing for stack objects would be non-trivial for the following reasons: (1) essentially

this may involve a knapsack problem (i.e., given different sized stack objects in each stack

frame, what are the optimal packing strategies to reduce memory uses while keeping a certain

alignment rule); (2) an alignment base address for each stack frame has to be independently

maintained during runtime; (3) supporting variable length arrays (allowed in ISO C99 [48])

in stack would be problematic as the packing strategy can be only determined at runtime in

this case.
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Furthermore, it is also possible to try even more extreme approaches to apply alignment-

based direct mapping scheme—simply migrating all stack objects to be allocated in heap.

However, this may result in another potential side effects in overhead.

3.8 Related work

Bad-casting detection The virtual function table checking in Undefined Behavior Sanitizer

(UBSAN-vptr) [113] is the closest related work to CAVER. Similar to CAVER, UBSAN

instruments static_cast at compile time, and verifies the casting at runtime. The primary

difference is that UBSan relies on RTTI to retrieve the type information of an object. Thus, as

we have described in §3.4, UBSAN suffers from several limitations of RTTI . (1) Coverage:

UBSAN cannot handle non-polymorphic classes as there is no RTTI for these classes; (2)

Ease-of-deployments: hardening large scale software products with UBSAN is non-trivial

due to the coverage problem and phantom classes. As a result, UBSAN has to rely on

blacklisting [30] to avoid crashes.

RTTI alternatives Noticing the difficulties in handling complex C++ class hierarchies in

large-scale software, several open source projects use a custom form of RTTI. For example,

the LLVM project devised a custom RTTI [76]. LLVM-style RTTI requires all classes

to mark its identity once it is created (i.e., in C++ constructors) and further implement a

static member function to retrieve its identity. Then, all type conversions can be done with

templates that leverage this static member function implemented in every class. Because

the static member function can tell the true identity of an object, theoretically, all type

conversions are always correct and have no bad-casting issues. Compared to CAVER, the

drawback of this approach is that it requires manual source code modification. Thus, it

would be non-trivial to modify large projects like browsers to switch to this style. More

alarmingly, since it relies on developers’ manual modification, if developers make mistakes

in implementations, bad-casting can still happen [111].

Runtime type tracing Tracing runtime type information offers several benefits, especially
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for debugging and profiling. [103] used RTTI to avoid complicated parsing supports

in profiling parallel and scientific C++ applications. Instead of relying on RTTI, [38,

81] instruments memory allocation functions to measure complete heap memory profiles.

CAVER is inspired by these runtime type tracing techniques, but it introduced the THTable,

a unique data structure to support efficient verification of complicated type conversion.

Memory corruption prevention As described in §3.2, bad-casting can provide attackers

access to memory beyond the boundary of the casted object. In this case, there will be a

particular violation (e.g., memory corruptions) once it is abused to mount an attack. Such

violations can be detected with existing software hardening techniques, which prevents mem-

ory corruption attacks and thus potentially stop attacks abusing bad-casting. In particular,

Memcheck (Valgrind) [91] and Purify [55] are popularly used solutions to detect memory

errors. AddressSanitizer [101] is another popular tool developed recently by optimizing the

way to represent and probe the status of allocated memory. However, it cannot detect if the

attacker accesses beyond red-zones or stressing memory allocators to abuse a quarantine

zone [28]. Another direction is to enforce spatial memory safety [36, 64, 88, 89, 124], but

this has drawbacks when handling bad-casting issues. For example, Cyclone [64] requires

extensive code modifications; CCured [89] modifies the memory allocation model; and

SVA [36] depends on a new virtual execution environment. More fundamentally, most only

support C programs.

Overall, compared to these solutions, we believe CAVER makes a valuable contribution

because it detects the root cause of one important vulnerability type: bad-casting. CAVER

can provide detailed information on how a bad-casting happens. More importantly, depend-

ing on certain test cases or workloads, many tools cannot detect bad-casting if a bad-casted

pointer is not actually used to violate memory safety. However, CAVER can immediately

detect such latent cases if any bad-casting occurs.

Control Flow Integrity (CFI) Similar to memory corruption prevention techniques, sup-

porting CFI [1, 125, 126, 129] may prevent attacks abusing bad-casting as many exploits
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hijack control flows to mount an attack. Furthermore, specific to C++ domain, SafeDis-

patch [62] and VTV [118] guarantee the integrity of virtual function calls to prevent hijacks

over virtual function calls. First of all, soundly implementing CFI itself is challenging. Re-

cent research papers identified security holes in most of CFI implementations [21, 40, 51, 52].

More importantly, all of these solutions are designed to only protect control-data, and thus

it cannot detect any non-control data attacks [25]. For example, the recent vulnerability

exploit against glibc [96] was able to completely subvert the victim’s system by merely

overwriting non-control data—EXIM’s runtime configuration. However, because CAVER is

not relying on such post-behaviors originating from bad-casting, it is agnostic to specific

exploit methods.
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CHAPTER IV

SIDEFINDER:SYNTHESIZING HASH TABLE

TIMING-CHANNEL ATTACKS

4.1 Introduction

Traditionally, if an attacker wishes to leak or corrupt a program P ’s sensitive information,

the attacker (1) finds a vulnerability in P that compromises the memory safety of P and

then (2) provides an input to P that exploits the vulnerability to leak or corrupt information

as desired, often by causing the program to execute arbitrary code on the attacker’s behalf.

While completely and efficiently protecting the control and data integrity of programs

remains an important open problem that is the subject of much ongoing work, with many

protection mechanisms, such as ASLR, DEP (data execution prevention), and CFI (control-

flow integrity), deployed in commercial products [1, 71, 129], the amount of effort that

an attacker must use in order to leak or corrupt information via a memory vulnerability is

significantly increased.

In response to such protection mechanisms, attackers have begun to explore deeper

and more challenging problems: e.g., launching attacks that do not cause a program to

perform unsafe memory operations, but instead infer information about a program’s sensi-

tive data by invoking the program with selected inputs and observing public information

about the execution. One such class of attacks, which infer information about sensitive

data by observing program execution time, are timing attacks [16, 69]. Compare to the

extensive body of work on finding safety vulnerabilities in programs and protecting vulner-

able programs [1, 6, 19, 20, 24, 71, 90, 129], existing work on finding exploitable timing

channels (i.e., vulnerabilities) is limited. Specifically, suspecting a program/algorithm to

be vulnerable to timing channel is easy, but generating concrete input to verifying such
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hypothesis is very difficult. Existing work either (1) focuses on estimating the upper bound

of leakable information [44], which may not reflect the difficulties of constructing real

attacks; or (2) relies on attacker’s experience (i.e., an art) to construct the input manu-

ally [7, 35, 59, 68, 70, 73, 93, 121].

In this work, we propose a technique for automatically attacking a class of new timing-

channel vulnerabilities that occur in general programs that use deterministic hash tables,

known as hash-table client vulnerabilities. Such vulnerabilities arise when an attacker who

can partially control the inputs to a hash-table client that stores sensitive data in a hash table

and who can observe the performance of the client can infer information about the sensitive

data that the client stores.

In particular, if a hash-table client stores sensitive data d as a key in a deterministic hash

table H , then an attacker can potentially learn information about d by (1) finding a sequence

of program inputs I that place a sufficiently large set of entries in a target table that satisfy a

set of attack-specific equality constraints, (2) executing the program on each input in I , and

(3) observing the time taken to access entries in H . The key challenge in performing step

(1) of such an attack is that even if a security analyst can identify a target hash-table that is a

likely site of vulnerabilities, the analyst must be able to (1) infer the complex relationship

between the inputs the analyst can provide to the client, the keys that the client stores in

its hash table, and the persistent state maintained by the client; and (2) repeatedly invoke

the client with a set of inputs that induce a hash-table collision. For example, in order to

attack timing-channels in the inode cache that we show in the chapter, an attacker has to

understand complex logic behind many different file systems code in the Linux kernel.

The key observation behind our approach is that hash-table vulnerabilities can often be

discovered efficiently in practical systems code by computing symbolic function summaries

of hash-table clients. Our approach, named SIDEFINDER, combines program slicing with

symbolic execution to perform step (1) of the above attack schema automatically. Given a

hash-table client C, threshold k of keys that must be entered in the hash table maintained by
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C, and predicate P over k keys, SIDEFINDER computes a succinct, potentially-incomplete,

summary R of the effect of a hash table client C on its hash table and persistent state, in

terms of inputs. SIDEFINDER then derives a succinct constraint from R whose solutions

model sequences of executions of C that place k keys in the hash-table maintained by C and

that satisfy the predicate P . SIDEFINDER solves the derived constraint with an off-the-shelf

constraint solver.

We have designed and implemented a SIDEFINDER as a tool for the LLVM intermediate

language. Using SIDEFINDER, we found inputs that allowed us to exploit side-channels in

the Linux kernel automatically, which otherwise required either (1) significant manual effort

or (2) significantly more computational resources using a brute-force approach.

To summarize, this chapter makes the following contributions:

• We formulate timing-channel attacks on programs that store sensitive data in hash

table (e.g., sensitive address information to bypass ASLR or filename to breach user’s

privacy) as reductions to the hash-table client attack problem.

• We describe a program analysis, SIDEFINDER, that synthesizes attacking inputs and

thus finds solutions to the hash-table client attack problem efficiently, using symbolic

function summaries.

• We present two concrete timing-channel attacks, found in the Linux kernel that we

synthesized using SIDEFINDER.

4.2 Problem Scope
4.2.1 Attack Model

We assume that an attacker can execute regular operations on a target’s system. In particular,

the attacker can invoke any of a set of interface operations provided by the target system

(e.g., runtime functions provided by the JavaScript runtime or system calls provided by the

Linux Kernel), and the attacker can completely control the input provided to each operation.

At least one operation can be called to insert entries into a target hash table and another
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which can be used to search for entries in the target hash table. The attacker can measure

the time taken to execute each interface operation on an input that they provide.

The attacker’s goal is to infer information about sensitive data maintained by the in-

terface operations. While the attacker does not initially know anything about the value

of the sensitive data itself, and cannot directly read or modify the addresses that store

sensitive information, the attacker knows the program data structures that store the sensitive

information before the attacker begins invoking operations. Among all of the attacks that we

present, sensitive information is stored in different types of system memory, including (1)

kernel-space address information, where the attacker is assumed to run the user-level code

(§4.4.1), and (2) a privileged user’s filename information, where the attacker is assumed to

run code as an unprivileged user (§4.4.2). It is worth noting that (1) allows an attacker to

bypass well-known security mechanism, Address Space Layout Randomization (ASLR) on

the Linux Kernel, and (2) allows to breach privacy sensitive information.

4.2.2 Timing-Channel Attacks in Hash Tables

In general, a hash table is a data structure that implements an associative array, which maps

a key to a value. When a hash table adds a key-value pair (k, v), the table invokes a hash

function, which deterministically outputs a bucket index from k, and then stores (k, v) at

the bucket index. Since it is possible for a hash table to map distinct keys to the same bucket

index, a hash table employs collision resolution method [74] to handle colliding cases, such

as separate chain or open addressing.

In this setting, timing-channel attacks in hash tables occur if sensitive data is used to

determine a bucket index and normal inputs collide with the sensitive data. Specifically,

considering a hash function h, which takes an input k to compute the bucket index, the

timing-channel occurs if following two conditions hold: (1) A sensitive input (say ks) is

used to determine the bucket index with some loss of information depending on h; and (2)

an attacker can find a colliding input kc such that h(kc) = h(ks), and kc can be inserted to
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the table. Since a collision resolution process is deterministic, operations on kc would differ

depending on whether ks exists in the table or not, which could result in timing differences.

This further implies that an attacker could be able to infer whether ks exists or not, if he/she

can find multiple instances of kc and have the hash table operate over them.

In order to launch such side-channel attacks, attackers must have sufficient control over

the bucket index by only manipulating inputs of the target program. This is because only

having a single instance of kc may not introduce observable timing differences (e.g., in case

of the inode cache attacks, at least 1,024 instances of kc are required to introduce observable

timing differences (§4.5.2).

However, in practice, it is very challenging to manually find such a sufficient number

of colliding inputs. In commodity software, an implementation of a hash function itself

is not completely isolated, but its operations are rather heavily mixed up with many other

upper layer implementations. Thus, an actual hash function operation varies depending

on which upper layer is in use, and thus it is challenging to understand the complete hash

function operations. For example, in the dentry cache attack (§4.4.2), the input k to the

hash function is not directly from the system call, but a result from another hash function

(filename->hash), which differs across different underlying file system. Now, consider the

final goal for an attacker: find a sufficient number of inputs for the given hash function,

which result in the same bucket index. Manually solving this task would be challenging and

time consuming given this mixed up and complicated implementations of a hash function.

This would be even more difficult, considering the fact that our target software has a massive

code size (e.g., the Linux Kernel).

4.3 Formulating Attacks on Hash-Table Clients

This section presents SIDEFINDER, which takes a hash-table client C, a bucket threshold k,

and a predicate P over k hash-table keys; SIDEFINDER attempts to synthesize a sequence

of k inputs to C that place k keys in the hash-table maintained by C that satisfy P .
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Figure 18: Workflow of the attack synthesizer, SIDEFINDER. The graphs in the figures depict the
CFG of programs generated; white circles depict control locations in the backward slice from an
operation that adds entries to the target hash table.

The workflow of SIDEFINDER is depicted in Figure 18: SIDEFINDER takes as input

a program P , variables key and buk that store the key and bucket index when entries are

added to the table maintained by P , and property γ over bucket values, and performs the

following steps. 1 SIDEFINDER first performs a backwards slice of P for key and buk to

obtain a program slice P ′ that contains only program paths that may affect the values stored

in key and buk. 2 SIDEFINDER then runs a symbolic execution engine on P ′ to obtain a

set of symbolic paths S that represent runs of P ′. 3 SIDEFINDER then uses S to construct

a constraint in the theory of bitvectors such that each solution of φ describes a sequence

of program inputs that satisfy γ. 4 SIDEFINDER then attempts to synthesize a solution

to φ by invoking an off-the-shelf constraint solver, and returns the result provided by the

constraint solver.

4.3.1 Problem Definition

In this section, we formulate the problem of synthesizing an attack on a hash-table client.

We first formulate a simple language of reactive programs that maintain persistent state.

Let there be fixed spaces of temporary variables Tmp, persistent variables Perm, control

locations Locs, and instructions Instrs. The union of temporary and permanent variables

is denoted Vars = Tmp ∪ Perm. A program consists of (1) an initial control location,

(2) a final control location, and (3) a set of control edges. I.e., the space of programs is

P(Locs× Instrs× Locs).
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A program defines a language of sessions with its environment, in which each session is

a sequence of program runs. Let the space of machine words be denoted W . Let a temporary

store be an evaluation of temporary variables (i.e., ΣT = Tmp→ W ), and let a permanent

store be an evaluation of permanent variables (i.e., ΣP = Perm→ W ). A store is a pair of a

temporary store and a permanent store; i.e., the space of stores is denoted Σ = ΣT × ΣP .

Each program instruction i ∈ Instrs defines a transition relation over stores ρ(i) ⊆ Σ× Σ.

A program state is a control location, temporary store, and permanent store; i.e., the

space of states is denoted States = Locs× ΣT × ΣP . A run of a program P = (i, f, E) is

a sequence of states r = (L0, σ0), . . . , (Ln, σn) such that (1) the control location of the initial

state is the initial control location of P (i.e., L0 = i); (2) the control location of the final state

is the final control location of P (i.e., Ln = f); (3) all adjacent states in r are allowed by the

control edges of P and transition relation of the instruction connecting their control edges.

I.e., for each 0 ≤ j < n, (Lj, i, Lj+1) ∈ E and σj, σj+1 ∈ ρ(i). A session is a sequence of

runs in which the permanent stores in the final state of each run is the initial permanent store

of the subsequent run in the session. I.e., a sequence of runs R = r0, . . . , rk is a session

if for each 0 ≤ j < k, rj = q0j , . . . , (f, (t
′
j, p

′
j)), and rj+1 = (i, (t0j+1, p

0
j+1)), . . . , q

n
j+1,

p′j = p0j+1.

The problem of synthesizing an attack on a hash table client is, given designated variables

that store the key added to a hash table by its client and the bucket at which the key is added,

a bucket threshold k and a desired predicate φ on hash-table bucket values, to synthesize

initial temporary stores for k runs that generate k distinct keys entered at buckets that satisfy

a φ.

Definition 1 An instance of the HTCA problem is a five-tuple (P, key, buk, k,Γ) where: (1)

P is a program with initial control location L0; (2) key stores the key of the entry committed

to the hash table at the end of each run; (3) buk stores the bucket value at which each key is

added at the end of each run; (4) k ∈ N is a minimum required bucket threshold of distinct

keys; (5) for Buksk a vector of k copies of buk, Γ is a Boolean combination of equality
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constraints over integer constants and buk.

A solution to the HTCA problem (P, key, buk, k,Γ) is a set of k temporary stores Σ∗
T

such that there is some session S = r0, . . . , rk−1 in which:

1. For each 0 ≤ j < k and run rj = (i, (t0j , p
0
j)), t

0
j is the jth store in Σ∗

T .

2. For all 0 ≤ m ̸= n < k and runs rm = q0m, . . . , (f, (tm, pm)) and rn = q0n, . . . , (f, (tn, pn)),

pm(key) ̸= pn(key).

3. For each 0 ≤ n < k with rn = q0n, . . . , (f, (tm, pn)), the interpretation ι : Buks → W

defined as ι(bukj) = pj(bukj) satisfies Γ.

4.3.2 Synthesizing Attacks on Hash-Table Clients

In this section, we present our solver, SIDEFINDER, for the HTCA problem. We first describe

the components of SIDEFINDER, in particular its program slicer (§4.3.2.1), constraint solver

(§4.3.2.2), and symbolic-execution engine (§4.3.2.3). We then describe how SIDEFINDER

uses each of these components to attempt to solve the HTCA problem (§4.3.2.4).

4.3.2.1 Program Slicer

SIDEFINDER uses a backwards program slicer SLICER, which takes as input a program P,

a set of program variables X, and a control location L, and generates a program P′ such that

(1) the variables of P′ are all variables of P that may affect the value of the variables in X

when a run reaches L; (2) for each run r of P that reaches L, there is a run r′ of P′ with equal

values in all variables in X. Program slicing is a well-studied problem in program analysis

and transformation [57, 123].

However, as is the case with most program analyses, to implement an analysis that can

be run on practical systems software, the analysis writer must carefully balance the precision

of the results against scalability. In order to analyze kernel functions at scale, SLICER uses a

dependency analysis that is flow-insensitive and context-sensitive. However, because we

found that in practice, kernel code contains many loads and stores that may read and write
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from structures of multiple possible types, the dependency analysis is field sensitive. For

callsite c that may invoke a call target indirectly, SLICER’s dependency analysis assumes

that the program may call any function at c.

4.3.2.2 A Constraint Solver for the Theory of Bitvectors

SIDEFINDER represents sets of program states as formulas in a the theory of bitvectors.

A formula in the theory of bitvectors represents a set of (satisfying) assignments from

logical variables to bitvectors of fixed width. Terms in the theory of bitvectors model

common program operations (e.g., bounded arithmetic and bitwise-logical operations);

predicates in the theory model common program tests of bitvectors values (e.g., equalities

and inequalities). Formulas in the theory of bitvectors are commonly used in program

analyses to efficiently represent sets of program states [20].

Definition 2 Let the theory of bitvectors be denoted BV, and let the spaces of BV terms

and formulas over variables X be denoted TBV[X] and FBV[X], respectively. For vectors of

variables X and Y of equal length, let inst[φ, Y ]X denote the formula φ with each variable

xi ∈ X replaced with its corresponding ith variable yi ∈ Y .

The bitvector-constraint solver SOLVEBV takes as input a formula φ ∈ FBV[X] and

outputs one of the following values: (1) If φ is satisfiable, then SOLVEBV returns a

satisfying assignment of each variable in X to a machine word. (2) If φ is unsatisfiable,

then SOLVEBV returns Unsat.

Previous work has developed implementations of multiple efficient constraint solvers for

BV. [41]. SIDEFINDER uses the STP theorem prover [47].

4.3.2.3 A Symbolic-Execution Engine

SIDEFINDER uses a symbolic-execution engine SYMEX. SYMEX takes as input a program

P and returns a set of symbolic descriptions of the computation performed along full paths

of P .
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input :An HTCA problem H = (P, key, buk, k,Γ).
output :Either (1) a solution to H or (2) None.
P ′ := SLICER(P, fP , {key, buk}) ;
S := SYMEX(P ′) ;
φ := CONSHYPER(S, k,Γ) ;
switch SOLVEBV(φ) do

case m do return m|V k ;
case Unsat do return None ;

end
Algorithm 1: SIDEFINDER: a solver for the HTCA problem.

Definition 3 Let a symbolic path (φ, σ) be a pair of a formula φ ∈ FBV[Vars] and a map

σ : Vars′ → TBV[Vars]. The symbolic-execution engine SYMEX takes as input a program

P and outputs a set of n symbolic paths {(φ0, σ0), . . . , (φn, σn)}. For each 0 ≤ i ≤ n,

valuation of pre-state variables σ : Vars → W , and valuation of post-state variables

σ′ : Vars′ → W , if (1) σ satisfies φi and (2) for each post-state variable x′ ∈ Vars′ such

that σ′(x′) equals the valuation of σ(x′) on V , there is a run of P with initial store σ and

final state σ′.

SIDEFINDER uses S2E [26], which is based on KLEE [19], as its implementation of SYMEX.

In §4.3.3, we describe how we address practical issues that arise when using KLEE to

symbolically execute kernel functions.

Each set of symbolic paths S defines the transition relation over all control paths in S,

denoted µS ∈ BV[Vars, Vars′]. The construction of µS is standard, and we omit a detailed

description.

4.3.2.4 A Solver for HTCA

SIDEFINDER uses the program slicer SLICER, BV constraint solver SOLVEBV, and symbolic-

execution engine SYMEX to solve HTCA instance H = (P, key, buk, k,Γ) (shown in Al-

gorithm 1). SIDEFINDER first invokes the program slicer SLICER on input program P ,

the final location of P , and program variables key and buk to obtain the program slice P ′

SIDEFINDER then invokes the symbolic-execution engine SYMEX on P ′ and target control

location L to obtain a set of symbolic paths S. SIDEFINDER then invokes a procedure
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CONSHYPER on symbolic paths S, the bucket threshold k, and bucket constraint Γ to

obtain a BV formula φ such that each satisfying assignment of φ is a solution to H; we

describe the implementation of CONSHYPER in detail below. SIDEFINDER then invokes

the BV constraint solver SOLVEBV on φ to attempt to find a satisfying assignment of φ.

If SOLVEBV finds such an assignment m, then SIDEFINDER returns m restricted to the

pre-state variables V k as a solution to the given HTCA problem. Otherwise, if SOLVEBV

determines that φ has no satisfying assignment, then SIDEFINDER returns that it has found

no solution to H .

Implementation of CONSHYPER Given a set of symbolic paths S, bucket threshold k,

and bucket constraint Γ, CONSHYPER returns a BV constraint φ such that each satisfying

assignment of φ contains a solution of the HTCA problem given to SIDEFINDER. The

variables of φ consist of k distinct copies of Perm and k distinct copies of unprimed and

primed copies of Tmp. We denote the ith copy of Perm as Permi, and we denote the unprimed

and primed copies of Tmp as Tmpi and Tmp′, respectively.

An assignment ι : Vars∗ → W satisfies φ if: (1) ι satisfies the symbolic under-

approximation of P defined by S, instantiated on each copy of unprimed and primed

variables; (2) ι maps each primed key to a distinct value; (3) ι satisfies Γ with each copy of

buk replaced with its primed copy. I.e., CONSHYPER returns the following BV constraint:

(1)
∧

0≤i<k

µS[Tmpi, Permi, Tmp
′
iPermi+1/Vars, Vars

′]

∧ (2)
∧

0≤i ̸=j<k

key′i ̸= key′j

∧ (3) Γ[buk′0/buk0, . . . , buk
′
k−1/bukk−1]

4.3.3 Solver Properties

In this section, we consider the properties of SIDEFINDER as a solver for HTCA. We say

that SIDEFINDER is sound if whenever SIDEFINDER determines that a HTCA problem H

85



has a solution Σ, then Σ is a valid solution to H; we consider SIDEFINDER to be complete

if whenever H has a solution, then SIDEFINDER returns a solution.

4.3.3.1 Limitations to Soundness

The soundness of SIDEFINDER is limited by the ability of SYMEX to accurately model

practical reactive programs. Most implementations of SYMEX (including KLEE) typically

cannot be applied directly to the systems code that we analyze due to differences between

the assumptions that SYMEX places on the execution of programs compared to the actual

execution model of systems code. In particular, SYMEX assumes that it is invoked to

symbolically execute a program at the beginning of the program’s execution; thus, all

program variables to store memory objects according to the program’s initialization code.

However, we typically wish to apply SYMEX to analyze code that implements system calls,

which may be re-executed multiple times, and maintain state in global variables that satisfy

critical invariants.

Thus SIDEFINDER is typically invoked multiple times by a program tester to lazily

introduce invariants on global data structures. I.e., a program tester first runs SIDEFINDER

in an underconstrained context, in which no constraints are placed on the data in global

memory. If SIDEFINDER does not find any solutions in such a context, then the tester

does not further attempt to use SIDEFINDER to find solutions. Otherwise, if SIDEFINDER

finds a solution I , then the tester manually determines if each input in I satisfies known

invariants for system global data structures. If so, then the tester uses I to proceed with

their attack. Otherwise, the tester determines an invariant φ over global data structures that

prohibits some input in I , and directs SYMEX to assume that φ holds when the system

call is entered (in particular, KLEE supports a klee_assume directive that allows a user to

specify conditions that KLEE may assume to hold at an annotated control location).

SIDEFINDER would require significantly less effort to use if it could infer likely in-

variants for global data-structures and analyze system calls under inferred invariants. The
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problem of automatically inferring harnesses (i.e., invariants on persistent data) under

which to analyze reactive programs remains a critical and open problem in the literature on

program-analysis [65].

4.3.3.2 Limitations to Completeness

The completeness of SIDEFINDER is limited by the set of symbolic paths collected by

SYMEX that model runs of a subject program. While we presented SIDEFINDER as model-

ing sets of program states as well as formulas in theory of fixed-width bitvectors, the full

implementation of SIDEFINDER actually uses the theory of bitvectors with arrays, which

allows it to accurately model the complete memory of a program state [20]. If SYMEX

returns a set of symbolic paths S of the sliced program P ′ such that each actual program

path to the target control location satisfies some symbolic path in S, then SIDEFINDER is

complete. However, in general, it may not even be possible to represent all runs of P ′ with

a finite set of symbolic paths, in particular if P ′ contains a loop that may be executed an

unbounded number of times. However, if P ′ contains only loops that execute a fixed number

of times independent of the input, then practical implementations will return a finite set of

symbolic paths. SIDEFINDER is thus a complete solver in this restricted case.

4.4 Attacks Reduced to HTCA

In this section, we present two timing-channel attacks in security-critical uses of hash tables.

For each of attack, we also show how it can be reduced to an instance of HTCA. Table 17

provides a summary of each attack.

4.4.1 Inode Cache Attacks

Inode cache. A inode object is abstract representations of a file. Because search-

ing for a file is a performance-critical operation, the Kernel maintains a global cache

inode_hashtable for inode objects. Using inode_hashtable, the Kernel does not need to

access sluggish low-level file-system disks to locate an inode if its corresponding file is
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Table 17: Summary of timing-channel vulnerabilities that we have found in security-critical programs
that use hash tables. Each entry contains the type of security-critical platform (Target), the data
structure that implements the hash table (DS), the program functions used to hash keys (Hash),
insert entries (Insert), lookup entries (Lookup), the mathematical hash function implemented (Hash
function), and used data structure (a1, a2) that might leak through the timing channel.

Target DS Hash Insert Lookup Hash function a1 a2 Leak

Kernel dentry d_hash() d_rehash() d_lookup()
t = (i1 + i2)

parent ino
File

i = (t+ t ≫ c1)&c3 name

Kernel inode inode_hash() insert_inode_locked() iget_locked()
t = (a1 × a2) ∧ ((c1 + a1)/c2)

sb ino
sb’s

i = t⊕ ((t ∧ c1) ≫ c3) address

1 // @fs/inode.c (hash function)
2 // GOLDEN_RATIO_PRIME & L1_CACHE_BYTES are constant values.
3 // i_hash_shift & i_hash_mask are global variables,
4 unsigned inode_hash(struct super_block *sb, unsigned long h) {
5 unsigned tmp = (h * (unsigned long)sb);
6 tmp = tmp ^ (GOLDEN_RATIO_PRIME + h) / L1_CACHE_BYTES;
7 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
8 return tmp & i_hash_mask;
9 }

10 // @fs/inode.c (search inode from a hash table)
11 struct inode *iget_locked(struct super_block *sb,
12 unsigned long h) {
13 unsigned bucket_index = inode_hash(sb, h);
14 struct hlist_head *head = inode_hashtable + bucket_index;
15 struct inode *inode = NULL;
16 // Iterate each entry
17 hlist_for_each_entry(inode, head) {
18 // Found the corresponding inode object.
19 // ...
20 }
21 // Failed to find.
22 return NULL;
23 }
24 // @fs/inode.c (insert inode to a hash table)
25 void insert_inode_hash(struct inode *inode, unsigned long h) {
26 struct super_block *sb = inode->i_sb;
27 struct hlist_head *b = inode_hashtable + inode_hash(sb, h);
28 hlist_add_head(&inode->i_hash, b);
29 }

Figure 19: A simplified excerpt of code that maintains inode_hashtable. inode_hash computes a
bucket index from a given superblock address and hash value, which is usually the inode number.
insert_inode_hash adds a given inode with a given hash value to the inode cache. iget_locked
searches for a given hash value in a superblock.

frequently accessed. inode_hashtable resolves hash collisions using a separate chain with

a linked list.

The open() system call uses inode_hashtable to optimize performance of opening a

file at filename f (Figure 19). To add an inode stored in variable inode with an inode

identifier stored in variable h (depending on the file system, this can be the inode number,

or a preprocessing result), open calls the function insert_inode_hash on inode and h.
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inodek
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A linked list on a bucket index #2inode_hash(  sb, ino1)

inode_hash(  sb, ino2)
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inodek-1 inode1…
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Figure 20: A depiction of inode_hashtable state during the attack described in §4.4.1, in the case
that the chosen superblock value is correct. inode_hashtable hashes each key to the same bucket
(2), forming a list in only bucket 2 whose length is proportional to the number of keys inserted.

insert_inode_hash hashes the superblock of inode and h, to obtain the head b of the cor-

responding bucket list, and adds inode as the new head of its bucket list. To find an inode

with identifier h in superblock sb, open calls iget_locked on sb and h. iget_locked com-

putes the bucket index bucket_index of sb and h by invoking the hash function inode_hash.

Finally, iget_locked iterates over the linked list stored at bucket_index until it finds the

given inode object.

A timing channel. The address of the superblock, stored in sb, is sensitive information: in

particular, if an attacker could infer the address, then they could use the address to break

Kernel ASLR. Although open does not explicitly leak information about sb, an attacker can

infer sb through a timing channel in the code that maintains inode_hashtable by inserting

a sufficiently large number of inode in chosen buckets of inode_hashtable.

Specifically, the attacker can infer information about sb by performing the following

test TI on hypothetical address values. (1) The attacker chooses a timing threshold k, which

is a number of table entries that will observably affect the performance of the inode table,

as described below. (2) The attacker chooses a hypothetical value sbH for the superblock

address. (3) The attacker finds a set of distinct inode numbers {x1, . . . , xk} such that

inode_hash(sbH, xi) = inode_hash(sbH, xj) for all i, j ≤ k; (4) The attacker creates or

finds1 a set of files {F1, . . . , Fk}, where each file Fi has the corresponding inode number

xi for 0 ≤ i ≤ k. (5) The attacker calls open on the sequence of files F1, F2, . . . , Fk,

populating the inode table with corresponding inodes {i1, . . . , ik}. All inodes in I will be

in the same bucket, and thus will be stored as a linked list, with ik as the head and i1 as the

1inode number is accessible via ls -i or stat.
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tail. (6) The attacker calls open on the sequence of files Fk, Fk−1, . . . , F1, and measures the

execution time for each call. (7) The attacker decides that sbH is the value of the superblock

if and only if the execution time for each call to open increased.

Figure 20 depicts the state of the inode cache if the hypothetical superblock value sbH

is correct (i.e., sbH = sb) after adding inode for the sequence of created files F1, . . . , Fk.

Because inode_hash(sb, xi) will have the same value for all 0 ≤ i ≤ k, opening the files,

F1, . . . , Fk, will insert corresponding inode into the same bucket index (#2). Moreover,

because hlist_add_head adds each element as the new head of its bucket list, the inode

of Fk is the head of the bucket list, while the inode of F1 is the tail. As a result, if

1 ≤ i < j ≤ k, search for file Fj will take less time than searching for file Fi. However, if

the hypothetical superblock value is incorrect (i.e., sbH ̸= sb), the inode for F1, . . . , Fk

will not necessarily be inserted into the list for the same bucket. Thus, there may exist i < j

for which searching for Fi takes less time than search for Fj .

Security Implications. Based on the timing channel attack, the superblock address is

now known to the attacker. This unexpected information leakage can severely weaken the

protection level of the Linux kernel. For example, an attacker does not need an additional

information leakage vulnerability to launch the privilege escalation attacks. In many Linux

distributions, code addresses are fixed in the specific version due to the strict constraints

on the kernel memory layouts, but data addresses are not as it is allocated dynamically

from the large memory pool. Thus, the attacker can locate the function pointer inside the

superblock structure (which is unknown to the attacker as it is data addresses), and overwrite

the function pointer to mount control-flow hijacking attacks. Considering CVE-2013-6282

as an specific example, which offers arbitrary memory writes to the kernel memory spaces,

the attacker can overwrite the function pointer in the superblock structure without additional

leakage capability.

Reducing to HTCA Recall that in the attack on the inode cache as described in §4.4.1,

insert_inode_hash is the function in which entries are added to the inode table, L28 is
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1 // d_hash() returns a bucket in a hash table,
2 struct hlist_bl_head *d_hash(const struct dentry *parent,
3 unsigned hash) {
4 unsigned tmp = hash + (unsigned)parent;
5 tmp = tmp + (tmp >> d_hash_shift);
6 unsigned index = (tmp & d_hash_mask);
7 return dentry_hashtable + index;
8 }
9 // Insert a given file and filename into a parent directory.

10 void __d_insert(struct dentry *parent, struct dentry* child) {
11 unsigned bucket_index = d_hash(parent, child->name->hash);
12 struct hlist_bl_head *head = dentry + bucket_index;
13 hlist_add_head(&child, head);
14 return;
15 }
16 // Search for filename in the parent dentry.
17 struct dentry *__d_lookup(struct dentry *parent,
18 struct qstr *filename) {
19 // hlist_bl_head is the head node of a linked list.
20 struct hlist_bl_head *b = d_hash(parent, filename->hash);
21 hlist_bl_for_each_entry_rcu(dentry, node, b) {
22 // Walks a linked list on the corresponding bucket.
23 // ...
24 }
25 }

Figure 21: A simplified excerpt of the code that maintains the dentry_hashtable. d_hash computes
a hash from a given parent directory and the hash of a child. d_insert inserts an entry. __d_lookup
finds the child of a given parent directory at a given filename.

the control location at which entries are added, inode is the variable the stores the key to

be added, b stores the bucket index of the key, and sb stores the address of the superblock,

which the attack attempts to infer. For each timing threshold k ∈ N and address value

sbH ∈ W , let HTCAi(k, sbH) = (open, inode, b, k,Γk,sbH ), where ΓsbH ,k constrains that

(1) the bucket values at the end of each run are equal and (2) in each run, the superblock

variable sb stores address sbH .

An attacker can perform step (4) of the hash-table attack on the inode table presented

in §4.4.1 by solving the HTCA problem HTCAi(k, sbH), where sbH are chosen timing

threshold and hypothesis superblock address chosen in steps (2) and (3).

4.4.2 Dentry Cache Attacks

Dentry cache. A dentry is an abstract representation of a directory, and the Linux Kernel

maintains a global cache dentry_hashtable for dentry objects. To traverse a directory

structure in a file system, the Kernel first splits an absolute file path into sub-paths on

separator strings (i.e., ‘/’), and then tries to locate a dentry object starting from the first
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Figure 22: A depiction of dentry_hashtable state during the attack described in §4.4.2, in the
case that the chosen filename is correct. dentry_hashtable hashes each key to the same bucket (2),
forming a list in bucket 2 whose length is proportional to the number of keys inserted.

sub-path after root. Figure 21 contains code that maintains the cache dentry_hashtable.

__d_lookup() looks up a dentry object in dentry_hashtable from its parent dentry object

(parent) and name of this sub-path (filename). Please note that the input to the d_hash()

function is not the string of filename, but a preprocessed hash value from the string.

A timing channel. dentry_hashtable has a timing channel through which an attacker

can infer sensitive information. In particular, the attacker can decide if a target file f that

can only be accessed or listed by a privileged user u (e.g., root) has filename xp. We also

assume that the attacker can induce u to access f (without directly revealing to the attacker

the name of f ); in practice, this assumption may be satisfied, e.g., by invoking a daemon

that executes on behalf of u. For example, setuid-bit enabled programs, including chsh and

dotlockfile, opens a configuration file specified by non-privileged users.

To carry out the attack, the attacker performs the following test, denoted TD. (1) The

attacker induces u to access f , and measures the amount of time t taken to perform the

access. (2) The attacker chooses a timing threshold k, which is a number of table entries

that will observably affect the performance of the dentry cache, as described below. (3)

The attacker induces u to access a sequence of filenames F = x1, x2, . . . , xk such that for

each 0 ≤ i ≤ k, d_hash(parent, xp) = d_hash(parent, xi). The value of parent does

not need to be known to satisfy this condition, because a sequence of filenames in F will be

stored in the same directory and thus the same value of parent will be used. The k objects

will be stored as a linked list in the same bucket, with the entry for xk as the head and the

entry for x1 as the tail. (4) The attacker induces u to access f again, and measures the

amount of time t′ taken to perform the access. (5) The attacker decides that f has filename
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xp if t′ is significantly larger than t. Figure 22 depicts the state of dentry_hashtable if xp

is the actual file name of f . In this case, searching for f would take a long amount of time

because other dentry objects will be inserted in the linked list at the same bucket index as

xp. However, in the other case, where xp is not the actual file name of f , searching for f in

may not take a long time.

Security Implications. The unprivileged attacker can leak the filename of the privileged

user. Taking the dotlockfile as an example, the attacker was not able to directly learn

whether a certain file exists under its setuid user, mail. With our dentry cache attack, this

privacy leakage now becomes possible.

Reducing to HTCA A critical step of the attack on the dentry table can be reduced to HTCA.

Recall that in the code that manipulates the dentry cache, L13 is the location at which the

dentry cache is updated, child stores the key added to the dentry cache, and bucket_index

stores the bucket in which the entry is added. For queried filename xp ∈ W , address of

the parent directory dpar ∈ W , and bucket threshold k ∈ N, let HTCAd(xp, dpar, k) =

(open, child, bucket_index, k,Γxp,dpar,k), where Γxp,dpar,k constrains that (1) the filename

key in the 0th run is xp, (2) the parent directory in each run is dpar, and (3) the bucket

indices at the end of each run are equal. I.e., Γxp,dpar,k contains the constraint xp = child0;

for each 0 ≤ i < k, a constraint parent = dpar; and for each 0 ≤ i < k − 1, a constraint

bi = bi+1.

An attacker can reduce step (2) of the attack on the dentry cache described in §4.4.2 to

solving the HTCA problem HTCAd(f, dpar, k), where f is the query filename, dpar is the

address of the parent directory, and k is the bucket threshold chosen in step (1).

4.5 Implementation

The implementation on SIDEFINDER largely includes two components: a program slicer

and a symbolic execution engine. A program slicer is implemented based on LLVM 3.7, and

we have added 4,664 lines of C++ code. We implemented the backward-dataflow analysis in
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a program slicer to be flow-insensitive, context-sensitive, and field-sensitive. To analyze the

Linux kernel (v4.6-rc7), we applied several minor patches of the LLVMLinux project [77] to

build the kernel with LLVM. Instead of directly analyzing a single linked IR for the kernel,

our analysis takes the iterative framework on multiple bitcode files to efficiently handle

them.

To implement concolic execution engine, we used S2E [26], which in turn based on the

symbolic execution engine KLEE [19]. In total, we added 116 lines of code in C++. The key

change is in adding a special op code for a helper function, get_examples(void *address, size_t size, uint num),

which finds unique num concrete values in the location address.

4.5.1 Effectiveness of SIDEFINDER

To evaluate the effectiveness of SIDEFINDER, this section answers the following questions:

• How well does program slicing of SIDEFINDER discover many different uses of hash

functions?

• How effective SIDEFINDER is in synthesizing a sufficient number of timing-attack

inputs?

Program slicing. The program slicing results are shown in 18: FS column shows the

file system name associated with the row; #S column shows the number of identified taint

sources by SIDEFINDER; True src. description column shows a variable and function

name information on the true taint source, which truly leads to the bucket index computation

of a corresponding hash function in response to open() syscall. We particularly focused

on this open() syscall as we will launch actual attacks by invoking this; I shows whether

SIDEFINDER was actually able to identify the true taint source.

In the case of inode cache, we instructed SIDEFINDER to perform a backward slicing

from the second parameter of inode_hash() function as shown in Figure 19. The slicing

outputs different results for each file system, as these results are relying on each file system’s
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Table 18: Program slicing results of SIDEFINDER on inode cache and dentry cache. #S: the number
of identified taint sources; True src. description: a variable and function name information on the
true taint source, which truly leads to the bucket index computation of a corresponding hash function;
I: whether SIDEFINDER was able to identify the true taint source.

(a) Inode cache

FS #S True src. description I

ext2 1 inode@ext2_inode_by_name() ✓
ext4 11 inode@ext4_lookup() ✓
reiserfs 5 k_objectid@reiserfs_iget() ✓
jfs 3 inum@jfs_lookup() ✓
btrfs 4 objectid@btrfs_iget_locked() ✓
xfs 0 N/A N/A

(b) Dentry cache

FS #S True src. description I

ext2 2

filename in do_sys_open()

✓
ext4 5 ✓
reiserfs 6 ✓
jfs 3 ✓
btrfs 7 ✓
xfs 2 ✓

implementation characteristics. For ext2, SIDEFINDER precisely identified the true source,

which is the inode number in the function ext2_inode_by_name(); For ext4, eleven sources

were identified, and the true source (i.e., inode were included among these. In the case of

reiserfs, among five sources identified, the true source k_objectid were also included.

It is worth noting that these identified location of the true source are not an interface

function that adversaries can directly access and provide a manipulate input (i.e., open()

syscall). These sources were mostly maintained in the data structure that is heavily aliased

with other data structures associated with many other code locations. For this reason,

SIDEFINDER misses such information as the current version of SIDEFINDER lacks of a

sophisticated alias analysis.

Interestingly, xfs does not yield any taint sources. We manually analyzed xfs and

confirmed that xfs does not use inode cache and maintains its own cache. This missing is

an expected result of SIDEFINDER (i.e., SIDEFINDER requires users to specify the point

where the hash function computation is performed) and it shows one nice property of our
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Table 19: Results on synthesizing 2,048 colliding inputs using concolic execution. Path: The
number of symbolic path constraints from the symbolization point to the bucket index computation
point in a hash function; Bucket: The number of symbolic constraints specific to the bucket index
variable (Note, there is only one constraint for the bucket); # OP: The total number of operations in
all constraints either in path or bucket; Time: A solving time taken to obtain 2,048 colliding inputs;
Collide?: check whether synthesized inputs truly collide in real executions.

(a) Inode cache

FS Path Bucket Time (s) Collide?
# # OP # OP

ext2 3 112 48 319 ✓
ext4 4 132 50 336 ✓
reiserfs 2 100 48 321 ✓
jfs 2 100 48 318 ✓
btrfs 2 104 50 324 ✓
xfs - - - - -

(b) Dentry cache

FS Path Bucket Time (s) Collide?
# # OP # OP

All 6 FSes 21 806 117 604 ✓

backward slicing—SIDEFINDER can tell that xfs should never be vulnerable from inode

cache as it never uses them.

In the case of dentry cache, SIDEFINDER were able to identify the source location,

which is the filename parameter of open() syscall. As we will elaborate more later, we

found that the depth between the source and sink were not long, so SIDEFINDER does not

suffer from aliasing issues for the dentry cache.

Note, the results from this program slicing phase do not provide any detailed semantics

on how the input values will be used in computing the bucket index in a hash function.

Synthesizing attack inputs. In order to understand the effectiveness of SIDEFINDER in

synthesizing sufficient number of collision inputs, we run SIDEFINDER’s concolic execution

until it finds 2,000 collision inputs. More specifically, we first prepared file system images

for all six file systems, where each file system is populated with five files. Then per each

file system, we performed the following steps: (1) we boot up the Linux kernel within the

concolic execution engine of SIDEFINDER; (2) mount the file system; (3) instrument the
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true taint source point of the corresponding file system so that the respective source data is

symbolized; (4) invoke open() syscall with the filename that we populated before, which

in turn will activate the symbolization from the true taint source point; and (5) once the

concolic execution reaches the sink point (i.e., a bucket index computation point), we ask a

solver to find 2,000 unique values that are evaluated to the same bucket index.

19 shows the results on synthesizing on inode and dentry cache. Most importantly,

SIDEFINDER were able to synthesize 2,000 colliding inputs within a reasonable amount of

time, six minutes for inode cache and eleven minutes for dentry cache. As noted before,

xfs is an exception here because xfs never uses inode cache. We also confirmed that these

synthesized colliding inputs, inode in the case of inode cache and filename in the case

of dentry cache, are actually colliding by dynamically running the kernel. In the next

subsection, we further show our attack evaluations based on these synthesized inputs.

Moreover, we also want to emphasize that manually reverse-engineering this logic would

be quite complicated as represented in the number of path and bucket constraints as well as

the number of total operations in constraints. Especially for the dentry case, which involves

complex string hash computations onto the filename to determine the bucket index, the

total number of operations are very large (about eight times in path constraints and two

times in a bucket constraint) compared to those for the inode cache. Thus, we believe

SIDEFINDER’s semi-automation would help developers to confirm the timing side-channel

with its synthesized inputs.

To evaluate the effectiveness of SIDEFINDER in terms of speed, we also developed a

simple brute-forcing technique finding collision inputs for the inode cache. In general, a

brute-forcing attack is performed when an attacker wishes to minimize the manual anal-

ysis (e.g., instead of developing an inverse of the hash function) and launch the attack

without complete understandings on the target. Following this common practice, our brute-

forcing attack against the inode cache works as follows: (1) the attacker directly modifies

inode_hash() in the Linux Kernel to log which bucket index is mapped for which file once
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Figure 23: Comparing effectiveness of finding collision inputs on the inode cache using
SIDEFINDER and brute-forcing techniques. The size of the inode cache was 214. We only show
the ext2 case here as all other cases showed the similar results. SIDEFINDER found 2,048 collision
inputs within 6 minutes while the bruteforcing found 129 collisions in 90 minutes.

the function is invoked; (2) the attacker randomly creates a file, where a backing filesystem

is mounted as ext4, using a user-space program to trigger inode_hash(); (3) the attacker

monitors the log from the Kernel, and go back to step (1) until the sufficient number of

collisions found.

As shown in Figure 23, SIDEFINDER performs significantly better than brute-forcing—

while SIDEFINDER found all 2,000 colliding inputs within 6 minutes, the brute-forcing only

found 129 in 90 minutes.

4.5.2 Attack Evaluation

Experimental settings. The evaluation for inode cache and dentry cache was performed

on Linux Kernel 4.6-rc7 (x86-64) in KVM. To prepare a file system image to attack inode

cache, we created files, each of which corresponds to the colliding inode number based on a

set of colliding inode numbers generated by SIDEFINDER, A simple, but slow, way would

be to create empty files until disk becomes full and then delete files with non-colliding inode

numbers by checking their inode number using a stat() system call. As we found this

process cannot scale (due to the limit on inode numbers) and is too slow, we implemented

to create such files by directly modifying file system metadata relying on debugfs [42] on

an ext4 disk image [106]. Note, to mount such a prepared disk image, there are several
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Figure 24: Attack results on two hash tables: (a) Inode cache. sbH on the superblock’s address
(sb), we inserted k files (X-axis) having the colliding inode numbers on sbH . Then measured the
averaged execution time to insert those k files (Y-axis). If sbH = sb, the time take to insert k files
keeps increasing as it needs to traverse a long chain of linked lists. If it is not, then the searching
time is largely constant on k, which is the general property of a hash table — O(1) search time on the
average case; (b) Dentry cache. Relying on a hypothetical filename xp for the private file, we first
opened k files (X-axis) having the colliding string hash value on xp. Then we opened the same set of
k files again, and measured the averaged execution time for each (Y-axis). If xp is a correct, then the
execution time keeps increasing over k because it needs to walk through a long chain of linked lists.
However, if it is not, the execution time stays the same as there is no bucket collisions.

well-known approaches to mount a disk image with a non-privileged user (e.g., using USB

memory stick). We triggered this attack by running our ls-like program, which iterates and

opens a file on the disk image and reports its running time. We measured its running time

using clock() system call. For dentry cache attacks, we used similar techniques as inode

cache attacks. The difference is in that it does not need to create an actual file, as we use a

negative dentry to insert a dentry object.

Inode cache. Recall that inode cache uses a combination of superblock address and inode

number as the hash function input, and the attacker’s goal is to infer the superblock address

sb. To show the complete timing channel attacks (i.e., fully infer the superblock’s address),

we conduct and evaluate the attacks in the following three steps: (1) we launch the timing

channel attacks on two primitive hypotheses (i.e., the correct and incorrect hypotheses) to

determine the collision chain length exhibiting acceptable execution time differences; (2) we

evaluate how the searching space on superblock addresses can be reduced due to constraints
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on the running system’s configuration or environment; (3) given the collision chain length

from (1) and the reduced searching space from (2), we setup a series of hypotheses and test

these to fully infer the superblock address.

First, in order to see how execution time changes on correct or incorrect hypotheses, we

measure the execution time with the following two primitive cases under the assumption

that the true value the superblock is sb = 0xffff8800bb890930: the correct hypothesis

value is 0xffff8800bb890930, which we refer as sbTH ; and the incorrect hypothesis value

is 0xffffffffbbbb0000, which we refer as sbFH . Figure 24(a) shows the averaged execution

time (Y-axis, CPU clocks) to open the file after inserting k files (X-axis) on each hypothesis

value, where the size of inode cache is 213. In case of sbTH , all k files will fall into the

same bucket and cause their corresponding inode objects being connected together in a

linked list. Thus, the execution time (Y-axis) increases as k increases (X-axis). In case of

sbFH , k files are falling into different buckets as their hash values would be different with a

high probability. Thus, the execution time stays relatively the same for different k values,

indicating the general property of a hash table holds here — O(1) search time on the average

case. Furthermore, as shown in Figure 24(a), when 2,048 files are colliding altogether, there

is sufficient execution time differences to capture (i.e., on average, the execution time takes

45% more on the true hypothesis compared to the false hypothesis). Thus, in the following

attack steps, we choose to insert 2,048 numbers to test each hypothesis.

Second, to reduce the searching space on the superblock address, we developed the

strategy similar to the attacker’s typical bruteforcing techniques commonly used in breaking

ASLR. This strategy is largely relying on the constraints on the superblock address under the

running system’s configuration or environment. Overall, the superblock for the root partition

is usually allocated in an early stage of kernel initialization. Combining this with the fact

that the allocator (slab and the underlying page allocator) for the superblock is deterministic,

we found that the search space can be reduced to a very small range of addresses. we assume

that the attacker can obtain the basic system information including the kernel version, RAM
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sizes, etc, each of which can affect the kernel address layout and randomness. Thus, the

attacker can setup the identical system configurations and environments in terms of the

kernel address layouts, and further examine low level system information of the kernel.

Moreover, this assumption is general and mostly true in many running Linux systems,

because we already assumed that the attacker can run user-level code on a target machine

in §4.2.1 and such information is mostly accessible from user-level code. In particular, to see

how this strategy would help the attacker under our experimental setting, we rebooted the

kernel 200 times and collect 200 true sb addresses. All of these values were always located

in one of two different ranges, (S1, E1) = (0xffff8800bb808930, 0xffff8800bb8e8930) and

(S2, E2) = (0xffff88042c9e8930, 0xffff88042cf98930), and always ended with 0x930. Thus,

with a high probability, a possible sb value would be values obtained by iterating over above

two ranges, which results in 1,680 distinct addresses.

Note, from this second step, we assume that the attacker can obtain the basic system

information including the kernel version, RAM sizes, etc, each of which can affect the

kernel address layout and randomness. Thus, the attacker can setup the identical system

configurations and environments in terms of the kernel address layouts, and further examine

low level system information of the kernel without any debugging capabilities on the target

machine. This assumption is general and mostly true in many Linux running systems,

because we already assumed that the attacker can run user-level code on a target machine

in §4.2.1 and such information is accessible from user-level code.

Lastly, we finally carry out the full scan over the superblock address based on the

following two information from the previous steps: (1) the collision chain length (i.e.,

inserting 2,048 files introduces sufficient execution time differences if the hypothesis is

correct); (2) the reduced searching space on the superblock address (i.e., 1,680 distinct

addresses are a potential address of the superblock). Given this information, we setup

1,680 hypotheses on each potential address of the superblock, and then insert 2,048 files

to test each hypothesis. Among the tests on these 1,680 hypotheses, there were noticeable
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Figure 25: The number of colliding inode numbers in the expected bucket (Y-axis) for all possible
hypothesis values of sb (X-axis). sbH is the only address value having significantly more collisions
(i.e., 10,000) than other hypotheses (the second biggest less than 1,000). Since the execution time
differences between 10,000 and 1,000 is easy observable, once attackers observe an execution time
difference under sbH , they can be certain on the address value of sb.

execution time differences when sbH is 0xffff8800bb890930, meaning that the attacker can

correctly infer the full address information of the superblock. Moreover, completely testing

all 1,680 hypotheses took 78.4 minutes (i.e., testing each hypothesis took 2.8 seconds on

average).

As we have shortly described in §4.4.1, it is possible that an incorrect hypothesis value

of sb may also cause bucket collisions (i.e., the execution time may increase over k even

if sbH ̸= sb). However, in practice, we found that this unexpected event would not occur

largely due to the reduced searching space from step (2). In particular, For each of 1,680

hypotheses, we inserted 10,000 potential colliding inode numbers and counted the maximum

number of inode that did end up in the expected bucket. The result is shown in Figure 25.

Although the maximum number of collision can also be large for some incorrect hypotheses

(e.g., 1,000), the number of the correct hypothesis sbH is significantly higher (10,000).

Because traversing 10,000 inode objects in a linked list is much slower than traversing 1,000

inode objects (more than two times, see §4.4.1, we conclude that attackers can be certain on

sb value once they capture the execution time differences.

Dentry cache in the Linux Kernel. In the dentry cache attack, the attacker’s goal is to

infer the secret filename based on the hypothetical filename xp. To check if how much
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execution time changes on correct or incorrect hypotheses, we set up two hypothetical

filenames, xT
p is ‘testmetestme’ and xF

p is ‘debugmedebugme’, when xp is ‘testmetestme’.

Figure 24(b) shows the averaged execution time (Y-axis, CPU clocks) to open the file after

inserting k files (X-axis) on each case, where the size of dentry cache is 214. In case of xT
p ,

all k dentry objects will be placed into the same bucket, and they are stored as a linked list,

and thus the value on Y-axis increases over the value on X-axis. However, in case of xF
p , k

files will be falling into different buckets with a high probability, and thus the execution time

is constant over X-axis. Note that we have not prepared and created any file for dentry cache

attack, because a negative entry will be inserted even if we try to open non-existing file.

Similar to dentry cache attacks, it is possible that some other private filename (i.e.,

xT
p ̸= xp) may cause the bucket collisions. To see how frequent this accidental event would

happen, we first created a random string r such that r ̸= xT
p and the length of a string is

within [5,20]. Then we check whether the bucket index of r would be the same as xT
p (i.e.,

d_hash(parent, r) = d_hash(parent, xTp ) assuming their parent directory is the same).

Figure 26 illustrates the cumulative frequencies on the number of random strings checked

(X-axis) and the number of accidental matches (Y-axis). When the number of random strings

are 1 million, then their were about 60 accidental matches. This implies that the decision

concluded on xT
p relying on execution time slowdowns would have about 99.99% accuracy

on the randomly distributed string. Although this accuracy rate would change relying on the

distribution of private filename that the attacker wishes to infer, but we believe it would still

give high accuracy as our empirically approximated accuracy on random distribution is very

high.

4.6 Discussion on Mitigation Techniques

In this section, we discuss several possible mitigation techniques to timing-channel attacks.

It is worth noting that the adoption of these mitigation approaches needs to consider specific

runtime requirements as hash tables are usually used for performance-critical code.
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Figure 26: To see the accuracy on dentry cache attacks (see §4.4.2), we checked a random string if
it can be accidentally fall into the same bucket index as the hypothetical file name xTp .

No sensitive data for bucket index computation. The most obvious mitigation would

be to never use sensitive data to compute a bucket index. On the other hand, there are

very legitimate reasons, in particular, performance, to use sensitive data in the first place.

For example, a design decision behind using sb and parent for inode and dentry caches,

respectively, is to minimize hash table collisions for performance.

Heterogeneous hash tables. The root cause of this vulnerability that the same hash table

is used for both user-controllable data (e.g., inode numbers or filenames) and sensitive data

(e.g. an address value or privileged user’s filename). If each hash table is dedicated for

each type of data, there would be no execution dependencies at all between them and thus

there will be no side-channels. However, as hash tables may require some dependent opera-

tions [108], simply separating tables possibly break functionality. [108] further proposes

unique representation [109] based hash tables, formally verified leak-free heterogeneous

hash tables.

Universal hash functions. The precondition of timing-channel attacks is in that an

adversary should be able to obtain a set of inputs colliding with each other. Therefore, once

this mapping is unknown to an adversary, timing-channel attacks can be mitigated. For

example, in universal hash functions [14, 22], a hash function is randomly selected from a

family of hash functions, at the beginning of each run.

104



Non-deterministic data structures. Replacing deterministic data structures with non-

deterministic ones gives probabilistic guarantee of security. Thus, if additional performance

costs are not the primary concern, non-deterministic data structures [13, 100] can be alterna-

tives to deterministic ones.

4.7 Related work

Side-channel attacks and defenses. Previous work has discovered timing channels

in implementations of cryptographic functions that can be exploited to infer sensitive

information, such as a cryptographic key [16, 69]. Such attacks typically require significant

manual effort to derive. In contrast, we have presented attacks that target use of hash tables

in general applications. We have identified a class of timing channels that is sufficiently

flexible to describe timing channels in widely-used system code, but simple enough that the

program analysis required to find instances of such channels can be significantly automated.

Previous work has developed formal models and languages that can express notions

of information flow in the presence of an attacker who can observe the execution time of

a program [49, 82, 127]. Such approaches, while powerful, have not yet been applied to

analyze practical systems code; however, we believe that such approaches could be adapted

to enable programmers to check for and eliminate the class of timing-channel vulnerabilities

that we have identified.

Previous work has presented side channels and techniques to mitigate them for specific

execution platforms, in particular hardware [35, 70], web applications [9, 23, 128], and

the cloud [67]. Previous work has also presented side channels that leak information over

channels distinct from execution time, in particular system caches [44, 67, 70], features

of network traffic [9, 23, 128], and program memory [60]. Compared to these work, we

have presented timing channels for a distinct and ubiquitous execution platforms: arbitrary

programs that use deterministic hash tables.

Focusing on a hash table, previous work has presented to intentionally trigger the worst
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case of algorithmic complexities in a hash table, which resulted in Denial-of-Service attacks

in various applications [7, 37, 68]. Moreover, [93] first demonstrated the timing side-channel

attacks against a hash table in Firefox, which also relies on the deterministic behavior of

hash tables. Inspired by these findings, this thesis explores general property of the timing

side-channel attacks against hash tables and further presents more complete and various

case studies with new timing channel vulnerabilities.

Information Disclosure Attacks Previous work has presented techniques that bypasses

address space layout randomization (ASLR) by derandomizing the addresses of critical

memory objects. In particular, previous work has shown that particular classes of memory

errors can be exploited to derandomize systems that do not use a sufficient number of bits

for entropy [102], or keep traversing to extend the address layout knowledge [104]. As yet

another direction, performance oriented designs may allow an attacker to bypass ASLR [72].

Program slicing Program-slicing problems are concerned with determining which program

objects may influence each other during the execution of a program [57, 123]. A backwards

slice of x is a complete set of program variables and instructions that may affect the value

stored in x. The accuracy of program slices is determined by the underlying dependency

analysis that they use: dependency analyses can be designed with varying flow, context, and

field sensitivities [57, 123]; higher sensitivities trade performance for accuracy of the results

that they produce. We have designed a backwards slicer that uses a dependency analysis

that is flow-insensitive and context-sensitive, in response to our study of systems code.

Symbolic execution. Symbolic-execution engines have been applied, particularly in the

context of software security, to find subtle bugs that depend heavily on the semantics of

instructions and checks in the program [8, 17, 19, 20, 26, 27, 50, 98]. Those studies on

symbolic execution are applied to check if a program satisfies a safety property based on

symbolic summaries of functions; i.e., the engines check if there is some state of the program

that, over a single run, drives the program to an insecure state (although the engines can

potentially generate multiple states that each violate a given safety property). Our approach
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also uses a symbolic execution engine, but instead it solves HTCA problem to synthesize an

attack on a hash table client.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis, we developed tools to protect computer systems through eliminating or

analyzing vulnerabilities. In order to eliminate use-after-free vulnerabilities, We developed

DANGNULL, applied it to Chromium, and conducted a thorough evaluation showing the

effectiveness and compatibility of DANGNULL. We also developed CAVER, a runtime

bad-casting detection tool which verifies type casting dynamically. Lastly, we developed

SIDEFINDER, which can synthesize concrete inputs attacking timing-channel vulnerabilities

in hash tables, that helps testing and confirming processes. In order to demonstrate its

broader and practical impacts, we applied these techniques to popular commodity software

such as web browsers and the Linux kernel. We also evaluated these based on real-world

attacks and showed its security effectiveness.

In the future, the further optimization techniques of DANGNULL and CAVER can we

a potential research direction. Since much runtime overheads of these tools are caused by

metadata accesses in the data structure (i.e., a red-black tree), we may try other types of data

structures. One potential design is to append the metadata before or after an object. Note,

while using this design would bring some runtime speed benefits as the complexity of an

access will be constant (i.e., O(1)), it may impose heavy memory uses because of strictly

aligned virtual memory layouts for objects.

Because our methods in DANGNULL and CAVER are per vulnerability elimination, this

thesis does not cover memory corruption vulnerability classes other than use-after-free

and bad-casting. Thus, other popular types of vulnerabilities including, heap overflow or

uninitialized memory read/write, are not covered. We believe these types of vulnerabilities

can be also eliminated in the future. For example, in the case of heap overflows, the concept
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of a boundless heap (i.e., an object virtually allocated with an infinite size) has a potential to

be used for heap-overflow eliminations. However, since this needs to implement additional

virtual layers on the memory access, it has to be carefully carried out to be practical.
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