
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Lightweight Application-Level Crash Consistency
on Transactional Flash Storage

Changwoo Min, Georgia Institute of Technology; Woon-Hak Kang, Sungkyunkwan
University; Taesoo Kim, Georgia Institute of Technology; Sang-Won Lee and Young Ik Eom,

Sungkyunkwan University

https://www.usenix.org/conference/atc15/technical-session/presentation/min

USENIX Association 2015 USENIX Annual Technical Conference 221

Lightweight Application-Level Crash Consistency
on Transactional Flash Storage

Changwoo Min†∗Woon-Hak Kang‡ Taesoo Kim† Sang-Won Lee‡ Young Ik Eom‡
†Georgia Institute of Technology ‡Sungkyunkwan University

Abstract
Applications implement their own update protocols to
ensure consistency of data on the file system. However,
since current file systems provide only a preliminary or-
dering guarantee, notably fsync(), these update protocols
become complex, slow, and error-prone.

We present a new file system, CFS, that supports a
native interface for applications to maintain crash consis-
tency of their data. Using CFS, applications can achieve
crash consistency of data by declaring code regions that
must operate atomically. By utilizing transactional flash
storage (SSD/X-FTL), CFS implement a lightweight
mechanism for crash consistency. Without using any
heavyweight mechanisms based on redundant writes and
ordering, CFS can atomically write multiple data pages
and their relevant metadata to storage.

We made three technical contributions to develop a
crash consistency interface with SSD/X-FTL in CFS: se-
lective atomic propagation of dirty pages, in-memory
metadata logging, and delayed deallocation. Our evalua-
tion of five real-world applications shows that CFS-based
applications significantly outperform ordering versions:
2–5× faster by reducing disk writes 1.9–4.1× and disk
cache flushing 1.1–17.6×. Importantly, our porting effort
is minimal: CFS requires 317 lines of modifications from
3.5 million lines of ported applications.

1 Introduction
Preserving the consistency of application data is one of
the foremost responsibilities of computer systems. Appli-
cations, ranging from a simple text editor to more com-
plex relational DBMS, are designed to keep their data
crash-consistent. Nevertheless, due to limited file sys-
tem interfaces, primarily fsync(), update protocols of
applications to achieve crash consistency are notoriously
complex, inefficient, and ad-hoc. As a result, most ap-
plications still incur inconsistencies of data upon system
crashes or random power failures [54].

Suppose that two database files need to be atomically
updated as shown in Figure 1. In current file systems, a
typical solution is to use multiple rollback journals as
shown in Figure 2. To make a single database update

∗Some of this work was performed while Changwoo Min was at
Sungkyunkwan University.

1 + cfs_begin();
2 write(/db1, "new");
3 write(/db2, "new");
4 + cfs_commit();

Figure 1: An example code snippet to implement crash-
consistent updates of two database files in SQLite by using
CFS. In this pseudo code, /db1 means a file descriptor of a
database db1 under the directory /, and “new” means new data
(e.g., database entry) to be updated. Two API calls, cfs_begin()
and cfs_commit(), are included at the beginning and end of two
write() operations to denote an atomic update.

crash-consistent, it first records the original state of the
database to a journal, so that it can always restore the
database to known state upon a system crash. To make
multiple database files crash-consistent, it has to main-
tain another journal, the so-called master journal, which
specifies the database files involved during updates.

As a result, popular database systems, such as
SQLite [7], end up maintaining three journal files and
performing 11 fsync() operations for updating just two
database files with crash-consistency [31]. Besides com-
plexity, this ad-hoc update protocol imposes a huge per-
formance overhead: under ext4 in ordered journal mode,
it generates 48 page disk writes and eight disk cache flush
operations to update just two data pages. In spite of the in-
herent performance overhead, such fsync()-based update
protocols often can not guarantee crash consistency. This
happens because some file systems, device drivers, and
virtual machines deliberately ignore such flush requests
to optimize runtime performance [12, 13, 50].

A significant amount of research has been done to
provide consistency of file system structures (e.g., meta-
data) [16, 25, 29, 39, 43, 58, 64]. However, upon crashes
or power failures, even when file system structures are
consistent in a system-wide manner, each application’s
data can be left inconsistent.

One reason why file systems and applications resort
to costly journaling or logging is that current storage
devices do not guarantee the atomic write of multiple
pages or even a single page. Though recently proposed
transactional flash storage supports atomic multi-page
writes [20,33,51,53,56] by extending their log-structured
write mechanism, to the best of our knowledge, there is
no study on how to use transactional flash storage for

222 2015 USENIX Annual Technical Conference USENIX Association

1 // init master journal
2 open(/master.jnl, O_CREATE);
3 write(/master.jnl, "/db1,/db2");
4 fsync(/master.jnl); fsync(/);
5 // update db1
6 open(/db1.jnl, O_CREATE);
7 write(/db1.jnl, "old");
8 fsync(/db1.jnl); fsync(/);
9 write(/db1.jnl, "/master.jnl");

10 fsync(/db1.jnl);
11 write(/db1, "new");
12 fsync(/db1);
13 // update db2: do the same as db1
14 ...
15 // clean up master journal
16 unlink(/master.jnl);
17 fsync(/);
18 // clean up db1/2 journal
19 unlink(/db1.jnl);
20 unlink(/db2.jnl);

/db1
write(/db1, “new”);
w s

/db2
write(/db2, “new”);
w s

/master.jnl
write(/master.jnl, “/db1,/db2”);

c w s u s

/db1.jnl

write(/db1.jnl, “old”);
write(/db1.jnl, “/master.jnl”);

c w w s s u

/db2.jnl

write(/db2.jnl, “old”);
write(/db2.jnl, “/master.jnl”);

u c w w s s

: write db w : unlink u : create c : write journal w : fsync s s two fsync on fd
and its parent dir :

time

Figure 2: Crash-consistent updates of two database files in SQLite. File systems provide a minimal consistency guarantee upon
a crash or a power failure: data and metadata of the latest sync-ed files will be preserved in order. To provide application-level
consistency, an application has to carefully coordinate fsync() and unlink() in an ad-hoc manner. In this example, SQLite maintains
a master journal (master.jnl) and two journals (i.e., db1.jnl and db2.jnl) with complex ordering of fsync() and unlink() calls.
Because fsync() does not ensure that the entry in the directory containing the file has reached storage, creating a journal file entails
two fsync() calls: one for the journal itself and another for its parent directory.

direct and efficient support of application-level crash con-
sistency.

In this paper, we present CFS, a file system that natively
supports application-level crash consistency on transac-
tional flash storage. We make the following technical
contributions:

• Native Interface for Crash Consistency: CFS pro-
vides a native interface for applications to describe
atomic code regions which must operate atomically.
For each region, CFS creates an atomic propagation
group, which is a set of data and metadata pages
modified in the region. An atomic propagation group
is atomically written to storage regardless of system
crash (commit), or is reverted either explicitly by a
user (abort) or upon crash. Atomicity is guaranteed
by atomic multi-page writes in transactional flash
storage without using any journaling or logging.
• In-Memory Metadata Logging: The key design

challenge is how to propagate metadata pages shared
by multiple atomic propagation groups. Suppose
that two inodes in different groups happen to be
in the same metadata page; committing a group re-
sults in unintended propagation of another inode. We
call this false sharing of metadata pages because ir-
relevant sub-page-sized metadata structures are in
the same page. To resolve this, we introduce an in-
memory metadata logging mechanism that keeps
track of metadata changes for each group and selec-
tively propagates changes of a committing group.
• Delayed Deallocation: All operations in an atomic

code region must be safely abortable. However, it is
tricky to revert deallocation of file system resources
such as inodes and blocks. For example, suppose

that block B1, which was released from atomic prop-
agation group A1, was allocated to another group. If
A1 is aborted, it is impossible to revert A1’s dealloca-
tion of B1. To resolve this, we introduce a delayed
deallocation technique, which defers actual resource
deallocation until commit time.
• Legacy Application Support: CFS internally man-

ages a system-wide atomic propagation group for
legacy applications that do not use CFS system calls.
Legacy applications can run with CFS-based ones
without any modification.

Unlike transactional file systems [36, 42, 55, 60, 63] ,
which have been proposed to support DBMS-like ACID
transactions, we have designed CFS primarily for crash
consistency, and not for strong isolation. There are two
reasons for this decision. First, modern applications like
MariaDB [3, 38] or Kyoto Cabinet [2] already relax their
isolation level for performance optimization, without com-
promising their correctness semantics. If strong isolation
is enforced by transactional file systems, atomic updates
in these applications may fail to progress efficiently due
to frequent conflicts among transactions. We will discuss
this in more detail in §8. Second, using rich semantics
at the application level, it makes sense to give develop-
ers more freedom to choose appropriate synchronization
primitives to achieve the required isolation level for their
applications. We summarize isolation policies of popular
applications in §6.

We have implemented CFS based on ext4 using transac-
tional flash storage (SSD/X-FTL [33]). Our evaluation on
real-world applications, including SQLite, MariaDB, and
Kyoto Cabinet shows that CFS-based applications signifi-
cantly outperform their original versions: 2–5× faster by

2

USENIX Association 2015 USENIX Annual Technical Conference 223

reducing disk writes 1.9–4.1× and disk cache flushing by
1.1–17.6×. Our porting experience shows that CFS can
easily replace a variety of existing update protocols with
its native interface.

In the rest of this paper, we will discuss the background
(§2) and design principles (§3). Next, we will present the
details of CFS design (§4) and implementation (§5). Then,
we will show our application case studies (§6) and evalu-
ate performance (§7). Finally, we discuss our limitations
(§8) and related work (§9), and conclude (§10).

2 Background
2.1 Problems in Modern File Systems
Modern file systems cannot guarantee application-level
crash consistency even with data journal mode for the
four following reasons:

No Atomicity on Multiple Files: It is not uncommon
that application data, which needs to be atomically up-
dated, spans two or more files, as shown in Figure 2.
However, while modern file systems provide three order-
ing primitives, namely sync(), fsync() and msync() for
system-wide or file-wide flushing, they do not provide
any primitive to flush multiple files selectively and atomi-
cally. As a result, developers have no option other than to
implement their own complex update protocols with the
given primitives.

Lack of Atomic Page Writes: Although fsync() en-
sures durability and ordering of writes, current storage
devices do not guarantee the atomic write of a single page
as well as multiple pages. Hence, file systems and applica-
tions resort to costly journaling (or logging) mechanisms
or complicated copy-on-write (CoW) mechanisms [19].
However, disk cache flush operations, which are essen-
tial to implement such mechanisms, frequently become a
performance bottleneck [18, 19, 46].

Shared Metadata Page: Even if an underlying stor-
age device provides atomic page writes, modern file sys-
tems cannot directly support application-level crash con-
sistency. Assume that two applications, A1 and A2, are
running. Suppose that A1 finishes atomic updates of its
changes and the system crashes before A2 triggers its
atomic updates. To achieve crash consistency of A1, all
data pages and relevant metadata pages should be writ-
ten. However, a metadata page can contain information of
both A1 and A2, so the incomplete metadata changes of A2
can be accidentally propagated by A1. This is because a
write unit in storage is a page, not an individual metadata
structure. We call this false sharing of metadata pages.
Depending on the unwanted metadata propagation of A2,
a directory could have nonexistent files, or a file could
have garbage blocks, or the free block counter in a su-
perblock could be incorrect. In other words, A1 hampers

the consistency of A2 upon a crash.

Steal Policy and Lack of Undo Mechanism: Modern
file systems use the steal policy: due to page reclamation
by the page flusher or sync() by applications, any meta-
data or data page can be written to storage at any time,
although its corresponding application is still executing.
Upon system recovery after a crash or an application’s re-
quest to abort its changes, the stolen pages and in-memory
data structures, such as metadata and inode cache, should
be reverted. Unfortunately no existing file system provides
a native undo mechanism. This is one of the main reasons
why file systems cannot natively support application-level
crash consistency.

2.2 Transactional Flash Storage
Transactional flash storage [20, 33, 51, 53, 56] supports
atomic write of multiple pages by extending the log-
structured nature of a flash translation layer (FTL). They
defer the update of the mapping table for new data and
achieve the atomicity of multi-page writes by atomically
updating the mapping table in response to a commit re-
quest from the host. Since atomic writes achieve a high
level of data integrity with fewer write commands, the
storage industry is working on its standardization [61].

In this paper, we used SSD/X-FTL [33], which is a
transactional flash storage providing extended SCSI in-
terfaces such as write(txid, page), commit(txid), and
abort(txid). Each write operation is associated with
txid, and the written pages with the same txid become
atomically durable upon a commit(txid) request. Upon
an abort(txid) request, they are reverted to their old
copies. Though CFS is built on SSD/X-FTL, CFS does
not fundamentally require SSD/X-FTL, and it can be
built on any transactional storage devices [26, 51, 56, 61]
(see §8).

3 Design Principles
For an application to be crash-consistent, a series of file
system operations either all occur, or nothing occurs.
From the perspective of file systems, this can be trans-
lated into the following technical axiom: “all data pages
and their relevant metadata changes should be atomically
propagated to storage.” In this paper, file systems satis-
fying this technical requirement will be said to provide
application-level crash consistency. In this section, we
discuss four design principles which will lead to our key
techniques: selective atomic propagation of dirty pages
(§4.1) and in-memory metadata logging (§4.2).

Defining an Atomic Code Region: In CFS, instead of
implementing complex update protocols, applications
simply specify an atomic code region, in which file
system operations must be atomically processed. An
atomic code region starts with cfs_begin() and ends

3

224 2015 USENIX Annual Technical Conference USENIX Association

with cfs_commit() (or is canceled with cfs_abort()).
CFS automatically captures files modified by system
calls, but for memory-mapped files, developers should
explicitly specify corresponding file descriptors by using
cfs_add(fd). Naturally, there are one or more files in an
atomic code region. After capturing all the modifications
inside the atomic code region (the so-called atomic prop-
agation group), cfs_commit() will make those changes
persistent, and cfs_abort() will revert them by undoing
all operations performed in the atomic code region.

Atomic Propagation of Data and Metadata Pages:
Instead of resorting to costly journaling or complex CoW
mechanisms, CFS exploits the atomic multi-page write
feature of transactional flash storage. All data and rele-
vant metadata pages modified in an atomic code region
are grouped and sent to storage for an atomic write. Since
transactional flash storage guarantees atomic durability,
there is no need for journaling or CoW mechanisms.

No-Steal and Selective Propagation of Metadata:
Even if CFS writes only relevant metadata pages modi-
fied in an atomic code region, metadata changes made by
other in-progress atomic code regions can be propagated
to storage due to the false sharing of metadata pages.

To avoid this anomaly, CFS delays writing the in-
progress metadata changes to storage until commit time
(no stealing). Also, to selectively propagate the changes
in a metadata page, we propose a technique that logs in-
memory metadata changes for each atomic propagation
group and replays them at commit time.

Undoing Stolen Data Pages and In-Memory Struc-
tures: Unlike metadata pages, we support a steal policy
for data pages, meaning that data pages do not need to be
sent to storage, and rather can be stolen. This provides
two benefits. First, effective management of limited page
cache becomes possible, because data pages can be re-
claimed under memory pressure. Second, the amount of
writes at commit can be reduced, hence latency as well,
because the page flusher can flush dirty pages during idle
time.

To support a steal policy of data pages, CFS should
be able to revert every stolen page of the aborted atomic
propagation group to its old copy when system recovers
from a crash or cfs_abort() is invoked. CFS relies on
transactional flash storage to revert stolen pages. When
a system crashes, transactional flash storage reverts all
uncommitted writes to their old copies on system reboot.
When cfs_abort() is called, CFS asks the transactional
flash storage to revert written pages of the aborting group
to their old copies. In addition, CFS reverts all in-memory
metadata changes for the operating system after the abort
operation. This is done by undoing the collected logs of
the in-memory metadata structures.

4 CFS Design
In this section, we present the design of CFS, an ext4-
based file system that natively supports application-
level crash consistency on transactional flash storage. To
achieve crash consistency for a series of file system oper-
ations, developers define atomic code regions in source
code and CFS guarantees atomic operations within the
regions. For each region, CFS manages an atomic prop-
agation group that is a set of data and metadata pages
modified in each region. The pages in the group will be
written atomically using atomic multi-page write features
of transactional flash storage. CFS logs in-memory meta-
data changes made by each region. At commit time, CFS
replays the collected logs of a committing group to selec-
tively propagate changes made in the group to storage. To
this end, CFS manages two versions of metadata: mem-
ory version and storage version. The data pages and the
storage version of metadata pages are atomically written
to storage.

Figure 3 illustrates a running example of CFS. Ap-
plication A1, as in Figure 1, updates two database files,
db1 and db2, in its atomic code region. Application A2 up-
dates two pages of a database file db3. Upon cfs_begin(),
a new atomic propagation group starts and an associ-
ated new txid is assigned for further interaction with
transactional flash storage. CFS logs in-memory metadata
changes made in each region (Step 1). Suppose that A1
starts cfs_commit() while A2 is still in-progress (Step 2).
At this moment, the atomic propagation group of A1 has
data page P5 and P6, and metadata pages P1–P4, which
have metadata changes for db1 and db2. The false shar-
ing between A1 and A2 occurs in P1–P4. CFS replays the
collected logs of A1 on the storage versions, P1’–P4’, for
selective propagation of metadata changes (Step 3). Thus,
the storage versions P1’–P4’ only contain the changes of
A1 without incorporating the changes of still-in-progress
A2. All data pages and the storage version of metadata
pages in the group are written to storage with the txid of
A1 (Step 4). Finally, CFS asks the storage device to make
the written pages with the txid atomically persistent (Step
5). By using transactional flash storage, CFS can avoid
redundant journalings and can significantly improve the
performance of file systems. Not only that applications do
not need complex and ad-hoc update protocols, but natu-
rally gain better performance by using CFS. For example,
SQLite’s update protocols, which invokes 11 fsync()
calls for updating two database files, can be replaced with
two native calls to CFS and gain a 16.7× increase in per-
formance compared to the original version, as shown in
§7.2.

4.1 Managing Atomic Propagation Groups
For each atomic code region embraced with cfs_begin()
and cfs_commit(), CFS keeps track of modified pages

4

USENIX Association 2015 USENIX Annual Technical Conference 225

 …
 cfs_begin();
 write(/db3, …);
 write(/db3, …);
 cfs_commit();

Application
A1 A2

2. Commit A1

 cfs_begin();
 write(/db1, “new”);
 write(/db2, “new”);
 cfs_commit();
 …

Operating System
Data
Page

Metadata
Page

CFS P7 P8 /db1 /db2 /db3 P5 P6

1. Collect logs

3. Redo A1 logs on storage versions

Memory
Version

Metadata
Logs

SB GD BB IT

A1 logs A2 logs

Device
Driver P5 P6 4. Atomic write P1’, …, P4’, P5, P6

Storage
Version

Transactional Flash Storage

P1

New copy of P1, … , P4’, P5, P6

P6

Old copy of P1, … , P6

5. Atomic propagation at commit

P5 P6

… sub(SB.free_blk_cnt, …),
 set_bit(BB,...,P6),
 assign(db2.mtime,…), …

c c c c

c c c c

c c c c

… sub(SB.free_blk_cnt, …),
 set_bit(BB,...,P7/P8),
 assign(db3.mtime,…), …

P1 P2 P3 P4

P1’ P2’ P3’ P4’

P1’ P2’ P3’ P4’

NOTE. SB: superblock, GD: group descriptor, BB: block bitmap, IT: inode table

Figure 3: Two database applications running in CFS. Checkerboard rectangles denote metadata of files with the same color. Redoing
logs of A1 resolves the false sharing that occurred at P1–P4 and creates storage version P1’–P4’. Only storage versions of metadata
pages with no false sharing are written to storage. Thus, committing A1 does not interfere with the consistency of A2.

as an atomic propagation group. All dirty data pages of
the files and modified metadata pages in the same atomic
propagation group are atomically and persistently written
to storage using atomic write operations in transactional
flash storage. An atomic propagation group is inherited
by a child task but cannot be nested: a new task spawned
inside an atomic code region automatically inherits its par-
ent region (i.e., parent’s txid) until it starts a new atomic
code region. In SSD/X-FTL, a new txid is assigned to
a task (i.e., task_struct in Linux) upon invocation of
cfs_begin(). CFS then writes all pages with the same
txid for the task.

4.2 In-Memory Metadata Logging
Memory Version vs. Storage Version: At the core of
CFS is the in-memory metadata logging. CFS records
changes of in-memory metadata structures, called the
memory version, for each atomic propagation group.
Upon a commit, CFS selectively propagates the changes
made in the group to on-disk metadata structures, called
the storage version, which are updated by redoing logs
of a committing group, and then writing to storage. Upon
an abort, CFS reverts the changes of in-memory metadata
structures by undoing logs of the aborting group. Creat-
ing the storage version is straightforward if a metadata
has separate in-memory and on-disk structures (e.g., su-
perblock and inode). Otherwise, in the case that there is
no separate structure (e.g., inode bitmap), CFS clones a
memory version and uses the cloned structure as a storage
version. The storage versions are what will be initially
loaded when reading pages from storage.

Operational Logging: CFS uses operational logging,
which records executed metadata change operations. Ta-
ble 1 shows the specification of operations used to capture

the metadata changes in CFS. Operations are composed
of four primitive operations and one extended operation
(x_op). Primitive operations directly modify metadata
structures and an extended operation runs a registered
callback function, noted as argument f. All operations
have two arguments: m for memory version and s for
storage version of a metadata structure.

Let us suppose that the free inode count in a superblock
needs to be decremented when allocating a new inode. To
capture this operation, CFS records a sub operation with
an argument of the free inode count in superblock, so that
the metadata change can be part of the logs in the current
atomic propagation group. Upon a commit, the free inode
count in on-disk superblock (i.e., s) will be decremented
to reflect the change (redoing). Upon an abort, the free
inode count of the in-memory superblock (i.e., m) will be
incremented (undoing) to revert the change.

It is worth detailing how to undo assign operations
(φ(m) in Table 1). For example, atomic propagation group
A1 creates a new file, thus the timestamp of the parent
directory D is updated from t0 to t1. After that, another
atomic propagation group A2 creates another file at the
same directory so the timestamp is updated from t1 to t2.
Now, if A1 aborts, to what should the timestamp of D be
reverted? Since A2 already updated the timestamp from t1
to t2, it should remain t2. After that, when A2 aborts, the
timestamp should be reverted to t0. After all, CFS always
reverts to its most recent valid value. For this purpose,
CFS maintains a list of assign operations for a data entry
in order of the operations. Upon an abort, CFS removes
the aborting assign operation in the list and reverts the
value to the head of the list (i.e., its most recent valid
value).

5

226 2015 USENIX Annual Technical Conference USENIX Association

Operation REDO (commit) UNDO (abort) Description (example)

add(m,s,v) s+=v m-=v Add v to m (e.g., increments free inode counts)
sub(m,s,v) s-=v m+=v Subtract v from m (e.g., decrements free block counts)
assign(m,s,v) s=v m=φ(m) Assign v to m (e.g., changes access mode of an inode)
toggle_bit(m,s,i) s[i]=¬s[i] s[i]=¬s[i] Toggle i-th bit of m (e.g., toggles a bit in block bitmap)
x_op(m,s,f,a) f(commit,m,s,a) f(abort,m,s,a) Run a function f (e.g., allocates a directory entry)

NOTE. m: memory version, s: storage version, m[i]: i-th bit of m, φ(m): the most recent valid value of m

Table 1: Specification of operations for in-memory metadata logging.

Extended Operations: To handle complex metadata
structures and optimize the use of resources (e.g., caches),
CFS introduced a special type of operation, called x_op().
We summarize its usage into three categories:

The first usage is to manipulate complex metadata struc-
tures. For example, each directory keeps its directory en-
tries (or dentries) in a list or a hash tree [24]. Inserting
or deleting a dentry must follow the semantics of such
structures. When CFS allocates a dentry to create a new
file, it registers a callback function. Upon a commit, the
callback inserts the dentry into the storage version of the
directory. Upon an abort, it deletes the dentry from the
memory version of the directory.

Second, the extended operation is required to revert file
system caches upon an abort. CFS maintains the inodes
and dentry caches for efficient accesses as well as the
buddy cache [17] for efficient disk block allocation. When
allocating a file system resource (i.e., inode, dentry, or
block), an associated cache is also updated. CFS needs to
revert the changes in the cache if the resource allocation
is aborted. To do this, CFS has to register a callback that
reverts the cache updates that happened while allocating
file system resources.

Lastly, the extended operation is required to correctly
deallocate file system resources. For instance, given two
atomic propagation groups A1 and A2, let us suppose that
a block released from A1 was allocated to A2. After A2
is committed, it is impossible to abort A1 because there
is no way to revert the block allocation of already com-
mitted A2. In order to prevent this scenario, we propose a
technique named delayed deallocation. When CFS needs
to release file system resources, it registers a callback
function. Deallocation is deferred until the actual com-
mit, at which point it finally deallocates the resource by
executing the registered callback function.

A Running Example: As in Figure 3, suppose that db1,
db2, and db3 are in the same block group [24]. If new data
is overwritten in db1, and another new data is appended
in db2 and db3, then the size of their database files grows.
The last modified time of each database file is updated
(P4) and CFS logs three assign operations. Growing the
files incurs a series of metadata changes: three block use
flags for P6, P7, and P8 in a block bitmap (P3) are turned
on and CFS logs three toggle_bit operations; the block
maps in the inode table (P4) are changed to refer to the

new blocks and the file sizes in the inodes (P4) increase,
thus CFS logs five assign operations; each free block
count in the superblock (P1) and block group descriptor
(P2) decreases, thus CFS logs two sub operations. Since
block allocation incurs the changes in the buddy cache,
CFS adds one x_op to revert the change in the cache upon
abort.

4.3 Commit and Abort Procedures
Upon a commit, CFS first writes all dirty data pages of
the files that belong to the committing atomic propagation
group. Writing data pages could cause further metadata
changes; for example, due to the delayed block allocation
scheme [17], the actual block allocation happens when
writing data blocks, changing metadata structures such
as block bitmap and free block count. Then, CFS applies
all of the group’s collected logs to the storage version of
metadata in the order of their generations and writes the
storage version. It writes all pages with the txid issued at
cfs_begin() and then asks SSD/X-FTL to make written
pages with the txid durable.

Upon an abort, CFS rolls back the atomic propagation
group by executing all the collected logs for the group in
reverse order of their creation (undoing). Then, it also lets
the storage revert the stolen data pages to their old copies.
In SSD/X-FTL, CFS sends an abort command with the
txid of the group. Finally, CFS forcefully drops all the
dirty pages of the files in the group so that subsequent ac-
cess to the page results in reading the reverted valid page
from storage. If another application happens to access the
aborted files, it could encounter an error depending on its
correctness semantics. If this is the case, access to shared
files must be coordinated using a synchronization prim-
itive such as locking, or the shared files must be made
public only after they are committed. For example, a trans-
actional package manager needs to make new versions of
shared libraries public after successful package installa-
tion to avoid applications reading the libraries, which are
being installed and could be subject to an abort.

4.4 Dealing with Legacy Applications
It is highly desirable to be able to run the legacy appli-
cations without any modification while preserving their
semantics. To this end, every update from legacy appli-
cations is treated as part of an atomic propagation group

6

USENIX Association 2015 USENIX Annual Technical Conference 227

in CFS. To be concrete, CFS maintains a system-wide
atomic propagation group, to which every update from
legacy applications belongs. CFS commits the system-
wide atomic propagation group either when background
flusher threads flush all dirty data and metadata pages or
when a sync() is invoked. After the commit, CFS creates
a new system-wide atomic propagation group for han-
dling subsequent updates from legacy applications. Our
current unoptimized fsync() simply performs sync().
We believe, however, this is not a fundamental limita-
tion of our approach; for example, managing fine-grained
(e.g., file-level) atomic propagation group and using group
commit can be leveraged to optimize fsync() of legacy
applications.

4.5 Consistency and Recovery
Despite various system or application failures, CFS guar-
antees application-level crash consistency as long as an
application correctly specifies atomic code regions and a
transactional flash storage guarantees atomic multi-page
writes. Because CFS enforces durability of all and only
the data pages and metadata changes of a committing
atomic code region, it guarantees version consistency [19],
that the metadata version matches the version of the re-
ferred data for each commit operation, and does not in-
terfere with the consistency of other commit operations.
Also, because updates from legacy applications are treated
in the same manner, CFS guarantees file system-level
crash consistency.

There are two types of common failures in CFS. First,
if an application is terminated abnormally without the en-
tire system failing, the OS kernel aborts all uncommitted
atomic propagation groups of the terminating process and
thus rolls back the changes of the application. To maintain
the semantics of legacy applications, CFS never aborts
the system-wide atomic propagation group. Second, if
the entire system fails (e.g., a power outage), CFS relies
on the recovery mechanism of transactional flash storage.
On system reboot, for any incomplete commit at the time
of failure, transactional flash storage will invalidate all
uncommitted changes and thus roll back the storage to
the last successful commit state.

5 Implementation
We implemented CFS in Linux Kernel 3.10.7 based on
ext4, modifying about 5,800 lines of code. To capture
the operational logs at runtime, we inserted 171 primitive
operations and 11 extended operations. We performed
experiments on a machine with a quad-core 2.1 GHz Intel
Xeon E5606 processor and 4 GB memory. We used the
OpenSSD development platform [10] with 8 GB storage
capacity and the SATA 2 interface. We implemented two
FTL schemes on the OpenSSD device: greedy FTL [35],
which is a page-level FTL scheme with a greedy garbage

Application Isolation

SQLite Strong isolation
MariaDB Four isolation levels in SQL standards [38]
Kyoto Cabinet Intentionally no isolation
APT No isolation
vim Strong isolation or no isolation

Table 2: Isolation levels in five real-world applications.

collection policy, and X-FTL [33], which is an extended
greedy FTL, to support atomic multi-page writes.

In comparison to commercial SSDs, OpenSSD and its
FTLs have several limitations: First, its capacity is too
small to be considered as typical enterprise setting. Since
SSDs use log-structured writing scheme, write perfor-
mance under high disk utilization would be slower than
that in low disk utilization. To avoid such performance
anomaly and present fair comparison, we carefully choose
the data set size for evaluation. For MariaDB, database
size was set to 2.5 GB so there were around 70% free
space in the SSD. Next, OpenSSD has a low degree of
internal parallelism due to its architectural limitations.
Due to this low degree of internal parallelism, perfor-
mance degradation caused by a disk cache flush is limited
in OpenSSD, even though it will be significant in high-
end SSDs [32]. Finally, the size of atomic propagation
group is limited by the transaction size of X-FTL. How-
ever, this limitation could be overcome by adopting other
transaction representation schemes (e.g., cyclic represen-
tation [56]) to support unlimited (i.e., limited by only disk
capacity) transaction size.

6 Application Case Studies
In this section, we show how CFS can simplify the com-
plicated update protocols of existing applications. We
choose five real-world applications, which have a variety
of isolation levels from strong isolation (e.g., SQLite) to
no isolation (e.g., KyotoCabinet), shown in Table 2. The
CFS-enabled applications can simply reuse the existing
concurrency control code to achieve the same isolation
level without any additional overheads. As summarized in
Table 3, porting existing applications to CFS is straightfor-
ward. For four applications, in which a file is the granular-
ity of atomicity, we simply specified atomic code regions
using CFS’s native calls. For MariaDB, which uses physi-
ological write-ahead-logging [44] and double-write [1],
we replaced the double-write with CFS-protected atomic
write of database files. Our experience confirms that CFS
can easily replace various existing update protocols: for
five real-world applications, we only needed to modify
317 lines of code out of 3.5 million in total.

SQLite: SQLite [6] is a library based DBMS widely
used in smart devices. It relies on rollback journaling
(RBJ) or write-ahead-logging (WAL) to guarantee crash
consistency [7, 8]. In RBJ mode, the original content of a

7

228 2015 USENIX Annual Technical Conference USENIX Association

Application Lines of code Mechanisms to guarantee application consistency

Original Modified Original Modified

SQLite 217,313 38 Physical RBJ or WAL Specifying an atomic code region
MariaDB 1,534,980 240 Physiological WAL & double-write Physiological WAL & atomic database write
Kyoto Cabinet 162,606 26 Physical RBJ on a mmap-ed region Specifying an atomic code region
APT 407,642 4 None Specifying an atomic code region
vim 1,179,246 9 rename-based update Specifying an atomic code region

Total 3,501,787 317

NOTE. RBJ (rollback journaling), WAL (write-ahead-logging)

Table 3: Summary of our porting efforts in applying CFS to five real-world applications. CFS requires only 317 lines of modifications
out of 3.5 million lines of ported applications, in order to support the crash consistency.

page is copied to the rollback journal before updating the
page. In the WAL mode, the original content is preserved
in the database and the modified page is appended to a
write-ahead-log file. The change is then later propagated
to the database by periodic checkpointing.

In version 3.8.3 of SQLite, the RBJ and WAL mode
consist of about 14,500 lines of code. With CFS, we were
able to implement the same level of crash consistency
by adding just 38 lines of CFS system calls with journal
mode off.

MariaDB: MariaDB [3] is a popular open source
DBMS, and InnoDB is a popular transactional stor-
age engine used in MariaDB. To preserve crash con-
sistency, InnoDB uses an optimized logging technique
known as ARIES-style physiological write-ahead-logging
(WAL) [44]. Unlike the physical WAL mode in SQLite, in
the physiological WAL of MariaDB, only changes made
to data pages are written to the log device to minimize the
amount of log writes. Since logs are directly applied to the
data pages in-place, crash recovery is possible only if the
data pages are not corrupted. To guarantee atomic update
of data pages, InnoDB uses a redundant page write tech-
nique known as double-write [1]: it first synchronously
writes data pages to the dedicated double-write area, then
re-writes each page to its original location. In each step,
fsync() calls are used to enforce ordering and durability.

CFS-based MariaDB directly updates database files in-
place after writing the physiological log, and does not
require the double-write. CFS can ensure the atomic up-
dates of database files by simply guarding the update code
using the CFS system calls.

Kyoto Cabinet: Kyoto Cabinet [2] is a library-based
key-value store using a memory mapped region to manage
its data. For crash recovery, it writes an unmodified copy
to the dedicated rollback journal area when a data page
becomes dirty. To guarantee that the old copy is flushed
to storage ahead of its new copy, it calls fsync() upon
every write to the rollback journal area.

We were able to achieve the same level of crash consis-
tency by simply turning off the journaling and guarding
the atomic update code using the CFS system calls.

APT Package Manager: For a successful software in-
stallation or update, numerous files can be created, modi-
fied, or deleted, and all these modifications should be car-
ried out atomically. Surprisingly, due to the complexity of
guaranteeing atomic package installation, most package
managers, including the popular APT [23], do not provide
atomic installation, leaving the responsibility to system
administrators. We added an atomic installation feature
to APT by guarding its package operation code using the
CFS system calls.

Vim: When saving an updated file of document-like
data, many applications, including vim [11], use rename-
based update schemes: creating a new file and writing the
updated document to the new file, then calling fsync() on
the file to force it to disk, and finally replacing the original
with the new one. With CFS, vim is modified to update the
file in place and its atomicity is guaranteed by wrapping
the update code with cfs_begin() and cfs_commit().

7 Evaluation
In this section, we present experiments that answer the
following questions:

• Does CFS really guarantee application-level crash
consistency? (§7.1)
• How do legacy update protocols and CFS-based

atomic updates behave differently? (§7.2)
• What are the performance benefits of CFS-based

applications? (§7.3)
• What is the performance impact on legacy applica-

tions that do not use CFS system calls? (§7.4)

Before running each experiment, we ran the workload
independent preconditioning (WIPC) [62], so as to put
the SSD in a steady state. The journal size of ext4 is set
to 128 MB. We reported the average of three runs.

7.1 Consistency over Random Failures
We begin our evaluation of CFS by experimentally veri-
fying whether it preserves application-level crash consis-
tency across sudden power outages. We used MariaDB
because it is the most mature and complicated among our
test applications and it also provides the tool mysqlcheck,

8

USENIX Association 2015 USENIX Annual Technical Conference 229

1.00

0.13
0.06 0.06

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CFS ext4
off

ext4
ordered

ext4
data

Re
la

tiv
e

Pe
rf

or
m

an
ce

(a) Performance

 1.5

 8.6

 19.3
 22.1

0

5

10

15

20

25

CFS ext4
off

ext4
ordered

ext4
data

W
rit

e
Am

pl
ifi

ca
tio

n FS journaling
+ metadata
App.
journaling
App. data

(b) Write amplification

1.00

12.73 12.73

0
2
4
6
8

10
12
14
16

CFS ext4
off

ext4
ordered

ext4
data

Re
la

tiv
e

Di
sk

 F
lu

sh
 C

ou
nt

(c) Disk cache flush count

Figure 4: Results of the microbenchmark. Atomic update of two database files in Figure 1 and 2. The CFS-based version is 16.7×
faster than the original version in ext4 ordered mode. Because the CFS-based version does not rely on a complex update protocol,
disk writes and cache flush operations are reduced by 12.9× and 12.7×, respectively.

0.20 0.21

0.52 0.50 0.50 0.48
0.42

0.21

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rf

or
m

an
ce

SQLite
RBJ

SQLite
WAL

Kyoto
Cabinet

MariaDB

(a) Performance

1.42

5.89

2.71

1.03
2.06

1.22

2.70

0
1
2
3
4
5
6
7

CFS ext4
RBJ

ext4
WAL

CFS ext4 CFS ext4

SQLite
Facebook

MariaDB
LinkBench

Kyoto Cabinet
db_bench

W
rit

e
Am

pl
ifi

ca
tio

n FS journaling + metadata
App. journaling

SQLite
Facebook

MariaDB
LinkBench

Kyoto Cabinet
db_bench

App. data

(b) Write amplification

1.00
3.96

1.13 1.00

17.55

1.00 2.69

0

4

8

12

16

CFS ext4
RBJ

ext4
WAL

CFS ext4 CFS ext4

SQLite Facebook MariaDB
LinkBench

Kyoto Cabinet
db_bench

Re
la

tiv
e

Di
sk

 F
lu

sh
 C

ou
nt

SQLite
Facebook

MariaDB
LinkBench

Kyoto Cabinet
db_bench

(c) Disk cache flush count

Figure 5: Results of real-world applications. The original versions are run on ext4 in ordered journal mode. Compared to the
CFS-based versions, the original versions relying on complex update protocols show significant overhead.

which checks for database corruption. While we ran
LinkBench [14] on CFS-based MariaDB, we cut the
power of the SSD/X-FTL to stress the full system soft-
ware/hardware stack. After rebooting the test machine, we
checked the consistency of CFS and the database using
fsck and mysqlcheck, respectively. If both checks pass,
then we conclude that CFS preserves application-level
crash consistency. We repeated this test 100 times and
passed the consistency check every time. To check the
coverage of our test, we further analyzed pages recov-
ered by SSD/X-FTL. In 90% of the tests, SSD/X-FTL
recovered 10.3 pages on average. Types of recovered
pages were CFS metadata (2.4%), LinkBench data ta-
ble (95.1%), and InnoDB system table (2.5%). Though it
is limited, this experiment is one practical way to validate
CFS’s correctness. From a theoretical point of view, it is
hard to imagine a case where application consistency is
vulnerable when data pages and their relevant metadata
changes are atomically propagated to the storage.

7.2 Analysis of Atomic Update
To understand the performance characteristics of legacy
update protocols and CFS-based atomic updates, we used
the atomic update of two database files presented in Fig-
ure 1 and 2 as a microbenchmark. The original version
was run on ext4 with three different journaling modes: off,
ordered, and data journal mode.

In Figure 4, we first present performance comparisons,
write amplification, and disk flush count for further anal-
ysis. The performance of each original version is nor-

malized to the CFS-based version. Write amplification is
the ratio of an application’s writing of database files to
the file system’s writing to storage. It is split into three
categories: application data, application journaling (e.g.,
SQLite RBJ), and file system overhead (i.e., metadata and
journaling). We present the normalized disk flush count
for CFS. In the case of CFS, we counted commit requests,
upon which SSD/X-FTL flushes the disk cache. This data
is obtained by instrumenting the microbenchmark and
collecting block traces from the host using blktrace.

As Figure 4a shows, the CFS-based version signifi-
cantly outperforms the original version—7.7× to ext4 off
mode, and 16.7× to ext4 journaling modes—due to re-
duced disk writes and disk cache flush operations. The
write amplification of the original version is surprisingly
high (Figure 4b): 8.6, 19.3, and 22.1 in ext4 off, ordered,
and data journal mode, respectively. Application-level
journaling incurs significant metadata overhead. When
combined with ext4 journaling, the amount of writes is
amplified by 2–3× compared to ext4 off mode. As ex-
pected, the disk flush count of the original version is very
high (Figure 4c). Since ext4 in off mode does not guaran-
tee any consistency, it does not issue any disk cache flush
operations. In the other modes, 12.7× more cache flush
operations were issued. However, due to the low degree
of internal parallelism of OpenSSD [10], performance
is largely determined by the write amplification factors
rather than disk cache flush count.

9

230 2015 USENIX Annual Technical Conference USENIX Association

7.3 Performance of Real Applications
To see how CFS can improve performance of real-world
applications, we evaluated three performance-sensitive
applications: SQLite, MariaDB, and Kyoto Cabinet, stud-
ied in §6, using six workloads. In Figure 5, we compared
performance, write amplification, and disk flush count of
each application. As we expected, CFS-based applica-
tions significantly improve performance of their original
versions, because they prevent the journaling of journal
(JoJ) anomaly [31] fundamentally without any consis-
tency compromise. In the rest of this section, we present
the performance analysis of each application.

SQLite: We ran two SQL traces [33] collected from
running the RL Benchmark [5] and Facebook applications
on an Android 4.1.2 Jelly Bean SDK under its typical
usage scenario.

The CFS-based version outperforms the original ver-
sions with the rollback journal (RBJ) and write-ahead
logging (WAL) by approximately five-fold and two-fold,
respectively. In RBJ mode, data is always written twice,
one for the RBJ file and another for the database file.
Moreover, since the RBJ file is created and deleted when-
ever a new transaction ends, SQLite in RBJ mode has very
high file system metadata overhead. As a result, the orig-
inal version generates 4.1× more writes and 3.9× more
disk cache flush operations than the CFS-based version.
In WAL mode, the modified data is appended to a WAL
file and then the change is propagated to the database
file by periodical checkpointing. Since the WAL file is
reused by many transactions until the checkpoint occurs,
the metadata overhead of SQLite in WAL mode is far
lower than that of RBJ mode. As a result, the original
version generates about 1.9× more writes and 10% more
disk cache flush operations than the CFS-based version.

MariaDB: We used two popular database benchmarks:
SysBench [9] and LinkBench [14]. SysBench in an OLTP
mode stresses a 2.5 GB database (16 files) with 10 mil-
lion rows for 10 minutes. LinkBench from Facebook is
designed to benchmark performance of database opera-
tions with large-scale social graphs. In LinkBench, we ran
80,000 operations for a 2.5 GB database (18 files) after
a two minute warm-up. In both experiments, MariaDB
was configured to use 100 MB as a buffer pool with eight
concurrent threads, and all under O_DIRECT I/O mode.

The CFS-based MariaDB performs 2× faster than the
original MariaDB. This performance benefit primarily
comes from the reduced number of write operations by
replacing the double-write with CFS’s native interface.
While fsync() is required for each database file update
and every double-write operation in the original MariaDB,
the CFS-based MariaDB requires only one disk flush to
update all database files. Thus, the CFS-based version in-
vokes 17.6× fewer disk flush operations than the original

1.00 1.03

0.67
0.55

1.00 1.04

0.75
0.56

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Pe
rf

or
m

an
ce

CFS ext4 off ext4 ordered ext4 data

FIO Benchmark FFSB

Figure 6: Performance comparison between CFS and ext4 for
FIO and FFSB benchmarks

version. However, the performance results in Figure 5a
are little affected by such frequent disk flush operations.
This is because OpenSSD, as discussed in §5, has low
degree of internal parallelism.

To emphasize the criticality of this problem that end-
users will face, we ran LinkBench using a commercial
SSD [30] with high-level of internal parallelism. Since
the SSD does not support transactional interfaces yet, we
used the modified MariaDB that flushes disk cache once
at updating all database files without double-write. Write
amount and cache flush count are the same as those in
CFS and so the performance will be similar to that of the
CFS-based one. For comparison, we ran the MariaDB
only turning off the double-write mode without any other
modifications; so the cache flush count is the same as the
unmodified MariaDB but the write amount is the same as
CFS-based one. The frequent disk cache flush operations
in the latter degrades performance by 78%. It shows that
frequent cache flush caused by ad-hoc update protocols
is a serious performance bottleneck and CFS’s native
interface can be a solution to overcome this performance
degradation problem.

Kyoto Cabinet: We used two workloads for Kyoto
Cabinet. First, we ran Kyoto Cabinet’s kctreetest [2]
with eight concurrent test threads. Each test thread writes
10,000 arbitrary key-value pairs and then reads the keys
10,000 times. Second, we ran LevelDB’s db_bench [28]
with a single test thread. We measured the performance
of 10,000 arbitrary writes of key-value pairs. We con-
figured Kyoto Cabinet in synchronous transaction mode,
guaranteeing consistency.

The CFS-based version significantly outperforms the
original version. In kctreetest, where the read-to-write
ratio is about one, the CFS version is 2.4× faster than
the original version. In the write-intensive db_bench, the
CFS version is 4.8× faster than the original version. The
original version issues sync system calls three times for a
write operation. As a result, it generates 2.2× more writes
and 2.7× more disk cache flush operations.

7.4 Performance of Legacy Applications
To understand the performance of legacy applications,
which were not designed to use CFS, we compare perfor-
mances of ext4 and CFS by running two popular bench-

10

USENIX Association 2015 USENIX Annual Technical Conference 231

marks: Flexible I/O (FIO) benchmark [15] and Flexible
File System Benchmark (FFSB) [59]. We used the FIO
benchmark to simulate a data-heavy workload: it is con-
figured to perform random writes to a 4 GB file with an
8 KB write unit while fsync() is called every 40 KB. We
used the FFSB benchmark to simulate a metadata-heavy
workload: it executes a combination of small file creates,
writes, reads, and appends.

We ran the benchmarks on CFS and the three journal-
ing modes of ext4. As Figure 6 shows, CFS provides
similar performance to ext4 with journaling off while it
guarantees the highest level of crash consistency. Results
of ext4 in the other journaling modes show significant
overhead.

8 Discussion and Future Work
Isolation and Concurrency Control: One may be cu-
rious about the difference between the application-level
crash consistency of CFS and the transaction of transac-
tional file systems [36, 42, 55, 60, 63]. In terms of concur-
rency control, we took an opposite design choice to trans-
actional file systems. Transactional file systems are de-
signed to natively support a DBMS-like ACID transaction,
therefore they support strong isolation (i.e., the highest
isolation level, serializable isolation). Under strong iso-
lation, time-of-check-to-time-of-use (TOCTTOU) races
can be easily prevented. In Table 4, we compare two
representative transactional file systems, Valor [63] and
TxOS [55], with CFS. To support strong isolation, they
took two extreme design decisions: Valor uses pessimistic
coarse-grained locking and TxOS uses optimistic multi-
versioning based on software transactional memory. Sup-
pose that two applications, A1 and A2, create, write, and
read files in a directory D in each transaction. Since the
timestamp of D is updated upon every file creation, Valor
locks D at the expense of concurrent execution of appli-
cations. Though TxOS maintains multiple versions of D
for concurrent execution, due to the conflicting updates
of the timestamp, only one application succeeds and the
other should be re-executed.

In contrast, CFS does not provide isolation or concur-
rency control mechanisms. Applications must implement
required concurrency control using existing synchroniza-
tion primitives, such as file lock and mutex. Also, if there
is a possibility of TOCTTOU races, applications should
prevent the races themselves (for example, by using the
openat() system call [4]). In fact, of the four ACID prop-
erties in DBMS, the isolation property is the most often
relaxed. Popular DBMS implementations [38, 40, 48] pro-
vide at least four isolation levels for a user to choose. In
the above example, if A1 and A2 need an isolated view of
D, they must implement concurrency control themselves.
Otherwise, no concurrency control is required resulting
no overhead. The rationale behind our design is that isola-

CFS Valor [63] TxOS [55]

Atomic update Trans. flash FS meta journal FS full journal
+ logging

Isolation None (app.) Locking Versioning
Performance High Low Mid
Complexity Low (5.8K) Low (4.4K) High (22.6K)

Table 4: Comparison among CFS and recent transactional file
systems. Modified LOCs are in the parentheses on the bottom.

1.00
1.25 1.37 1.43

0.41 0.42 0.43 0.44

0.0

0.5

1.0

1.5

2.0

1 2 3 4

Re
la

tiv
e

Pe
rf

or
m

an
ce

threads

CFS Valor

Figure 7: Multithreaded performance of CFS and Valor.

tion can be best implemented at the application level by
exploiting correctness semantics of the applications.

To verify the cost of isolation, we implemented the es-
sential part of Valor in userspace and ran varying numbers
of threads of the above example. As expected, perfor-
mance of CFS increases as thread count increases and
is constrained by storage bandwidth (Figure 7). How-
ever, due to conservative directory locking, performance
of Valor is constant regardless of the number of threads.
Also, since Valor uses logging, its single-thread perfor-
mance is about 2× slower than CFS.

Running CFS on Non-transactional Storage: An-
other interesting question is whether CFS is applicable
to non-transactional storage devices. The performance
benefit of CFS is two-fold: simplified update protocols
and no redundant writes that rely on transactional flash.
Therefore, if atomic multi-page writes can be emulated on
non-transactional storage, CFS is applicable and we can
expect performance benefits from the simplified update
protocols. Such atomic multi-page writes have long been
studied (e.g., atomic recovery unit in Logical Disk [22]).
The obvious design choice is to implement the atomic
multi-page write using write-ahead-logging at the device
mapper layer [57], which is a higher-level virtual block
device on top of physical block devices in the Linux Ker-
nel. To see its potential performance benefit, we ran the
code in Figure 1 on ext4 data journal mode replacing
cfs_commit() with two fsync calls. Though it is 2.9×
slower than the CFS version, it is still 6.2× faster than the
version using ext4 ordered journal (Figure 4). As future
work, we will design and implement virtual transactional
storage supporting CFS on non-transactional storage de-
vices.

11

232 2015 USENIX Annual Technical Conference USENIX Association

9 Related Work
Crash consistency is critical to operating system design,
and many different approaches have been explored.

File System Consistency: To guarantee system-wide
consistency of file system data structures, a variety of
techniques have been proposed: journaling [39, 64], soft
updates [25], copy-on-write [16, 29, 43, 58], and using a
DBMS as a file system [27, 34, 45, 47, 49]. However, due
to the lack of file system interfaces to support application-
level crash consistency, applications had no choice but
to implement complex update protocols using fsync().
Although several techniques [18, 19, 46] have been pro-
posed to mitigate the performance penalty of fsync(),
they cannot help to simplify these update protocols. A
recent study revealed that widely-deployed applications,
such as PostgreSQL, LevelDB, and HDFS, implemented
their own ad-hoc update protocols, and thus still remained
vulnerable to crashes [54]. We believe CFS is the first
principled and practical way to change this landscape.

Transactional File Systems: There have been steady
efforts to natively provide transactions with ACID prop-
erties to applications via file systems [36, 42, 55, 60, 63].
As we discussed in §8, transactional file systems and ap-
plications relying on them support only strong isolation.
Considering that relaxation of isolation according to appli-
cations’ correctness semantics is a key optimization tech-
nique, it is the critical limitation in practice. Also, com-
plexity and overheads for strong isolation is not negligible;
the most commonly used locking technique limits concur-
rent execution of multiple transactions [42,60,63]; sophis-
ticated multi-versioning still shows non-negligible over-
head (14% in TxOS [55]). Moreover, to achieve atomic
and durable updates, transactional file systems rely solely
on file system journaling [42, 63], or additionally main-
tain another write-ahead log for transactions [55, 60]. As
a result, it was recommended to maintain transactions to
small, mostly metadata operations [41].

Transactional Storage Devices: Several interesting ap-
proaches [20,33,51,53,56] have been proposed to support
the transactional atomicity inside NAND flash storage de-
vices. They exploit the log-structured mapping in FTL
and atomically update the mapping table to achieve trans-
actional atomicity. However, none of them resolve the
false sharing of metadata pages. Thus they cannot support
atomic update of multiple applications due to this lack of
generality. For non-volatile memory storage, MARS [21]
supports application transactions. But, it does not mention
how MARS can be used to support file system consis-
tency.

Atomic Update of Application Data: Recently, sev-
eral techniques [37, 52, 65] have been proposed to protect
application data from failures without supporting isola-

tion like CFS. None of them handle the false sharing of
metadata pages. Thus they cannot support atomic updates
for arbitrary file system operations as CFS does. Failure-
atomic msync() [52] atomically updates the changes of
a mmap-ed file using REDO journaling. However, it only
supports atomic update of a single mmap-ed file, and, due
to the lack of the UNDO mechanism, the dirty data pages
can not be stolen.

10 Conclusion
CFS is the first file system that natively supports
application-level crash consistency on transactional flash
storage. To guarantee crash consistency, applications can
simply specify code regions that need atomic file system
operations instead of implementing complex, slow, and
error-prone update protocols by themselves. CFS guaran-
tees the atomic propagation of data and metadata pages
changed in the code region without relying on journaling
through the use of the atomic multi-page write functional-
ity of SSD/X-FTL. Our application case studies confirm
that a variety of existing applications can be easily ported
to CFS. Our experimental results show that CFS-based
applications are 2–5× faster than the original versions.

Acknowledgments
The authors wish to thank our shepherd, Liuba Shrira,
and the anonymous reviewers for their helpful comments.
We thank to Jin-Soo Kim for motivational discussion,
Gihwan Oh for helping us with SSD/X-FTL, and Sang-
man Kim for his feedback and comments. We also thank
the various members of our operations staff who provided
proofreading of this paper. This research was supported by
Next-Generation Information Computing Development
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT
& Future Planning (2010-0020730). This work was sup-
ported by ICT R&D program of MSIP/IITP [10041244,
SmartTV 2.0 Software Platform]. Changwoo Min and
Taesoo Kim are partly supported by ETRI MSIP/IITP
[B0101-15-0644] and ONR N00014-15-1-2162.

References
[1] InnoDB Disk I/O in MySQL 5.7 Reference Manual. http://dev.
mysql.com/doc/refman/5.7/en/innodb-disk-io.html.

[2] Kyoto Cabinet: a straightforward implementation of DBM. http:
//fallabs.com/kyotocabinet/.

[3] MariaDB An enhanced, drop-in replacement for MySQL. https:
//mariadb.org/.

[4] openat(2) - Linux man page. http://linux.die.net/man/2/
openat.

[5] RL Benchmark:SQLite. http://redlicense.com/.

[6] SQLite. http://www.sqlite.org/.

[7] SQLite: Atomic Commit In SQLite. http://www.sqlite.org/
wal.html.

12

USENIX Association 2015 USENIX Annual Technical Conference 233

[8] SQLite: Write-Ahead Logging. http://www.sqlite.org/wal.
html.

[9] SysBench: a system performance benchmark. http://sysbench.
sourceforge.net/.

[10] The OpenSSD Project. http://www.openssd-project.org/
wiki/The_OpenSSD_Project.

[11] Vim the editor. http://www.vim.org/index.php.

[12] Apple. BSD System Calls Manual: FCNTL(2). https:
//developer.apple.com/library/mac/documentation/
Darwin/Reference/ManPages/man2/fcntl.2.html.

[13] Apple. BSD System Calls Manual: FSYNC(2). https:
//developer.apple.com/library/mac/documentation/
Darwin/Reference/ManPages/man2/fsync.2.html.

[14] Armstrong, T. G., Ponnekanti, V., Borthakur, D., andCallaghan,
M. LinkBench: a Database Benchmark based on the Facebook
Social Graph. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data (2013), SIGMOD
’13.

[15] Axboe, J. FIO (Flexible IO Tester). http://git.kernel.dk/
?p=fio.git;a=summary.

[16] Btrfs. http://btrfs.wiki.kernel.org.

[17] Cao, M., Santos, J. R., and Dilger, A. Ext4 block and inode
allocator improvements. In Proceedings of the Linux Symposium
(2008).

[18] Chidambaram, V., Pillai, T. S., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. Optimistic Crash Consistency. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(2013), SOSP ’13.

[19] Chidambaram, V., Sharma, T., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. Consistency Without Ordering. In Proceedings of
the 10th USENIX Conference on File and Storage Technologies
(2012), FAST ’12.

[20] Choi, H. J., Lim, S.-H., and Park, K. H. JFTL: A Flash Translation
Layer Based on a Journal Remapping for Flash Memory. ACM
Transactions on Storage 4, 4 (feb 2009).

[21] Coburn, J., Bunker, T., Schwarz, M., Gupta, R., and Swanson, S.
From ARIES to MARS: Transaction Support for Next-generation,
Solid-state Drives. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (2013), SOSP ’13.

[22] de Jonge, W., Kaashoek, M. F., andHsieh, W. C. The Logical Disk:
A New Approach to Improving File Systems. In Proceedings of
the Fourteenth ACM Symposium on Operating Systems Principles
(1993), SOSP ’93, ACM.

[23] Debian. Apt. https://wiki.debian.org/Apt.

[24] Ext4 Wiki. Ext4 Disk Layout. https://ext4.wiki.kernel.
org/index.php/Ext4_Disk_Layout.

[25] Frost, C., Mammarella, M., Kohler, E., de los Reyes, A., Hov-
sepian, S., Matsuoka, A., and Zhang, L. Generalized File System
Dependencies. In Proceedings of the 21st ACM SIGOPS Sympo-
sium on Operating Systems Principles (2007), SOSP ’07.

[26] Fusion-io. NVM Primitives API Specification 1.0. http:
//opennvm.github.io/nvm-primitives-documents/, feb
2014.

[27] Gehani, N. H., Jagadish, H. V., and Roome, W. D. OdeFS: A File
System Interface to an Object-Oriented Database. In Proceedings
of the 20th International Conference on Very Large Data Bases
(1994), VLDB ’94.

[28] Google. LevelDB Benchmarks. http://leveldb.googlecode.
com/svn/trunk/doc/benchmark.html, July 2011.

[29] Hitz, D., Lau, J., and Malcolm, M. File System Design for an
NFS File Server Appliance. In Proceedings of the 1994 USENIX
Winter Technical Conference (1994), WTEC ’94.

[30] Intel. Intel® SSD 330 Series (120GB, SATA 6Gb/s, 25nm,
MLC). http://ark.intel.com/products/67287/Intel-
SSD-330-Series-120GB-SATA-6Gbs-25nm-MLC.

[31] Jeong, S., Lee, K., Lee, S., Son, S., andWon, Y. I/O Stack Opti-
mization for Smartphones. In Proceedings of the 2013 USENIX
Annual Technical Conference (2013), ATC ’13.

[32] Kang, W.-H., Lee, S.-W., Moon, B., Kee, Y.-S., and Oh, M.
Durable Write Cache in Flash Memory SSD for Relational and
NoSQL Databases. In Proceedings of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data (2014), SIGMOD
’14.

[33] Kang, W.-H., Lee, S.-W., Moon, B., Oh, G.-H., and Min, C. X-
FTL: Transactional FTL for SQLite Databases. In Proceedings
of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data (2013), SIGMOD ’13.

[34] Kashyap, A. File System Extensibility and Reliability Using an
in-Kernel Database. Master’s thesis, Stony Brook University,
December 2004. Technical Report FSL-04-06, http://www.fsl.
cs.sunysb.edu/docs/kbdbfs-msthesis/kbdbfs.pdf.

[35] Kawaguchi, A., Nishioka, S., andMotoda, H. A Flash-memory
Based File System. In Proceedings of the 1995 USENIX Technical
Conference Proceedings (1995), ATC ’95.

[36] Kim, S., Lee, M. Z., Dunn, A. M., Hofmann, O. S., Wang, X.,
Witchel, E., and Porter, D. E. Improving Server Applications
with System Transactions. In Proceedings of the 7th ACM Eu-
ropean Conference on Computer Systems (2012), EuroSys ’12,
ACM.

[37] MariaDB. Fusion-io DirectFS atomic write support.
https://mariadb.com/kb/en/mariadb/documentation/
getting-started/mariadb-performance-advanced-
configurations/fusion-io/fusion-io-directfs-
atomic-write-support/.

[38] MariaDB. Isolation level. https://mariadb.com/kb/en/sql-
99/37-sql-transaction-concurrency/isolation-
level/.

[39] Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A.,
and Vivier, L. The new ext4 filesystem: current status and future
plans. In Proceedings of the Linux Symposium (2007).

[40] Microsoft. Isolation Levels in the Database Engine.
https://technet.microsoft.com/en-us/library/
ms189122%28v=SQL.105%29.aspx.

[41] Microsoft. Performance Considerations for Transactional
NTFS. http://msdn.microsoft.com/en-us/library/
windows/desktop/ee240893(v=vs.85).aspx.

[42] Microsoft. Transactional NTFS (TxF). http:
//msdn.microsoft.com/en-us/library/bb968806(v=
vs.85).aspx.

[43] Min, C., Kim, K., Cho, H., Lee, S.-W., and Eom, Y. I. SFS: Random
Write Considered Harmful in Solid State Drives. In Proceedings
of the 10th USENIX Conference on File and Storage Technologies
(2012), FAST ’12.

[44] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz,
P. ARIES: A Transaction Recovery Method Supporting Fine-
granularity Locking and Partial Rollbacks Using Write-ahead
Logging. ACM Transaction Database System 17, 1 (Mar. 1992).

[45] Murphy, N., Tonkelowitz, M., and Vernal, M. The design and
implementation of the database file system, 2002.

[46] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn,
J. Rethink the Sync. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (2006), OSDI ’06.

13

234 2015 USENIX Annual Technical Conference USENIX Association

[47] Olson, M. A. The Design and Implementation of the Inversion
File System. In Proceedings of the 1993 USENIX Winter Technical
Conference (1993).

[48] Oracle. Database Concepts: 9. Data Concurrency and Consis-
tency. https://docs.oracle.com/cd/E11882_01/server.
112/e40540/consist.htm.

[49] Oracle. Oracle Internet File System Setup and Administra-
tion Guide. http://docs.oracle.com/cd/A97336_01/cont.
102/a81197/toc.htm.

[50] Oracle Corporation. Oracle VM VirtualBox® User Man-
ual. http://www.virtualbox.org/manual/ch12.html#
idp59653904.

[51] Ouyang, X., Nellans, D. W., Wipfel, R., Flynn, D., and Panda,
D. K. Beyond Block I/O: Rethinking Traditional Storage Prim-
itives. In 17th International Conference on High-Performance
Computer Architecture (HPCA) (2011), pp. 301–311.

[52] Park, S., Kelly, T., and Shen, K. Failure-atomic Msync(): A
Simple and Efficient Mechanism for Preserving the Integrity of
Durable Data. In Proceedings of the 8th ACM European Confer-
ence on Computer Systems (2013), EuroSys ’13.

[53] Park, S., Yu, J. H., and Ohm, S. Y. Atomic Write FTL for Robust
Flash File System. In Proceedings of the Ninth International
Symposium on Consumer Electronics (ISCE 2005) (june 2005),
pp. 155 – 160.

[54] Pillai, T. S., Chidambaram, V., Alagappan, R., Al-Kiswany, S.,
Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. All File Sys-
tems Are Not Created Equal: On the Complexity of Crafting
Crash-Consistent Applications. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implementation (2014),
OSDI ’14.

[55] Porter, D. E., Hofmann, O. S., Rossbach, C. J., Benn, A., and
Witchel, E. Operating System Transactions. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(2009), SOSP ’09.

[56] Prabhakaran, V., Rodeheffer, T. L., and Zhou, L. Transactional
Flash. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (2008), OSDI’08.

[57] Red Hat Software. Device-mapper Resource Page. https://
www.sourceware.org/dm/.

[58] Rosenblum, M., and Ousterhout, J. K. The Design and Imple-
mentation of a Log-structured File System. ACM Transactions on
Computer Systems (TOCS) 10, 1 (Feb. 1992).

[59] Santos, J., and Rao, S. Flexible File System Benchmark). http:
//sourceforge.net/projects/ffsb/.

[60] Seltzer, M. I. Transaction Support in a Log-Structured File Sys-
tem. In Proceedings of the 9th International Conference on Data
Engineering (1993).

[61] SNIA. NVM Programming Model (NPM) Version 1. Tech. rep.,
December 2013.

[62] SNIA. Solid State Storage (SSS) Performance Test Specification
(PTS) Enterprise Version 1.1. Tech. rep., September 2013.

[63] Spillane, R. P., Gaikwad, S., Chinni, M., Zadok, E., andWright,
C. P. Enabling Transactional File Access via Lightweight Kernel
Extensions. In Proccedings of the 7th Conference on File and
Storage Technologies (2009), FAST ’09.

[64] Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M.,
and Peck, G. Scalability in the XFS File System. In Proceedings
of the 1996 Annual Conference on USENIX Annual Technical
Conference (1996), ATC ’96.

[65] Verma, R., Mendez, A. A., Park, S., Mannarswamy, S., Kelly, T.,
and III, C. B. M. Failure-Atomic Updates of Application Data
in a Linux File System. In Proceedings of the 13th USENIX
conference on File and Storage Technologies (2015), FAST’15,
USENIX Association.

14

