
36 Published by the IEEE Computer Society 1089-7801/16/$33.00 © 2016 IEEE IEEE INTERNET COMPUTING

Cl
ou

d
St

or
ag

e

MetaSync: Coordinating
Storage across Multiple File
Synchronization Services

Seungyeop Han and
Haichen Shen
University of Washington

Taesoo Kim
Georgia Institute of Technology

Arvind Krishnamurthy,
Thomas Anderson, and
David Wetherall
University of Washington

Cloud-based file synchronization services are a worldwide resource for many

millions of users. However, individual services often have tight resource limits,

suffer from outages or shutdowns, and sometimes silently corrupt or leak user

data. As a solution, the authors design, implement, and evaluate MetaSync, a secure

and reliable file synchronization service using multiple cloud synchronization

services as untrusted storage providers. To provide global consistency among

the storage providers, the authors devise a novel variant of Paxos that enables

efficient updates atop unmodified APIs exported by each service. MetaSync

provides better availability and performance, stronger confidentiality and integrity,

and larger storage.

C loud-based file synchronization
services have become tremen-
dously popular. Dropbox reached

400 million users in June 2015, and
many competing providers offer simi-
lar services. Not only that, the increas-
ing diversity of user devices makes
these synchronization services more
convenient than ever before.

Unfortunately, not all services are
trustworthy or reliable: storage services
routinely lose data due to internal faults1
or bugs,2 leak users’ data,3 and sometimes
go completely out of business (see https://
one.ubuntu.com/services/shutdown).

Our system (MetaSync) is based on
the premise that users want the file syn-
chronization and storage that existing
cloud providers offer, but without the

exposure to fragile, unreliable, or inse-
cure services. In fact, there’s no fun-
damental need for users to trust cloud
providers, and given the aforementioned
incidents, our position is that users
are best served by not trusting them.
Clearly, a user can encrypt files before
storing them in the cloud for confidenti-
ality. More generally, Depot4 and Secure
Untrusted Data Repository (SUNDR)5
showed how to design systems from
scratch in which users of cloud stor-
age obtain data confidentiality, integ-
rity, and availability without trusting
the underlying storage provider. (For
other work in this area, see the related
sidebar.) However, these designs rely on
fundamental changes to both the client
and server; the focus of our research is

MetaSync: Coordinating Storage Across Multiple File Synchronization Services

MAY/JUNE 2016 37

whether we could use existing services for these
same ends.

Instead of starting from scratch, MetaSync
uses multiple existing storage providers to
implement a file synchronization service. We
thus leverage resources that are mostly well-
provisioned, normally reliable, and fairly inex-
pensive. While each service provides unique
features, their common purpose is to synchro-
nize a set of files between personal devices and
the cloud. By combining multiple providers,
MetaSync provides users with a larger storage
capacity with higher availability and better
performance.

The key challenge is to maintain a globally
consistent view of the synchronized files across
multiple clients without modifying any back-
end, existing services; without having a central
server; and without direct client–client com-
munication. To this end, we devise two novel
methods: first, passive Paxos (pPaxos) — an
efficient client-based consensus algorithm that
maintains a globally consistent state among
multiple passive storage backends; and second,
a stable deterministic replication algorithm that
supports reconfiguration (such as an adding
and removing capacity) with minimal reshuf-
fling of replicated objects.

Putting it all together, MetaSync can serve
users better in all aspects as a file synchroniza-
tion service; users need trust only the software
that runs on their own computers.

Goals and Assumptions
MetaSync’s usage model matches that of exist-
ing file synchronization services such as Drop-
box. A user configures MetaSync with account
information for the underlying storage services;
sets up one or more directories to be managed
by the system; and, if desired, shares each
directory with other users. Users can connect
these directories with multiple devices. (We
refer to the devices and software running on
them as clients in this article.) Local updates
are updated to all connected clients if users
choose to use a background synchronization
daemon. For users desiring explicit control over
the merge process, we also provide a manual
git-like push/pull interface with a command
line client. In this case, the user creates a set of
updates and runs a script to apply the set.

Our baseline design allows for backend ser-
vices to be unreliable and sometimes unreach-
able. The storage services might try to discover
which files are stored along with their content
and might even accidentally corrupt or delete

Related Work in Cloud File Synchronization

Amajor line of related work, starting with Farsite1 and Secure
Untrusted Data Repository (SUNDR)2 and carrying through

Sporc3 and Depot,4 is how to provide tamper resistance and pri-
vacy on untrusted storage server nodes. These systems assume
the ability to specify the client–server protocol, and therefore
can’t run on unmodified cloud storage services.

Other systems exist that compose a storage layer on top
of existing storage systems, and perhaps the closest to our
intent is DepSky;5 which proposes a cloud of clouds for secure,
byzantine-resilient storage, and doesn’t require code execution
on the servers. Their basic algorithm assumes at most one con-
current writer. When writers are at the same local network,
concurrent writes are coordinated by an external synchroni-
zation. Otherwise, it has a possible extension that can sup-
port multiple concurrent updates without an external service,
which requires clock synchronization between clients.

Our implementation builds on the ideas of many earlier
systems. Obviously, we’re indebted to earlier work on Paxos
and Disk Paxos. We maintain file objects in a manner similar
to a distributed version control system like git. Content-based
addressing has been used in many file systems. MetaSync uses

content-based addressing for a unique purpose, letting us asyn-
chronously upload or download objects to backend services.
While algorithms for distributing or replicating objects have
also been proposed and explored by previous systems, the rep-
lication system in MetaSync is designed to minimize the cost of
reconfiguration to add or subtract a storage service and also to
respect the diverse space restrictions.

References
1. A. Adya et al., “FARSITE: Federated, Available, and Reliable Storage for

an Incompletely Trusted Environment,” Proc. 5th Symp. Operating Systems

Design and Implementation, 2002, pp. 1–14.

2. J. Li et al., “Secure Untrusted Data Repository,” Proc. 6th Conf. Symp. Operating

Systems Design and Implementation, 2004, pp. 1–9.

3. A.J. Feldman et al., “SPORC: Group Collaboration Using Untrusted Cloud

Resources,” Proc. 9th Usenix Conf. Operating Systems Design and Implementation,

2010; www.usenix.org/legacy/event/osdi10/tech/full_papers/Feldman.pdf.

4. P. Mahajan et al., “Depot: Cloud Storage with Minimal Trust,” Proc. 9th Use-

nix Conf. Operating Systems Design and Implementation, 2010, pp. 1–12.

5. A. Bessani et al., “DepSky: Dependable and Secure Storage in a Cloud-of-

Clouds,” Proc. ACM European Conf. Computer Systems, 2011, pp. 31–46.

Cloud Storage

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

files. From time to time, some services might be
unavailable due to network or system failures.
However, we assume that service failures are
independent, services implement their own APIs
correctly (except for possibly losing and corrupt-
ing user data), and communications between
client and server machines are protected. This
baseline model can be extended to handle faulty
implementations of service APIs or actively
malicious services.6 Finally, we assume that
clients sharing a specific directory are trusted,
similar to a shared Dropbox directory today.

With this threat model, the goals of Meta-
Sync are

•	 higher availability and performance,
•	 stronger confidentiality and integrity,
•	 greater capacity,
•	 no direct client–client communication,
•	 no additional server, and
•	 efficient reconfiguration.

Now that we have a grounded understanding of
the system’s goals, let’s look at its design.

System Design
MetaSync is a distributed synchronization sys-
tem that provides a reliable, globally consis-
tent storage abstraction to multiple clients by
using untrusted cloud storage services. The core
library defines a set of generic APIs; all compo-
nents are implemented on top of this abstrac-
tion. This makes it easy to incorporate a new
storage service into our system.

Data Management
MetaSync has a similar underlying data struc-
ture to that of git7 in managing files and their
versions: objects, as units of data storage, are
identified by the hash of their content. Direc-
tories form hash trees, similar to Merkle trees,8
where the root directory’s hash is the root of the
tree. This root hash uniquely defines a snap-
shot. MetaSync divides and stores each file into
chunks (Blob objects) to maintain and synchro-
nize large files efficiently.

Object store. In MetaSync’s object store, there are
three kinds of objects — Dir, File, and Blob — each
uniquely identified by the hash of its content. A
File object contains hash values and offsets of
Blob objects. A Dir object contains hash values
and names of File and Dir objects.

In addition to the object store, MetaSync
maintains two kinds of metadata to provide a
consistent view of the global state: shared meta-
data, which all clients can modify; and per-
client metadata, which only the single owner
(writer) client of the data can modify.

Shared metadata. MetaSync maintains a piece
of shared metadata, called master, which is the
hash value of the root directory in the most
advanced snapshot. It represents a consistent
view of the global state; every client needs
to synchronize its status against the master.
Another shared piece of metadata is the con-
figuration of the backend services, including
information regarding the list of backends, their
capacities, and authenticators. To update shared
metadata, MetaSync uses a special-purpose
synchronization protocol built from the APIs
provided by existing cloud storage providers.

Per-client data. MetaSync keeps track of clients’
states by maintaining a view of each client’s
status. The per-client metadata includes the last
synchronized value, denoted as prev_client,
and the current value representing the client’s
recent updates, denoted as head_client. If a
client hasn’t changed any files since the previ-
ous synchronization, the value of prev_client
is equal to that of head_client. As this meta-
data is changed only by the corresponding cli-
ent, updates don’t need to be coordinated. Each
client stores a copy of its per-client metadata
into all backends on each update.

Overview
MetaSync’s core library maintains the afore-
mentioned data structures and exposes a reli-
able storage abstraction to the users. The
library’s role is to mediate accesses and updates
to actual files and metadata, and further inter-
act with the backend storage services to make
file data persistent and reliable.

Initially, a user sets up a directory to be man-
aged by MetaSync; files and directories under
that directory will be synchronized. Each man-
aged directory has a name (called namespace)
in the system to be used in synchronizing with
other clients. Upon initiation, MetaSync cre-
ates a folder with the name in each backend.
The folder at the backend storage service stores
the configuration information plus a subset of
objects. A user can have multiple directories

MetaSync: Coordinating Storage Across Multiple File Synchronization Services

MAY/JUNE 2016 39

with different configurations and a composition
of backends.

When a client changes a file (or set of files),
an update happens: the first step is that the cli-
ent updates the objects in the object store and
head_client to point to the new root Dir object;
then in step 2, the library stores the updated
objects on the appropriate backend services; and
in step 3, the system proposes its head_client
value as the new value for master using pPaxos.
Steps 1 and 2 don’t require any coordination,
as step 1 happens locally and step 2 proceeds
asynchronously. Crucially, a client doesn’t
have to update global master for every local
file write. The head_client and prev_client
are updated to all the clients before step 2, and
objects that aren’t referenced by any of them
or their descendants in the hash trees are later
removed by clients through periodic checking.

Consistent Update of Global View: pPaxos
The file structure we described allows Meta-
Sync to minimize the use of synchronization
operations. Each object in the object store can
be independently uploaded, because it uses
content-based addressing. Each per-client data
file (such as head_client) is also independent,
because we ensure that only the owning cli-
ent modifies the file. Thus, synchronization
to avoid potential race conditions is necessary
only when a client wants to modify shared data
(for example, master and configuration).

In a distr ibuted environment, it’s not
straightforward to coordinate updates to data
that can be modified by multiple clients simul-
taneously. To create a consistent view, clients
must agree on the sequence of updates applied
to the shared state.

Clients don’t have communication chan-
nels between each other (such as they might be
offline), so they need to rely on the storage ser-
vices to achieve this consensus. However, these
services don’t communicate with each other,
nor do they implement consensus primitives.
Instead, pPaxos (our variant of Paxos)9 uses the
exposed APIs of these services.

Paxos is a multiround, non-blocking con-
sensus algorithm that’s safe regardless of fail-
ures, and makes progress as long as a majority
is alive. Paxos would be sufficient for coordi-
nating updates, except that the backend ser-
vices don’t implement this interface. Instead,
we only rely on them to provide an append-only

list that atomically appends an incoming mes-
sage at the end of the list. This abstraction is
either readily available or can be layered on
top of the API provided by existing storage ser-
vices. For example, we use Google Drive com-
ments and Dropbox versioning.

With this append-only list abstraction, we
can simulate Paxos. The backend services act as
passive acceptors. Clients determine which pro-
posal was accepted by examining the message
log to see what the service would have done
if it had been running Paxos. Each client pro-
poses the new shared value as the next opera-
tion, and it’s accepted if the majority of backend
services agree on it after reading the logs. A
detailed description of the algorithm is avail-
able elsewhere.6

This setting is similar to the motivation behind
Disk Paxos,10 an earlier algorithm that imple-
ments Paxos across passive network-attached
storage devices; indeed, pPaxos can be consid-
ered as an optimized version of Disk Paxos. Disk
Paxos assumes that each storage device provides
only a simple block interface. Clients write pro-
posals to their own dedicated block on each disk,
but they must check everyone else’s blocks to
determine the outcome. Thus, the number of mes-
sages in Disk Paxos for a single proposal is pro-
portional to the product of the number of servers
and clients; the number of messages in pPaxos is
only proportional to the number of servers. Fig-
ure 1 highlights the differences among pPaxos,
Disk Paxos, and original Paxos algorithms.

MetaSync maintains two types of shared
metadata: the master hash value and service
configuration. Unlike a regular file, the con-
figuration is replicated in all backends (in their
object stores). Then, MetaSync can uniquely
identify the shared data with a three-tuple
(version, master_hash, config_hash).

The version is a monotonically increasing
number that’s uniquely determined for each
master_hash, config_hash pair. This tuple is
used in pPaxos to describe a client’s status, and
is stored in head_client and prev_client.

The pPaxos algorithm can determine and
store the next value of the three-tuple. Each cli-
ent keeps the last value with which it synchro-
nized (prev_client). To propose a new value, the
client runs pPaxos to update the previous value
with the new value. If another value has already
been accepted, the client can try to update the
new value after they merge. It can repeat this

Cloud Storage

40 www.computer.org/internet/ IEEE INTERNET COMPUTING

until it successfully updates the master value
with its proposed one. This data structure can
be logically viewed as a linked list, where each
entry points to the next hash value, and the tail
of the list is the most up-to-date.

Note that merging is required when a client
synchronizes its local changes (head) with the
current master that’s different from what the
client previously synchronized (prev). In this
case, proposing the current head as the next
update to prev via pPaxos returns a different
value than the proposed head — the proposal
fails. Some of the conflicts can be automatically
resolved through three-way merging. Other-
wise, MetaSync just marks the conflict so that
users can resolve it manually.

Replication: Stable Deterministic Mapping
MetaSync replicates objects (in the object store)
redundantly across R storage providers (R is
configurable; typically R = 2) to provide high
availability even when a service is temporar-
ily inaccessible. This also provides potentially
better performance over wide-area networks.
Because R is less than the number of services,
we must maintain information regarding the
mapping of objects to services. MetaSync
requires a mapping scheme that takes into
account storage space limits imposed by each
storage service; if handled poorly, lack of stor-
age at a single service can block the entire oper-
ation of MetaSync, and typical storage services
vary in the (free) space they provide, rang-
ing from 2 Gbytes in Dropbox to 2 Tbytes in
Baidu. In addition, the mapping scheme should
consider a potential reconfiguration of storage
services (such as increasing storage capacity);
upon changes, the rebalancing of distributed
objects should be minimal. In our setting, the
mapping should meet three requirements (R):

•	 R1 — support variations in storage size limits
across different services and across different
users;

•	 R2 — share minimal information among ser-
vices; and

•	 R3 — minimize the realignment of objects
upon removing or adding a service.

Instead of maintaining the mapping infor-
mation of each object, we use a stable, deter-
ministic mapping function that locates each
object to a group of services over which it’s rep-

licated; each client can calculate the same result
independently given the same object. Given a
hash of an object (mod H), the mapping is map:
H → {s : |s| = R, s ⊂ S}, where H is the hash
space, S is the set of services, and R is the num-
ber of replicas. To provide a balanced mapping
that takes into account storage variations across
services (R1), we could use a mapping scheme
that represents services with different storage
capacities as a variable number of virtual nodes
in a consistent hashing algorithm.11,12 Because
the consistent hashing scheme deterministically
locates each object on an identifier circle, Meta-
Sync can minimize information shared among
storage providers (R2).

However, using consistent hashing has two
problems. First, an object can be mapped to
multiple virtual nodes corresponding to the
same service, reducing availability. Second, a
change in a service’s storage capacity means
changing the number of virtual nodes; if this
changes the size of the hash space, many or
most objects will need to be shuffled (R3). To
solve these problems, we introduce a stable,
deterministic mapping scheme that maps an
object to a unique set of virtual nodes and min-
imizes reshuffling when resource availability
changes. The key idea is to achieve the random
distribution via hashing and stability of remap-
ping by sorting these hashed values.

The stable deterministic mapping scheme
uses multiple virtual storage nodes for each
provider, where the number of virtual nodes is
proportional to the capacity of that provider for
a given user. Then MetaSync divides the hash
space into H partitions. H is configurable, but
remains fixed even as the service configuration
changes; larger values produce better-balanced
mappings for heterogeneous storage limits. Dur-
ing initialization, MetaSync assigns each of the
H partitions a different, ordered list of virtual
nodes. The ordering depends on the hash of the
partition index, the service ID, and the virtual
node ID. Given an object hash n, the data are
stored on the first R distinct services from the
list associated with the (n mod H)th partition.

The mapping function takes as input the set
of storage providers, capacity settings, value of
H, and a hash function. The virtual node list
is populated proportionally to service capac-
ity, and the ordering in each list is determined
by a uniform hash function. Thus, the result-
ing mapping of objects onto services should be

MetaSync: Coordinating Storage Across Multiple File Synchronization Services

MAY/JUNE 2016 41

proportional to service capacity limits with H.
When a virtual node is added or removed (syn-
chronized through an update to shared meta-
data), the amount of data that must be shifted is
proportional to the virtual node’s size.

Figure 2 shows an example of our mapping
scheme with four services providing 1 or 2
Gbytes of free spaces — for example, A(1) means
that service A provides 1 Gbyte of free space.
Given the replication requirement (R = 2) and
the hash space (H = 20), we can populate the
initial mapping. Figures 2a and 2b illustrate
the realignment of objects upon the removal of
service B(2), and the inclusion of a new service
E(3), respectively.

When reconfiguration happens, the client first
uploads all the newly added objects to backends,
then modifies its configuration file and updates
the shared data with the new config_hash
through pPaxos. Finally, it removes unreferenced
objects from backends.

Translators
MetaSync provides a plugin system, called
Translators, for supporting encryption and
integrity checks. The plugin system is highly
modular, so we can extend it to support a vari-
ety of other transformations, such as compres-
sion. Plugins implement two interfaces, put and
get, which are invoked before storing objects to
and after retrieving them from backend services.
Plugins are chained, so that when an object is
stored, MetaSync invokes a chain of put calls in
sequence. Similarly, when an object is retrieved,
it goes through the same chain but in reverse.

The encryption translator is currently imple-
mented using a symmetric key encryption (AES-
CBC). MetaSync keeps the encryption key locally
and doesn’t store it on the backend. When a user
clones the directory in another device, the user
must provide the encryption key. An integrity
checker runs a hash function over a retrieved
object and compares the digest against the file
name. If it doesn’t match, it drops the object and
downloads the object by using other backends
from the mapping. This must be performed only
as part of the get chain.

Evaluation
To evaluate the system’s design and usefulness,
here we answer the following questions: What are
the performance characteristics of pPaxos? And
what’s the end-to-end performance of MetaSync?

Performance of pPaxos
We measure how quickly pPaxos reaches consen-
sus as we vary the number of concurrent propos-
ers. Figure 3 shows the results of the experiment
with 1–5 proposers over five storage providers.
A single run of pPaxos took about 3.2 seconds
on average under a single writer model to verify

Figure 1. Comparison of operations between a proposer and
an acceptor in (a) Paxos, (b) Disk Paxos, and (c) passive Paxos
(pPaxos). Each acceptor in Paxos makes a local decision to accept
or reject a proposal and then replies with the result. Disk Paxos
assumes acceptors are passive; clients write proposals into per-
client disk blocks at each acceptor. Proposers need to check every
per-client block (at every acceptor) to determine if their proposal
was accepted, or pre-empted by another concurrent proposal.
With pPaxos, the append-only log lets clients efficiently check the
outcome at the passive acceptor.

Proposer Proposer Proposer

Acceptor Acceptor Acceptor

A register

...

Disk blocks Append-only
list

(a) (b) (c)

Propose Accept
1 2

Propose Check
1 2

Propose Check
1 2

Figure 2. An example of deterministic mapping and its reconfigurations.
(a) New mapping after service B(2) is removed. (b) New mapping after
service E(3) is added. The grayed mappings indicate the new replication
upon reconfiguration, and the rectangle in (b) represents replications
that will be removed.

S = {A(1), B(2), C(2), D(1)}
N = {A1, B1, B2, C1, C2, D1}

m[0] = [A1, C2, D1, B1, B2, C1] = [A, C]
...
m[19] = [C2, B1, D1, A1, B2, C1] = [C, B

H=20
]

S = {A(1), C(2), D(1)}
N = {A1, C1, C2, D1}

m[0] = [A1, C2, D1, C1] = [A, C]
...
m[19] = [C2, D1, A1, C1] = [C, D]

S = {A(1), C(2), D(1), E(3)}
N = {A1, C1, C2, D1, E1, E2, E3}

m[0] = [A1, E2, E1, C2, D1, C1,E3] = [A, E C

D

]
...
m[19] = [C2, E3, E2, D1, E1, A1, C1] = [C, E]

(a)

(b)

R=2

Service D has 1-Gbyte storage

: Service con�g
: Normalized con�g
: Hash space
: Replication

S
N
H
R

Cloud Storage

42 www.computer.org/internet/ IEEE INTERNET COMPUTING

acceptance of the proposal when using all five
storage providers. This requires at least four
roundtrips: PREPARE (Send, FetchNewLog) and
ACCEPT (Send, FetchNewLog); there could be mul-
tiple rounds, depending on the implementation
for each service. It took about 7.4 second with
five competing proposers. One important thing to
emphasize is that, even with a slow connection to
Baidu, pPaxos can quickly be completed with a
single winner of that round. Also note that when
compared to a single storage provider, the latency
doesn’t degrade with the increasing number of
storage providers.

End-to-End Performance
We selected three workloads to demonstrate per-
formance characteristics. First, the Linux ker-
nel source tree represents the most challenging

workload for all storage services, due to its large
volume of files and directory (920 directories
and 15,000 files, with a total of 166 Mbytes).
Second, MetaSync’s paper workload represents a
causal use of synchronization service for users
(three directories and 70 files, with a total of 1.6
Mbytes). Third, sharing photos is for maximiz-
ing the throughput of each storage service with
bigger files (50 files, with a total of 193 Mbytes).

Table 1 summarizes our results for end-to-
end performance for all workloads, comparing
MetaSync with the native clients provided by
each service. For S = 5, R = 1, using all five
services without replication, MetaSync pro-
vides comparable performance to native clients
at median speed for MetaSync paper and photo
sharing, but outperforming for Linux kernel
workloads. However, for S = 5, R = 2, which
involves replicating objects twice, MetaSync is
more than 10× faster than Dropbox in a Linux
kernel and 2.3× faster in photo sharing.

We should note that each workload was cop-
ied into one client’s directory before synchro-
nization began. The synchronization time was
measured as the length of interval between
when one desktop starts to upload files and
the creation time of the last file synced on the
other desktop. MetaSync outperforms any indi-
vidual service for all workloads. Especially for
the Linux kernel source, it took only 12 min-
utes when using four services (excluding the
Baidu located outside of the country), compared
to more than 2 hours with native clients. This
improvement is possible due to using concur-
rent connections to multiple backends, as well
as optimizations such as collapsing directories.
Although these native clients might not be
optimized for the highest possible throughput,

Figure 3. Latency (in seconds) to run a single pPaxos round with
combinations of backend services and competing proposers. Each
measurement is done five times, and each shows the average latency.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

La
te

nc
y

(s
ec

)

No. of proposers

Google
Dropbox

OneDrive
Box

Baidu
All

Table 1. Synchronization performance of five native clients provided by each storage service, and with four different
settings of MetaSync.

MetaSync

Workload Dropbox Google Box OneDrive Baidu S = 5, R = 1 S = 5, R = 2 S = 4, R = 1 S = 4, R = 2

Linux kernel
source

2 h 45 m >3 hrs >3
hrs

2 h 3 m > 3 hrs 1 h 8 m 13 m 51 s 18 m 57 s 12 m 18 s

MetaSync’s paper
(seconds)

48 42 148 54 143 55 50 27 26

Photo sharing
(seconds)

415 143 536 1,131 1,837 1,185 180 137 112

MetaSync: Coordinating Storage Across Multiple File Synchronization Services

MAY/JUNE 2016 43

considering that they can run as a background
service, it would be beneficial for users to have
a faster option.

M etaSync provides a secure, reliable, and per-
formant file synchronization service on top

of popular cloud storage providers. It supports
five commercial storage backends (in the cur-
rent open source version), and outperforms the
fastest individual service in synchronization
and cloning, by 1.2 to 10× on our benchmarks.

MetaSync is publicly available for download and
use (see http://uwnetworkslab.github.io/metasync/).
In future work, we’ll extend our system to work
with byzantine fault services and other use cases,
such as mobile applications.

Acknowledgments
This work was supported by the US National Science Foundation

(CNS-0963754, 1318396, and 1420703) and Google. This mate-

rial is based on research sponsored by DARPA under agree-

ment FA8750-12-2-0107. The US government is authorized to

reproduce and distribute reprints for governmental purposes,

notwithstanding any copyright notation thereon. Taesoo Kim

was partly supported by MSIP/IITP (B0101-15-0644).

References
1. C. Brooks, “Cloud Storage Often Results in Data Loss,”

Business News Daily, 8 Oct. 2011; www.business-

newsdaily.com/1543-cloud-data-storage-problems.

html.

2. G. Huntley, “Dropbox Confirms That a Bug within

Selective Sync May Have Caused Data Loss,” Y Hacker

News, Oct. 2014; https://news.ycombinator.com/item?

id=8440985.

3. J. Cook, “All the Different Ways that ‘iCloud’ Naked

Celebrity Photo Leak Might Have Happened,” Busi-

ness Insider, 1 Sept. 2014; www.businessinsider.com/

icloud-naked-celebrity-photo-leak-2014-9.

4. P. Mahajan et al., “Depot: Cloud Storage with Mini-

mal Trust,” Proc. 9th Usenix Conf. Operating Systems

Design and Implementation, 2010, pp. 1–12.

5. J. Li et al., “Secure Untrusted Data Repository,” Proc.

6th Conf. Symp. Operating Systems Design and Imple-

mentation, 2004, pp. 1–9.

6. S. Han et al., “MetaSync: File Synchronization across

Multiple Untrusted Storage Services,” Proc. 2015

Usenix Ann. Technical Conf., 2015; www.usenix.org/

conference/atc15/technical-session/presentation/han.

7. S. Chacon and B. Straub, “Git Internals — Git Objects,”

Pro Git, APress, 2014; http://git-scm.com/book/en/

Git-Internals-Git-Objects.

8. R.C. Merkle, “A Digital Signature Based on a Conven-

tional Encryption Function,” Proc. 7th Ann. Int’l Cryp-

tology Conf., 1987, pp. 369–378.

9. L. Lamport, “The Part-Time Parliament,” ACM Trans.

Computer Systems, vol. 16, no. 2, 1998, pp. 133–169.

10. E. Gafni and L. Lamport, “Disk Paxos,” Distributed

Computing, vol. 16, no. 1, 2003, pp. 1–20.

11. D. Karger et al., “Consistent Hashing and Random

Trees: Distributed Caching Protocols for Relieving Hot

Spots on the World Wide Web,” Proc. 29th Ann. ACM

Symp. Theory of Computing, 1997, pp. 654–663.

12. I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup

Service for Internet Applications,” Proc. 2001 Conf.

Applications, Technologies, Architectures, and Proto-

cols for Computer Comm., 2001, pp. 149–160.

Seungyeop Han is a PhD candidate in the Computer Sci-

ence and Engineering Department at the University of

Washington. His research interests include networked

systems, distributed systems, computer networks, and

security and privacy. Han has an MS in computer sci-

ence and engineering from the University of Washing-

ton. Contact him at syhan@cs.washington.edu.

Haichen Shen is a PhD student in the Computer Science and

Engineering Department at the University of Washing-

ton. His research interests include mobile computing,

computer networking, and distributed systems. Shen

has an MS in computer science and engineering from

the University of Washington. Contact him at hai-

chen@cs.washington.edu.

Taesoo Kim is an assistant professor in the School Com-

puter Science at Georgia Institute of Technology. His

research interests include designing and building

secure systems from trusted components. Kim has a

PhD in computer science from the Massachusetts Insti-

tute of Technology. Contact him at taesoo@gatech.edu.

Arvind Krishnamurthy is an associate professor in the Com-

puter Science and Engineering Department at the Uni-

versity of Washington. His research interests include

all aspects of building practical and robust computer

systems, especially with regards to the robustness,

security, and performance of Internet-scale systems.

Krishnamurthy has a PhD in computer science and

engineering from the University of California, Berke-

ley. Contact him at arvind@cs.washington.edu.

Thomas Anderson is the Warren Francis and Wilma Kolm Brad-

ley Chair of Computer Science and Engineering at the Uni-

versity of Washington. His research interests include all

aspects of building practical, robust, and efficient computer

Cloud Storage

44 www.computer.org/internet/ IEEE INTERNET COMPUTING

systems, especially distributed systems, operating systems,

computer networks, multiprocessors, and security. He was

recently elected to the National Academy of Engineer-

ing and is an ACM Fellow. He’s the winner of the Usenix

Lifetime Achievement Award, the Usenix Software Tools

User Group Award, the IEEE Koji Kobayashi Computer and

 Communications Award, the ACM Sigops Mark Weiser

Award, and the IEEE Communications Society William R.

Bennett Prize. Contact him at tom@cs.washington.edu.

David Wetherall is a principal engineer at Google, and is a

former professor of computer science and engineering

at the University of Washington. He research interests

include the design of datacenter and backbone networks.

Wetherall has a PhD in computer science from the Mas-

sachusetts Institute of Technology. He’s a Fellow of ACM

and IEEE. Contact him at djw@cs.washington.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IEEE Software offers
pioneering ideas,
expert analyses, and
thoughtful insights for
software professionals
who need to keep up
with rapid technology
change. It’s the authority
on translating software
theory into practice.

www.computer.org/
software/subscribe

WWW.COMPUTER.ORG/SOFTWARE

NOVEMBER/DECEMBER 2015

IE
E

E
 S

O
F

T
W

A
R

E

N
ovem

b
er/D

ecem
b

er 2015
R

E
F

A
C

T
O

R
IN

G

 V
o

lu
m

e 32 N
u

m
b

er 6

TINY PROGRAMMING TOOLS // 24

REQUIREMENTS
& SOCIAL RESPONSIBILITY // 109

WWW.COMPUTER.ORG/SOFTWARE

JANUARY/FEBRUARY 2016

IE
E

E
 S

O
F

T
W

A
R

E

January/February 2016
T

H
E

 F
U

T
U

R
E

 O
F

 S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G

 V
o

lu
m

e 33 N
u

m
b

er 1

CODE CLARITY // 22

SOFTWARE
ON A COMET // 81

WWW.COMPUTER.ORG/SOFTWARE

MARCH/APRIL 2016
IE

E
E

 S
O

F
T

W
A

R
E

M

arch/A
pril 2016

B
IG

 D
A

TA

 V
o

lu
m

e 33 N
u

m
b

er 2

