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Cloud-based file synchronization services are a worldwide resource for many 

millions of users. However, individual services often have tight resource limits, 

suffer from outages or shutdowns, and sometimes silently corrupt or leak user 

data. As a solution, the authors design, implement, and evaluate MetaSync, a secure 

and reliable file synchronization service using multiple cloud synchronization 

services as untrusted storage providers. To provide global consistency among 

the storage providers, the authors devise a novel variant of Paxos that enables 

efficient updates atop unmodified APIs exported by each service. MetaSync 

provides better availability and performance, stronger confidentiality and integrity, 

and larger storage.

C loud-based file synchronization 
services have become tremen-
dously popular. Dropbox reached 

400 million users in June 2015, and 
many competing providers offer simi-
lar services. Not only that, the increas-
ing diversity of user devices makes 
these synchronization services more 
convenient than ever before.

Unfortunately, not all services are 
trustworthy or reliable: storage services 
routinely lose data due to internal faults1 
or bugs,2 leak users’ data,3 and sometimes 
go completely out of business (see https://
one.ubuntu.com/services/shutdown).

Our system (MetaSync) is based on 
the premise that users want the file syn-
chronization and storage that existing 
cloud providers offer, but without the 

exposure to fragile, unreliable, or inse-
cure services. In fact, there’s no fun-
damental need for users to trust cloud 
providers, and given the aforementioned 
incidents, our position is that users 
are best served by not trusting them. 
Clearly, a user can encrypt files before 
storing them in the cloud for confidenti-
ality. More generally, Depot4 and Secure 
Untrusted Data Repository (SUNDR)5 
showed how to design systems from 
scratch in which users of cloud stor-
age obtain data confidentiality, integ-
rity, and availability without trusting 
the underlying storage provider. (For 
other work in this area, see the related  
sidebar.) However, these designs rely on  
fundamental changes to both the client 
and server; the focus of our research is 
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whether we could use existing services for these 
same ends.

Instead of starting from scratch, MetaSync 
uses multiple existing storage providers to 
implement a file synchronization service. We 
thus leverage resources that are mostly well-
provisioned, normally reliable, and fairly inex-
pensive. While each service provides unique 
features, their common purpose is to synchro-
nize a set of files between personal devices and 
the cloud. By combining multiple providers, 
MetaSync provides users with a larger storage 
capacity with higher availability and better 
performance.

The key challenge is to maintain a globally 
consistent view of the synchronized files across 
multiple clients without modifying any back-
end, existing services; without having a central 
server; and without direct client–client com-
munication. To this end, we devise two novel 
methods: first, passive Paxos (pPaxos) — an 
efficient client-based consensus algorithm that 
maintains a globally consistent state among 
multiple passive storage backends; and second, 
a stable deterministic replication algorithm that 
supports reconfiguration (such as an adding 
and removing capacity) with minimal reshuf-
fling of replicated objects.

Putting it all together, MetaSync can serve 
users better in all aspects as a file synchroniza-
tion service; users need trust only the software 
that runs on their own computers.

Goals and Assumptions
MetaSync’s usage model matches that of exist-
ing file synchronization services such as Drop-
box. A user configures MetaSync with account 
information for the underlying storage services; 
sets up one or more directories to be managed 
by the system; and, if desired, shares each 
directory with other users. Users can connect 
these directories with multiple devices. (We 
refer to the devices and software running on 
them as clients in this article.) Local updates 
are updated to all connected clients if users 
choose to use a background synchronization 
daemon. For users desiring explicit control over 
the merge process, we also provide a manual 
git-like push/pull interface with a command 
line client. In this case, the user creates a set of 
updates and runs a script to apply the set.

Our baseline design allows for backend ser-
vices to be unreliable and sometimes unreach-
able. The storage services might try to discover 
which files are stored along with their content 
and might even accidentally corrupt or delete 

Related Work in Cloud File Synchronization

Amajor line of related work, starting with Farsite1 and Secure 
Untrusted Data Repository (SUNDR)2 and carrying through 

Sporc3 and Depot,4 is how to provide tamper resistance and pri-
vacy on untrusted storage server nodes. These systems assume 
the ability to specify the client–server protocol, and therefore 
can’t run on unmodified cloud storage services.

Other systems exist that compose a storage layer on top 
of existing storage systems, and perhaps the closest to our 
intent is DepSky;5 which proposes a cloud of clouds for secure, 
byzantine-resilient storage, and doesn’t require code execution 
on the servers. Their basic algorithm assumes at most one con-
current writer. When writers are at the same local network, 
concurrent writes are coordinated by an external synchroni-
zation. Otherwise, it has a possible extension that can sup-
port multiple concurrent updates without an external service, 
which requires clock synchronization between clients.

Our implementation builds on the ideas of many earlier 
systems. Obviously, we’re indebted to earlier work on Paxos 
and Disk Paxos. We maintain file objects in a manner similar 
to a distributed version control system like git. Content-based 
addressing has been used in many file systems. MetaSync uses 

content-based addressing for a unique purpose, letting us asyn-
chronously upload or download objects to backend services. 
While algorithms for distributing or replicating objects have 
also been proposed and explored by previous systems, the rep-
lication system in MetaSync is designed to minimize the cost of 
reconfiguration to add or subtract a storage service and also to 
respect the diverse space restrictions.
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files. From time to time, some services might be 
unavailable due to network or system failures. 
However, we assume that service failures are 
independent, services implement their own APIs 
correctly (except for possibly losing and corrupt-
ing user data), and communications between 
client and server machines are protected. This 
baseline model can be extended to handle faulty 
implementations of service APIs or actively 
malicious services.6 Finally, we assume that 
clients sharing a specific directory are trusted, 
similar to a shared Dropbox directory today.

With this threat model, the goals of Meta-
Sync are

•	 higher availability and performance,
•	 stronger confidentiality and integrity,
•	 greater capacity,
•	 no direct client–client communication,
•	 no additional server, and
•	 efficient reconfiguration.

Now that we have a grounded understanding of 
the system’s goals, let’s look at its design.

System Design
MetaSync is a distributed synchronization sys-
tem that provides a reliable, globally consis-
tent storage abstraction to multiple clients by 
using untrusted cloud storage services. The core 
library defines a set of generic APIs; all compo-
nents are implemented on top of this abstrac-
tion. This makes it easy to incorporate a new 
storage service into our system.

Data Management
MetaSync has a similar underlying data struc-
ture to that of git7 in managing files and their 
versions: objects, as units of data storage, are 
identified by the hash of their content. Direc-
tories form hash trees, similar to Merkle trees,8 
where the root directory’s hash is the root of the 
tree. This root hash uniquely defines a snap-
shot. MetaSync divides and stores each file into 
chunks (Blob objects) to maintain and synchro-
nize large files efficiently.

Object store. In MetaSync’s object store, there are 
three kinds of objects — Dir, File, and Blob — each 
uniquely identified by the hash of its content. A 
File object contains hash values and offsets of 
Blob objects. A Dir object contains hash values 
and names of File and Dir objects.

In addition to the object store, MetaSync 
maintains two kinds of metadata to provide a 
consistent view of the global state: shared meta-
data, which all clients can modify; and per-
client metadata, which only the single owner 
(writer) client of the data can modify.

Shared metadata. MetaSync maintains a piece 
of shared metadata, called master, which is the 
hash value of the root directory in the most 
advanced snapshot. It represents a consistent 
view of the global state; every client needs 
to synchronize its status against the master. 
Another shared piece of metadata is the con-
figuration of the backend services, including 
information regarding the list of backends, their 
capacities, and authenticators. To update shared 
metadata, MetaSync uses a special-purpose 
synchronization protocol built from the APIs 
provided by existing cloud storage providers.

Per-client data. MetaSync keeps track of clients’ 
states by maintaining a view of each client’s 
status. The per-client metadata includes the last 
synchronized value, denoted as prev_client, 
and the current value representing the client’s 
recent updates, denoted as head_client. If a 
client hasn’t changed any files since the previ-
ous synchronization, the value of prev_client 
is equal to that of head_client. As this meta-
data is changed only by the corresponding cli-
ent, updates don’t need to be coordinated. Each 
client stores a copy of its per-client metadata 
into all backends on each update.

Overview
MetaSync’s core library maintains the afore-
mentioned data structures and exposes a reli-
able storage abstraction to the users. The 
library’s role is to mediate accesses and updates 
to actual files and metadata, and further inter-
act with the backend storage services to make 
file data persistent and reliable.

Initially, a user sets up a directory to be man-
aged by MetaSync; files and directories under 
that directory will be synchronized. Each man-
aged directory has a name (called namespace) 
in the system to be used in synchronizing with 
other clients. Upon initiation, MetaSync cre-
ates a folder with the name in each backend. 
The folder at the backend storage service stores 
the configuration information plus a subset of 
objects. A user can have multiple directories 
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with different configurations and a composition 
of backends.

When a client changes a file (or set of files), 
an update happens: the first step is that the cli-
ent updates the objects in the object store and 
head_client to point to the new root Dir object; 
then in step 2, the library stores the updated 
objects on the appropriate backend services; and 
in step 3, the system proposes its head_client 
value as the new value for master using pPaxos. 
Steps 1 and 2 don’t require any coordination, 
as step 1 happens locally and step 2 proceeds 
asynchronously. Crucially, a client doesn’t 
have to update global master for every local 
file write. The head_client and prev_client 
are updated to all the clients before step 2, and 
objects that aren’t referenced by any of them 
or their descendants in the hash trees are later 
removed by clients through periodic checking.

Consistent Update of Global View: pPaxos
The file structure we described allows Meta-
Sync to minimize the use of synchronization 
operations. Each object in the object store can 
be independently uploaded, because it uses 
content-based addressing. Each per-client data 
file (such as head_client) is also independent, 
because we ensure that only the owning cli-
ent modifies the file. Thus, synchronization 
to avoid potential race conditions is necessary 
only when a client wants to modify shared data 
(for example, master and configuration).

In a distr ibuted environment, it’s not 
straightforward to coordinate updates to data 
that can be modified by multiple clients simul-
taneously. To create a consistent view, clients 
must agree on the sequence of updates applied 
to the shared state.

Clients don’t have communication chan-
nels between each other (such as they might be 
offline), so they need to rely on the storage ser-
vices to achieve this consensus. However, these 
services don’t communicate with each other, 
nor do they implement consensus primitives. 
Instead, pPaxos (our variant of Paxos)9 uses the 
exposed APIs of these services.

Paxos is a multiround, non-blocking con-
sensus algorithm that’s safe regardless of fail-
ures, and makes progress as long as a majority 
is alive. Paxos would be sufficient for coordi-
nating updates, except that the backend ser-
vices don’t implement this interface. Instead, 
we only rely on them to provide an append-only 

list that atomically appends an incoming mes-
sage at the end of the list. This abstraction is 
either readily available or can be layered on 
top of the API provided by existing storage ser-
vices. For example, we use Google Drive com-
ments and Dropbox versioning.

With this append-only list abstraction, we 
can simulate Paxos. The backend services act as 
passive acceptors. Clients determine which pro-
posal was accepted by examining the message 
log to see what the service would have done 
if it had been running Paxos. Each client pro-
poses the new shared value as the next opera-
tion, and it’s accepted if the majority of backend 
services agree on it after reading the logs. A 
detailed description of the algorithm is avail-
able elsewhere.6

This setting is similar to the motivation behind 
Disk Paxos,10 an earlier algorithm that imple-
ments Paxos across passive network-attached 
storage devices; indeed, pPaxos can be consid-
ered as an optimized version of Disk Paxos. Disk 
Paxos assumes that each storage device provides 
only a simple block interface. Clients write pro-
posals to their own dedicated block on each disk, 
but they must check everyone else’s blocks to 
determine the outcome. Thus, the number of mes-
sages in Disk Paxos for a single proposal is pro-
portional to the product of the number of servers 
and clients; the number of messages in pPaxos is 
only proportional to the number of servers. Fig-
ure 1 highlights the differences among pPaxos, 
Disk Paxos, and original Paxos algorithms.

MetaSync maintains two types of shared 
metadata: the master hash value and service 
configuration. Unlike a regular file, the con-
figuration is replicated in all backends (in their 
object stores). Then, MetaSync can uniquely 
identify the shared data with a three-tuple 
(version, master_hash, config_hash).

The version is a monotonically increasing 
number that’s uniquely determined for each 
master_hash, config_hash pair. This tuple is 
used in pPaxos to describe a client’s status, and 
is stored in head_client and prev_client.

The pPaxos algorithm can determine and 
store the next value of the three-tuple. Each cli-
ent keeps the last value with which it synchro-
nized (prev_client). To propose a new value, the 
client runs pPaxos to update the previous value 
with the new value. If another value has already 
been accepted, the client can try to update the 
new value after they merge. It can repeat this 



Cloud Storage

40 www.computer.org/internet/ IEEE INTERNET COMPUTING

until it successfully updates the  master value 
with its proposed one. This data structure can 
be logically viewed as a linked list, where each 
entry points to the next hash value, and the tail 
of the list is the most up-to-date.

Note that merging is required when a client 
synchronizes its local changes (head) with the 
current master that’s different from what the 
client previously synchronized (prev). In this 
case, proposing the current head as the next 
update to prev via pPaxos returns a different 
value than the proposed head — the proposal 
fails. Some of the conflicts can be automatically 
resolved through three-way merging. Other-
wise, MetaSync just marks the conflict so that 
users can resolve it manually.

Replication: Stable Deterministic Mapping
MetaSync replicates objects (in the object store) 
redundantly across R storage providers (R is 
configurable; typically R = 2) to provide high 
availability even when a service is temporar-
ily inaccessible. This also provides potentially 
better performance over wide-area networks. 
Because R is less than the number of services, 
we must maintain information regarding the 
mapping of objects to services. MetaSync 
requires a mapping scheme that takes into 
account storage space limits imposed by each 
storage service; if handled poorly, lack of stor-
age at a single service can block the entire oper-
ation of MetaSync, and typical storage services 
vary in the (free) space they provide, rang-
ing from 2 Gbytes in Dropbox to 2 Tbytes in 
Baidu. In addition, the mapping scheme should 
consider a potential reconfiguration of storage 
services (such as increasing storage capacity); 
upon changes, the rebalancing of distributed 
objects should be minimal. In our setting, the 
mapping should meet three requirements (R):

•	 R1 — support variations in storage size limits 
across different services and across different 
users;

•	 R2 — share minimal information among ser-
vices; and

•	 R3 — minimize the realignment of objects 
upon removing or adding a service.

Instead of maintaining the mapping infor-
mation of each object, we use a stable, deter-
ministic mapping function that locates each 
object to a group of services over which it’s rep-

licated; each client can calculate the same result 
independently given the same object. Given a 
hash of an object (mod H), the mapping is map: 
H → {s : |s| = R, s ⊂ S}, where H is the hash 
space, S is the set of services, and R is the num-
ber of replicas. To provide a balanced mapping 
that takes into account storage variations across 
services (R1), we could use a mapping scheme 
that represents services with different storage 
capacities as a variable number of virtual nodes 
in a consistent hashing algorithm.11,12 Because 
the consistent hashing scheme deterministically 
locates each object on an identifier circle, Meta-
Sync can minimize information shared among 
storage providers (R2).

However, using consistent hashing has two 
problems. First, an object can be mapped to 
multiple virtual nodes corresponding to the 
same service, reducing availability. Second, a 
change in a service’s storage capacity means 
changing the number of virtual nodes; if this 
changes the size of the hash space, many or 
most objects will need to be shuffled (R3). To 
solve these problems, we introduce a stable, 
deterministic mapping scheme that maps an 
object to a unique set of virtual nodes and min-
imizes reshuffling when resource availability 
changes. The key idea is to achieve the random 
distribution via hashing and stability of remap-
ping by sorting these hashed values.

The stable deterministic mapping scheme 
uses multiple virtual storage nodes for each 
provider, where the number of virtual nodes is 
proportional to the capacity of that provider for 
a given user. Then MetaSync divides the hash 
space into H partitions. H is configurable, but 
remains fixed even as the service configuration 
changes; larger values produce better-balanced 
mappings for heterogeneous storage limits. Dur-
ing initialization, MetaSync assigns each of the 
H partitions a different, ordered list of virtual 
nodes. The ordering depends on the hash of the 
partition index, the service ID, and the virtual 
node ID. Given an object hash n, the data are 
stored on the first R distinct services from the 
list associated with the (n mod H)th partition.

The mapping function takes as input the set 
of storage providers, capacity settings, value of 
H, and a hash function. The virtual node list 
is populated proportionally to service capac-
ity, and the ordering in each list is determined 
by a uniform hash function. Thus, the result-
ing mapping of objects onto services should be 
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proportional to service capacity limits with H. 
When a virtual node is added or removed (syn-
chronized through an update to shared meta-
data), the amount of data that must be shifted is 
proportional to the virtual node’s size.

Figure 2 shows an example of our mapping 
scheme with four services providing 1 or 2 
Gbytes of free spaces — for example, A(1) means 
that service A provides 1 Gbyte of free space. 
Given the replication requirement (R = 2) and 
the hash space (H = 20), we can populate the 
initial mapping. Figures 2a and 2b illustrate 
the realignment of objects upon the removal of 
service B(2), and the inclusion of a new service 
E(3), respectively.

When reconfiguration happens, the client first 
uploads all the newly added objects to backends, 
then modifies its configuration file and updates 
the shared data with the new config_hash 
through pPaxos. Finally, it removes unreferenced 
objects from backends.

Translators
MetaSync provides a plugin system, called 
Translators, for supporting encryption and 
integrity checks. The plugin system is highly 
modular, so we can extend it to support a vari-
ety of other transformations, such as compres-
sion. Plugins implement two interfaces, put and 
get, which are invoked before storing objects to 
and after retrieving them from backend services. 
Plugins are chained, so that when an object is 
stored, MetaSync invokes a chain of put calls in 
sequence. Similarly, when an object is retrieved, 
it goes through the same chain but in reverse.

The encryption translator is currently imple-
mented using a symmetric key encryption (AES-
CBC). MetaSync keeps the encryption key locally 
and doesn’t store it on the backend. When a user 
clones the directory in another device, the user 
must provide the encryption key. An integrity 
checker runs a hash function over a retrieved 
object and compares the digest against the file 
name. If it doesn’t match, it drops the object and 
downloads the object by using other backends 
from the mapping. This must be performed only 
as part of the get chain.

Evaluation
To evaluate the system’s design and usefulness, 
here we answer the following questions: What are 
the performance characteristics of pPaxos? And 
what’s the end-to-end performance of MetaSync?

Performance of pPaxos
We measure how quickly pPaxos reaches consen-
sus as we vary the number of concurrent propos-
ers. Figure 3 shows the results of the experiment 
with 1–5 proposers over five storage providers.  
A single run of pPaxos took about 3.2 seconds 
on average under a single writer model to verify  

Figure 1. Comparison of operations between a proposer and 
an acceptor in (a) Paxos, (b) Disk Paxos, and (c) passive Paxos 
(pPaxos). Each acceptor in Paxos makes a local decision to accept 
or reject a proposal and then replies with the result. Disk Paxos 
assumes acceptors are passive; clients write proposals into per-
client disk blocks at each acceptor. Proposers need to check every 
per-client block (at every acceptor) to determine if their proposal 
was accepted, or pre-empted by another concurrent proposal. 
With pPaxos, the append-only log lets clients efficiently check the 
outcome at the passive acceptor.

Proposer Proposer Proposer

Acceptor Acceptor Acceptor

A register

...

Disk blocks Append-only
list 

(a) (b) (c)

Propose Accept
1 2

Propose Check
1 2

Propose Check
1 2

Figure 2. An example of deterministic mapping and its reconfigurations. 
(a) New mapping after service B(2) is removed. (b) New mapping after 
service E(3) is added. The grayed mappings indicate the new replication 
upon reconfiguration, and the rectangle in (b) represents replications 
that will be removed.

S = {A(1), B(2),  C(2), D(1)}
N = {A1, B1, B2, C1, C2, D1}

m[0] = [A1, C2, D1, B1, B2, C1] = [A, C]
...
m[19] = [C2, B1, D1, A1, B2, C1] = [C, B

H=20
]

S = {A(1),  C(2), D(1)}
N = {A1,  C1, C2, D1}

m[0] = [A1, C2, D1,  C1] = [A, C]
...
m[19] = [C2,  D1, A1,  C1] = [C, D]

S = {A(1),  C(2), D(1), E(3)}
N = {A1,  C1, C2, D1, E1, E2, E3}

m[0] = [A1, E2, E1, C2, D1,  C1,E3 ] = [A, E C

D

]
...
m[19] = [C2, E3, E2,  D1, E1, A1,  C1] = [C, E ]

(a)

(b)

R=2

Service D has 1-Gbyte storage

: Service con�g
: Normalized con�g
: Hash space
: Replication

S
N
H
R
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acceptance of the proposal when using all five 
storage providers. This requires at least four 
roundtrips: PREPARE (Send, FetchNewLog) and 
ACCEPT (Send, FetchNewLog); there could be mul-
tiple rounds, depending on the implementation 
for each service. It took about 7.4 second with 
five competing proposers. One important thing to 
emphasize is that, even with a slow connection to 
Baidu, pPaxos can quickly be completed with a 
single winner of that round. Also note that when 
compared to a single storage provider, the latency 
doesn’t degrade with the increasing number of 
storage providers.

End-to-End Performance
We selected three workloads to demonstrate per-
formance characteristics. First, the Linux ker-
nel source tree represents the most challenging 

workload for all storage services, due to its large 
volume of files and directory (920 directories 
and 15,000 files, with a total of 166 Mbytes). 
Second, MetaSync’s paper workload represents a 
causal use of synchronization service for users 
(three directories and 70 files, with a total of 1.6 
Mbytes). Third, sharing photos is for maximiz-
ing the throughput of each storage service with 
bigger files (50 files, with a total of 193 Mbytes).

Table 1 summarizes our results for end-to-
end performance for all workloads, comparing 
MetaSync with the native clients provided by 
each service. For S = 5, R = 1, using all five 
services without replication, MetaSync pro-
vides comparable performance to native clients 
at median speed for MetaSync paper and photo 
sharing, but outperforming for Linux kernel 
workloads. However, for S = 5, R = 2, which 
involves replicating objects twice, MetaSync is 
more than 10× faster than Dropbox in a Linux 
kernel and 2.3× faster in photo sharing.

We should note that each workload was cop-
ied into one client’s directory before synchro-
nization began. The synchronization time was 
measured as the length of interval between 
when one desktop starts to upload files and 
the creation time of the last file synced on the 
other desktop. MetaSync outperforms any indi-
vidual service for all workloads. Especially for 
the Linux kernel source, it took only 12 min-
utes when using four services (excluding the 
Baidu located outside of the country), compared 
to more than 2 hours with native clients. This 
improvement is possible due to using concur-
rent connections to multiple backends, as well 
as optimizations such as collapsing  directories. 
Although these native clients might not be 
optimized for the highest possible throughput, 

Figure 3. Latency (in seconds) to run a single pPaxos round with 
combinations of backend services and competing proposers. Each 
measurement is done five times, and each shows the average latency.
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Table 1. Synchronization performance of five native clients provided by each storage service, and with four different 
settings of MetaSync.

MetaSync

Workload Dropbox Google Box OneDrive Baidu S = 5, R = 1 S = 5, R = 2 S = 4, R = 1 S = 4, R = 2

Linux kernel 
source

2 h 45 m >3 hrs >3 
hrs

2 h 3 m > 3 hrs 1 h 8 m 13 m 51 s 18 m 57 s 12 m 18 s

MetaSync’s paper 
(seconds)

48 42 148 54 143 55 50 27 26

Photo sharing 
(seconds)

415 143 536 1,131 1,837 1,185 180 137 112



MetaSync: Coordinating Storage Across Multiple File Synchronization Services

MAY/JUNE 2016 43

considering that they can run as a background 
service, it would be beneficial for users to have 
a faster option.

M etaSync provides a secure, reliable, and per-
formant file synchronization service on top 

of popular cloud storage providers. It supports 
five commercial storage backends (in the cur-
rent open source version), and outperforms the 
fastest individual service in synchronization 
and cloning, by 1.2 to 10× on our benchmarks.

MetaSync is publicly available for download and 
use (see http://uwnetworkslab.github.io/metasync/). 
In future work, we’ll extend our system to work 
with byzantine fault services and other use cases, 
such as mobile applications.
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