
DrK:	Breaking	Kernel	Address	Space	
Layout	Randomization	with	Intel	TSX	

Yeongjin Jang,	Sangho Lee,	and	Taesoo Kim
Georgia	Institute	of	Technology,	August	3,	2016

1



KASLR:	A	Practical	Barrier	for	Exploits

2



Example:	Linux
• To	escalate	privilege	to	root	through	a	kernel	exploit,	attackers	want	
to	call	commit_creds(prepare_kernel_creds(0)).

3



Example:	Linux

• KASLR	changes	kernel	symbol	addresses	every	boot.

• Kernel	symbols	are	hidden	to	non-root	users.

2nd Boot

4

1st Boot



Example:	tpwn - OS	X	10.10.5
Kernel	Privilege	Escalation	Vulnerability
• [CVE-2015-5864]	IOAudioFamailiy allows	a	local	user	to	obtain	
sensitive	kernel	memory-layout	information	via	unspecified	vectors.

Bypassing	KASLR	is
required…

5



Kernel	Address	Space	Layout
Randomization	(KASLR)
• A	statistical	mitigation	for	memory	
corruption	exploits

• Randomize	address	layout	per	each	boot
• Efficient	(<5%	overhead)

• Attacker	should	guess	where	code/data	are	
located	for	exploit.
• In	Windows,	a	successful	guess	rate	is	1/8192.

6



KASLR	Makes	Attacks	Harder
• KASLR	introduces	an	additional	bar	to	exploits
• Finding	an	information	leak	vulnerability

• Both	attackers	and	defenders	aim	to	detect	info	leak	vulnerabilities.

Pr[	∃Memory	Corruption	Vuln ]	

7

Pr[	∃ information_leak ] × Pr[	∃Memory	Corruption	Vuln]	



Popular	OSes	Adopted	KASLR

8



Is	there	any	other	way	than	info	leak?

• Practical	Timing	Side	Channel	Attacks	Against	Kernel	Space	
ASLR	(Hund	et	al.,	Oakland	2013)
• A	hardware-level side	channel	attack	against	KASLR
• No information	leak	vulnerability	in	OS	is	required

9



TLB	Timing	Side	Channel
• If	accessed	a	kernel	address	from	the	user	space

• Regardless	of	its	mapping	status,	it	generates	page	fault.

Unmapped	address

Mapped	address

10



TLB	Timing	Side	Channel
• If	an	unmapped kernel	address	is	accessed

1.	Try	to	get	page	table	entry	through	page	table	walk

2.	There	is	no	page	table	entry	found,	generate	page	fault!

Invalid	address	->	Page	Fault

11



TLB	Timing	Side	Channel
• If	a	mapped kernel	address	is	accessed

1.	Try	to	get	page	table	entry	through	page	table	walk

2.		Cache	the	entry	to	TLB

3.	Check	page	privilege	level	(3<0),	generate	page	fault!

Access	Violation	->	Page	Fault

12



TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
returns	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

13



TLB	Timing	Side	Channel
• Measuring	the	time	in	an	exception	handler

1.	Generates	Page	Fault

3.	OS handles	Page	Fault

4.	OS	calls	exception	handler

2.	CPU generates	Page	Fault

14



TLB	Timing	Side	Channel
• Result:	Fault	with	TLB	hit	took	less	than	4050	cycles
• While	TLB	miss	took	more	than	that…

• Limitation:	Too	noisy
• Why????

15

Mapped

Unmapped



TLB	Timing	Side	Channel

16

User CPU OS	Exception	Handling OS	Noise

User	Execution

CPU	Exception

OS	Execution

OS	Handling	Noise

T
L
B

TLB	Side	Channel

CPU
T
L
B

Timing	Side	Channel	(~40	cycles)	

OS	Noise Fault	Handling	Noise
is	too	much!

Measured	Time	(~4000	cycles)

OS	Noise	(~100	cycles)

If	we	can	eliminate the	noise	at	OS,	then	the	
timing	channel	will	be	more	stable.



A	More	Practical
TLB	Side	Channel	Attack	on	KASLR
• DrK Attack:	We	present	a	very	practical	side	channel	attack	on	KASLR
• De-randomizing	Kernel	ASLR	(this	is	where	DrK comes	from)

• Exploit	Intel	TSX	for	eliminate	the	noise	from	OS

17

DrK Hund	et.	al.
Channel	Noise Negligible A	lot	of	noise from	OS

Speed 5 sec	for 100% accuracy
0.1 sec	for	Linux 65 seconds	for 94.92%

Covertness OS	do not	know Page	fault	handler is	called	at	OS
Precision U /	NX /	X U /	M

Tested	OSes Linux/Windows/OS	X	(64bit) Windows	7	32bit



Starting	From	a	PoC Example	in	the	Wild

Rafal Wojtczuk,	https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

Less	noisy

18



TSX	Gives	Better	Precision	on	Timing	Attack

• Access	to	mapped address	in	TSX:	172 clk
• Access	to	unmapped address	in	TSX	:	200 clk
• 28	clk in	timing	difference,	with	stddev 0~2

19

28	cycles 2	cycles

20	cycles 35	cycles

• Access	to	mapped address	in	__try:	2172 clk
• Access	to	unmapped address	in	_try:	2192 clk

• 20	clk in	timing	difference,	with	stddev 35~57



Transactional	Synchronization	Extension
(Intel	TSX)
• Traditional	Lock

1.	Block	until	acquires	the	lock

3.	Release	the	lock	(finishes	atomic	region)

2.	Atomic	region	(Guaranteed!)

20



Transactional	Synchronization	Extension
(Intel	TSX)
• TSX:	relaxed	but	faster	way	of	handling	synchronization

1.	Do	not	block,	do	not	use	lock

3.	If	failed,	handle	failure	with	abort	handler
(retry,	get	back	to	traditional	lock,	etc.)

2.	Try	atomic	operation	(can	fail)

21



Transaction	Aborts	If	Exist	any	of	a	Conflict
• Condition	of	Conflict
• Thread	races
• Cache	eviction	(L1	
write/L3	read)
• Interrupt

• Context	Switch	(timer)
• Syscalls

• Exceptions
• Page	Fault
• General	Protection
• Debugging
• …

Run	If	Transaction	Aborts 22



Abort	Handler	Suppresses	Exceptions
• Abort	Handler	of	TSX
• Suppress	all	sync.	exceptions

• E.g.,	page	fault
• Do	not	notify	OS

• Just	jump	into	abort_handler()

No	Exception	delivery	to	the	OS!
(returns	quicker,	so	less	noisy	
than	__try	__except)

Run	If	Transaction	Aborts 23



Exploiting	TSX	as	an	Exception	Handler
• How	to	use	TSX	as	an	exception	handler?

1.	Timestamp	at	the	beginning

2.	Access	kernel	memory	within
the	TSX	region	(always	aborts)

3.	Measure	timing	at	abort	handler

Processor	directly	calls	the	handler
OS	handling	path	is not	involved

24



Reducing	Noise	with	Intel	TSX

25

User CPU OS	Exception	Handling OS	Noise

User	Execution

CPU	Exception

OS	Execution

OS	Handling	Noise

T
L
B

TLB	Side	Channel

Timing	Side	Channel	(~	40	cycles)	

Not	involving	OS,
Less	noisy!

Measured	Time	(~	4000	cycles)

User CPU
T
L
B

Measured	Time	(~	180	cycles)



Measuring	Timing	Side	Channel

• Access	Mapped	/	Unmapped	kernel	addresses
• Attempt	READ access	within	the	TSX	region

• mov [rax], 1

26



Measuring	Timing	Side	Channel

• Access	Executable	/	Non-executable	address
• Attempt	JUMP access	within	the	TSX	region

• jmp rax

27



Demo	1:	Timing	Difference	on	M/U	and	X/NX

28

•Video	Link
• https://www.youtube.com/watch?v=NdndV_cMJ8k



Measuring	Timing	Side	Channel
• Mapped	/	Unmapped	kernel	addresses
• Ran	1000	iterations	for	the	probing,	minimum	clock	on	10	runs

Processor Mapped Page Unmapped	Page
i7-6700K (4.0Ghz) 209 240	(+31)
i5-6300HQ	(2.3Ghz) 164 188	(+24)
i7-5600U	(2.6Ghz) 149 173	(+24)
E3-1271v3	(3.6Ghz) 177 195	(+18)

29



Measuring	Timing	Side	Channel

• Executable	/	Non-executable	kernel	addresses
• Ran	1000	iterations	for	the	probing,	minimum	clock	on	10	runs

Processor Executable	Page Non-exec	Page
i7-6700K (4.0Ghz) 181 226	(+45)
i5-6300HQ	(2.3Ghz) 142 178	(+36)
i7-5600U	(2.6Ghz) 134 164	(+30)
E3-1271v3	(3.6Ghz) 159 189	(+30)

30



Clear	Timing	Channel

Clear	separation	between	different	mapping	status!

Mapped Executable

31

Unmapped Non-Executable	or	Unmapped



TSX	vs	SEH

Clear	separation	between	different	mapping	status!
32

Mapped

Unmapped

Mapped

Unmapped



Attack	on	Various	OSes

• Attack	Targets
• DrK is	hardware	side-channel	attack

• The	mechanism	is	independent	to	OS
• We	target	popular	OSes:	Linux,	Windows,	and	OS	X

• Attack	Types
• Type	1:	Revealing	mapping	status	of	each	page
• Type	2:	Finer-grained	module	detection

33



Attack	on	Various	OSes

• Type	1:	Revealing	mapping	status	of	each	page

• Find	the	start	location	of	Kernel	/	Module	(ASLR	slide)
• Mostly	they	are	located	contiguously	in	a	chunk

Kernel Modules

Find	ASLR	slide	for	kernel Find	ASLR	slide	for	module
34

Scan	through	the	whole	kernel	spaceScan	through	the	whole	module	space



Attack	on	Various	OSes

• Type	1:	Revealing	mapping	status	of	each	page
• Try	to	reveal	the	mapping	status	per	each	page	in	the	area

• X	(executable)	/	NX	(Non-executable)	/	U	(unmapped)

Compute	the	accuracy	
by	comparing	this	
with	ground-truth	
page	table	entry	data

35



Attack	on	Various	OSes

• Type	2:	Finer-grained	
module	detection
• Section-size	Signature

• Modules	are	allocated	in	fixed	size	
of	X/NX	sections	if	the	attacker	
knows	the	binary	file

36

• Example
• If	the	size	of	executable	map	is	
0x4000,	and	the	size	of	non-
executable	section	is	0x4000,	then	it	
is	libahci!



Attack	on	Linux

• Processor
• Intel	Core	i5-6300HQ	(Skylake)

• OS	Settings
• Kernel	4.4.0,	running	with	Ubuntu	16.04	LTS
• Available	Slots
• Kernel:	64	slots

• 0xffffffff80000000	– 0xffffffffc0000000	(2MB	page)
• Module:	1,024	slots

• 0xffffffffc0000000	– 0xffffffffc0400000	(4KB	page)

37



Demo	2:	Full	Attack	on	Linux

38

•Video	Link
• https://www.youtube.com/watch?v=WXGCylmAZkA



Result

• Achieved	100%	accuracy	across	3	different	CPUs
• Took	0.1-0.67s	for	probing	6,147	pages.

• Detecting	Modules
• From	size	signature,	detected	38	modules	among	105	modules.

39



Attack	on	Windows

• OS	Settings
• Windows	10,	10.0.10586
• Available	Slots

• Kernel:	8,192	slots
• 0xfffff80000000000	- 0xfffff80400000000	(2	MB	pages)

• Drivers:	8,192	slots
• 0xfffff80000000000	- 0xfffff80400000000	(4	KB	pages,	aligned	with	2	MB)

40



Result

• 100%	of	accuracy	for	the	kernel	(ntoskrnl.exe)
• 100%	of	accuracy	for	detecting	M/U	for	the	drivers	(5	sec.)
• 99.28%	of	accuracy	for	detecting	X/NX	for	drivers	(45	sec.)
• Some	areas	in	driver	are	dynamically	deallocated
• Misses	some	‘inactive’	pages

• Detecting	Modules
• From	size	signature,	detected	97	drivers	among	141	drivers

41



Attack	on	OS	X

• OS	Settings
• OS	X	El	Capitan	10.11.4
• Available	Slots
• Kernel:	256	slots

• 0xffffff8000000000	- 0xffffff8020000000	(2	MB	pages)

• Result
• Took	31	ms on	finding	ASLR	slide	(100%	accuracy	for	10	times)

42



Attack	on	Amazon	EC2

• X1	Instance	of	Amazon	EC2
• Processor:	Intel	Xeon	E7-8880	v3	(Haswell)

• OS	Settings
• Kernel	4.4.0,	running	with	Ubuntu	14.04	LTS
• Available	Slots
• Kernel:	64	slots

• 0xffffffff80000000	– 0xffffffffc0000000	(2MB	page)
• Module:	1,024	slots

• 0xffffffffc0000000	– 0xffffffffc0400000	(4KB	page)

43



Result	Summary

• Linux:	100%	of	accuracy	around	0.5	second
• Windows:	100%	for	M/U	in	5	sec,	99.28%	for	X/NX	for	45	sec
• OS	X:	100%	for	detecting	ASLR	slide,	in	31ms
• Linux	on	Amazon	EC2:	100%	of	accuracy	in	3	seconds

44



Timing	Side	Channel	(M/U)
• For	Mapped	/	Unmapped	addresses
• Measured	performance	counters	(on	1,000,000 probing)

• dTLB hit	on	mapped	pages,	but	not	for	unmapped	pages.
• Timing	channel	is	generated	by	dTLB hit/miss

Perf.	Counter Mapped	Page Unmapped	Page Description

dTLB-loads 3,021,847 3,020,243

dTLB-load-misses 84 2,000,086 TLB-miss on	U

Observed	Timing 209	(fast) 240	(slow)

45



Path	for	an	Unmapped	Page

dTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

46



Path	for	an	Unmapped	Page

dTLB

On	the	Second	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!
Always	do	page	table	walk	(slow)

47



Path	for	a	mapped	Page

dTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

Cache	TLB	entry!

PTE

48



Path	for	a	mapped	Page

dTLB

On	the	second	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

Page	fault!

dTLB hit

No	page	table	walk	on	the	second	access	(fast)

PTE

49



Root-cause	of	Timing	Side	Channels	(M/U)
• For	Mapped	/	Unmapped	addresses

Fast	Path	(Mapped) Slow	Path	(Unmapped)

1. Access a	Kernel	address
2. dTLB hits
3. Page	fault!

1. Access	a	Kernel	address
2. dTLB misses
3. Walks	through	page	table	
4. Page	fault!

Elapsed cycles:	209 Elapsed cycles:	240

• Caching	at	dTLB generates	timing	side	channel
50



Timing	Side	Channel	(X/NX)
• For	Executable	/	Non-executable	addresses
• Measured	performance	counters	(on	1,000,000	probing)

Perf.	Counter Exec	Page Non-exec	Page Unmapped	Page

iTLB-loads	(hit) 590 1,000,247 272

iTLB-load-misses 31 12 1,000,175
Observed	Timing 181 (fast) 226 (slow) 226 (slow)

• Point	#1:	iTLB hit	on	Non-exec,	but	it	is	slow	(226)	why?

• iTLB is	not	the	origin	of	the	side	channel

51



Timing	Side	Channel	(X/NX)
• For	Executable	/	Non-executable	addresses
• Measured	performance	counters	(on	1,000,000	probing)

Perf.	Counter Exec	Page Non-exec	Page Unmapped	Page

iTLB-loads	(hit) 590 1,000,247 272

iTLB-load-misses 31 12 1,000,175
Observed	Timing 181 (fast) 226 (slow) 226 (slow)

• Point	#2:	iTLB does	not	even	hit	on	Exec	page,	while	NX	page	hits	iTLB

• iTLB did	not	involve	in	the	fast	path

52



Intel	Cache	Architecture
• L1	instruction	cache
• Virtually-indexed,	Physically-tagged	
cache	(requires	TLB	access)
• Caches	actual	x86/amd64	opcode

From	the	patent	US	20100138608	A1,
registered	by	Intel	Corporation 53



Intel	Cache	Architecture

From	the	patent	US	20100138608	A1,
registered	by	Intel	Corporation

• Decoded	i-cache
• An	instruction	will	be	decoded	as	
micro-ops	(RISC-like	instruction)
• Decoded	i-cache	stores	micro-ops
• Virtually-indexed,	Virtually-tagged	
cache	(no	TLB	access)

54



Path	for	an	Unmapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!
Always	do	page	table	walk	(slow)

55



Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

TLB	miss

Insufficient	privilege,	fault!

Decoded
I-cache

miss

PTE Cache	TLB
uops

Cache	Decoded	Instructions

56



Path	for	an	Executable	Page

iTLB

On	the	second	access,	181 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

Insufficient	privilege,	fault!

Decoded
I-cache

PTEuops

Decoded	I-cache	hit!

No	TLB	access,	No	page	table	walk	(fast)
57



Path	for	a	non-executable,	but	mapped	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

TLB	miss

NX,	Page	fault!

Decoded
I-cache

miss

PTE Cache	iTLB

58



Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

Page	fault!

TLB	hit

If	no	page	table	walk,	it	should	be	faster	than	unmapped	(but	not!)
59



Cache	Coherence	and	TLB
• TLB	is	not	a	coherent	cache	in	Intel	Architecture

TLB
0xff01->0x0010,	NX

Core	1 1.	Core	1	sets	0xff01	as	Non-executable memory

TLB
0xff01->0x0010,	X

Core	2

2.	Core	2	sets	0xff01	as	Executable memory
No	coherency,	do	not	update/invalidate	TLB	in	Core	1

3.	Core	1	try	to	execute	on	0xff01	->	fault	by	NX

4.	Core	1	must	walk	through	the	page	table
The	page	table	entry	is	X,	update	TLB,	then	execute!

Execute

60



Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

NX,	Page	fault!

Decoded
I-cache

miss

PTE Cache	TLB

NX,	cannot	execute!

TLB	hit

61



Root-cause	of	Timing	Side	Channel	(X/NX)
• For	executable	/	non-executable	addresses

Fast	Path	(X) Slow	Path	(NX) Slow	Path	(U)
1. Jmp into	the	Kernel	addr
2. Decoded	I-cache	hits
3. Page	fault!

1. Jmp into	the	kernel	addr
2. iTLB hit
3. Protection	check fails,	

page	table	walk.
4. Page	fault!

1. Jmp into	the	kernel	addr
2. iTLB miss
3. Walks through	page	table
4. Page	fault!

Cycles:	181 Cycles:	226 Cycles: 226

• Decoded	i-cache generates	timing	side	channel

62



Discussions:	Controlling	Noise

• Dynamic	frequency	scaling	(SpeedStep,	TurboBoost)	changes	
the	return	value	of	rdtscp()
• Run	busy	loops	(	while(1); )	to	make	CPU	run	as	full-throttle

• Hardware	interrupts	and	cache	conflicts	also	abort	TSX
• Probe	multiple	times	(e.g.,	2-100)	and	take	the	minimum

63



Discussions:	Increasing	Covertness

• OS	never	sees	page	faults
• TSX	suppresses	the	exception

• Possible	traces:	performance	counters
• High	count	on	dTLB/iTLB-miss
• Normal	programs	sequentially	accessing	huge	memory	could	behave	
similarly

• High	count	on	tx-aborts	or	CPU	time
• Attackers	could	slow	down	the	probing	rate	(e.g.,	5	min,	still	fast)

64



Discussions:	Countermeasures?

• Modifying	CPU	to	eliminate	timing	channels
• Difficult	to	be	realized	L

• Turning	off	TSX
• Cannot	be	turned	off	in	software	manner	(neither	from	MSR	nor	from	BIOS)

• Coarse-grained	timer?
• Always	suggested	for	timing	side	channel,	but	no	one	adopts	it.

65



Discussions:	Countermeasures?

• Using	separated	page	tables	for	kernel	and	user	processes
• High	performance	overhead	(~30%)	due	to	frequent	TLB	flush

• Fine-grained	randomization
• Difficult	to	implement	and	performance	degradation

• Inserting	fake	mapped	/	executable	pages	between	the	maps

66



Conclusion

• TSX	can	break	KASLR	of	commodity	OSes
• Ensure	accuracy,	speed,	and	covertness

• Timing	side	channel	is	caused	by	hardware,	independent	to	OS
• dTLB (for	Mapped	&	Unmapped)
• Decoded	i-cache	(for	eXecutable /	non-executable)

• Current	KASLR	is	not	as	secure	as	expected

67



Any	Question?

• Q&A

68



TSX	Support	in	Intel	Processors

Grade/Generation Skylake Broadwell Haswell
Server/Workstation 17/17	(100%) 19/19 (100%) 37/85 (43.5%)
High-end Consumer 23/38	(60.1%) 11/22	(50.0%) 2/92	(2.2%)
Low-end	Consumer 4/32	(12.5%) 2/16	(12.5%) 0/79 (0%)

69



Prohibited	Access	to	Kernel	Address	Space	
Layout
• OS	X/iOS
• Even	root	user	has	no	access	(rootless).

• Windows	(NtQuerySystemInformation)
• Sandbox	process	has	no	access	(low/untrusted	integrity	level).

• Linux	(kallsyms)
• Non-root	user	has	no	access.

70


