
Preventing Use-after-free with
Dangling Pointers Nullification

Byoungyoung Lee, Chengyu Song, Yeongjin Jang

Tielei Wang, Taesoo Kim, Long Lu, Wenke Lee

Georgia Institute of Technology

Stony Brook University

Emerging Threat: Use-after-free

2

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

2

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

2

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

3

Use-after-free Stack
Overflow

Heap
Overflow

Security-Critical

Security-High

13

0 0

582

12
107

The number of reported vulnerabilities in Chrome (2011-2013)

Emerging Threat: Use-after-free

3

Use-after-free Stack
Overflow

Heap
Overflow

Security-Critical

Security-High

13

0 0

582

12
107

The number of reported vulnerabilities in Chrome (2011-2013)

Use-after-free

• A dangling pointer

– A pointer points to a freed memory region

• Using a dangling pointer leads to undefined
program states

– May lead to arbitrary code executions

– so called use-after-free

4 Preventing Use-after-free with Dangling Pointers Nullification

class Doc : public Element {
 // …
 Element *child;
};

class Body : public Element {
 // …
 Element *child;
};

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

Understanding Use-after-free

5 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child

Allocate objects

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child

Propagate pointers

Allocate objects

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child

Propagate pointers

Allocate objects

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child

Free an object

Propagate pointers

Allocate objects

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child
freed

Free an object

Propagate pointers

Allocate objects

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child
freed

Free an object

Propagate pointers

Allocate objects

a dangling pointer

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child
freed

Use a dangling pointer

Free an object

Propagate pointers

Allocate objects

a dangling pointer

6 Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

*child

*child
freed

Use a dangling pointer

Free an object

Propagate pointers

Allocate objects

a dangling pointer

6 Preventing Use-after-free with Dangling Pointers Nullification

Why use-after-free is challenging

Doc *doc = new Doc();
Body *body = new Body();
Div *div = new Div();

doc->child = body;
body->child = div;

delete body;

if (doc->child)
 doc->child->getAlign();

Doc

*doc

*body

Body

*child

*child

7 Preventing Use-after-free with Dangling Pointers Nullification

Why use-after-free is challenging

Doc *doc = new Doc();
Body *body = new Body();
Div *div = new Div();

doc->child = body;
body->child = div;

delete body;

if (doc->child)
 doc->child->getAlign();

Body *body = new Body();

Doc *doc = new Doc();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

Doc

*doc

*body

Body

*child

*child

7 Preventing Use-after-free with Dangling Pointers Nullification

Why use-after-free is challenging

Doc *doc = new Doc();
Body *body = new Body();
Div *div = new Div();

doc->child = body;
body->child = div;

delete body;

if (doc->child)
 doc->child->getAlign();

Body *body = new Body();

Doc *doc = new Doc();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

Doc

*doc

*body

Body

*child

*child

 Reconstructing object relationships is challenging
 Static analysis
 Modules are disconnected and scattered
 Difficult to serialize execution orders

 Dynamic analysis
 Tracing pointer semantics is non-trivial

7 Preventing Use-after-free with Dangling Pointers Nullification

Contributions

• Present DangNull, which detects use-after-free

– (sometimes) even surviving from use-after-free

• Stop sophisticated attacks

– Immediately eliminate security impacts of use-after-free

• Support large-scale software

– Protect popular apps including web browsers

8 Preventing Use-after-free with Dangling Pointers Nullification

Designs

• Tracking Object Relationships

– Intercept allocations/deallocations

– Instrument pointer propagations

• Nullify dangling pointers

– A value in dangling pointers has no semantics

– Dereferencing nullified pointers will turn into safe-null
dereference

9 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

• Intercept allocations/deallocations in runtime

– Maintain Shadow Object Tree

• Red-Black tree to efficiently keep object layout information

• Node: (base address, size) pair

10 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

• Intercept allocations/deallocations in runtime

– Maintain Shadow Object Tree

• Red-Black tree to efficiently keep object layout information

• Node: (base address, size) pair

Doc *doc = new Doc();

10 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

• Intercept allocations/deallocations in runtime

– Maintain Shadow Object Tree

• Red-Black tree to efficiently keep object layout information

• Node: (base address, size) pair

Doc *doc = new Doc();

Insert shadow obj:
- Base address of allocation
- Size of Doc

10 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

• Intercept allocations/deallocations in runtime

– Maintain Shadow Object Tree

• Red-Black tree to efficiently keep object layout information

• Node: (base address, size) pair

delete body;

Doc *doc = new Doc();

Insert shadow obj:
- Base address of allocation
- Size of Doc

10 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

• Intercept allocations/deallocations in runtime

– Maintain Shadow Object Tree

• Red-Black tree to efficiently keep object layout information

• Node: (base address, size) pair

delete body;

Doc *doc = new Doc();

Insert shadow obj:
- Base address of allocation
- Size of Doc

Remove shadow obj:
- Using base address (body)

10 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships
• Instrument pointer propagations

– Maintain backward/forward pointer trees for a shadow obj.

doc->child = body;

*doc

*body

Doc

Body

*child

11 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships
• Instrument pointer propagations

– Maintain backward/forward pointer trees for a shadow obj.

doc->child = body;

doc->child = body;
trace(&doc->child, body);

*doc

*body

Doc

Body

*child

11 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships
• Instrument pointer propagations

– Maintain backward/forward pointer trees for a shadow obj.

Shadow obj. of Doc

back fwd

back fwd

Shadow obj. of Body

doc->child = body;

doc->child = body;
trace(&doc->child, body);

*doc

*body

Doc

Body

*child

11 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships
• Instrument pointer propagations

– Maintain backward/forward pointer trees for a shadow obj.

Shadow obj. of Doc

back fwd

back fwd

Shadow obj. of Body

doc->child = body;

doc->child = body;
trace(&doc->child, body);

*doc

*body

Doc

Body

*child

Forward

11 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships
• Instrument pointer propagations

– Maintain backward/forward pointer trees for a shadow obj.

Shadow obj. of Doc

back fwd

back fwd

Shadow obj. of Body

doc->child = body;

doc->child = body;
trace(&doc->child, body);

*doc

*body

Doc

Body

*child

Backward

Forward

11 Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships
• Instrument pointer propagations

– Maintain backward/forward pointer trees for a shadow obj.

Shadow obj. of Doc

back fwd

back fwd

Shadow obj. of Body

doc->child = body;

doc->child = body;
trace(&doc->child, body);

*doc

*body

Doc

Body

*child

Backward

Forward

11 Preventing Use-after-free with Dangling Pointers Nullification

This is heavily abstracted pointer semantic tracking,

but enough to identify all dangling pointers.

Nullifying Dangling Pointers

• Nullify all backward pointers of Body, once it is deleted.

– All backward pointers of Body are dangling pointers

– Dangling pointers have no semantics

– Immediately eliminate dangling pointers

• Using nullified pointers later will turn into

 safe-null dereference.
*doc

Freed
*body

Doc

Body

*child

12 Preventing Use-after-free with Dangling Pointers Nullification

Nullifying Dangling Pointers

• Nullify all backward pointers of Body, once it is deleted.

– All backward pointers of Body are dangling pointers

– Dangling pointers have no semantics

– Immediately eliminate dangling pointers

• Using nullified pointers later will turn into

 safe-null dereference.
*doc

Freed
*body

Doc

Body

*child

12 Preventing Use-after-free with Dangling Pointers Nullification

No need to check the pointer validity

at the time of use!

Implementation

• Prototype DangNull

– Instrumentation: LLVM pass, +389 LoC

– Runtime: compiler-rt, +3,955 LoC

• To build target applications,

– SPEC CPU 2006: one extra compiler and linker flag

– Chromium: +27 LoC to .gyp build configuration file

13 Preventing Use-after-free with Dangling Pointers Nullification

Performance Evaluation

• Chromium browser

– JavaScript benchmarks

• 4.8% overheads

– Rendering benchmarks

• 53.1% overheads

– A page loading time for the Alexa top 100 websites

• 7% increased load time

Preventing Use-after-free with Dangling Pointers Nullification 14

Conclusion

• Presented DangNull, which detects use-after-free in
runtime

• Applications

– Use-after-free prevention for end-users

– Debugging use-after-free vulnerability

– Backend new use-after-free vulnerability finding

Preventing Use-after-free with Dangling Pointers Nullification 15

Demo

16 Preventing Use-after-free with Dangling Pointers Nullification

• Running Chromium browser (version 29.0.1547.65)

– Hardened using DangNull

• 140k/16,831k (0.8%) instructions were instrumented

– Testing use-after-free exploit (PoC)

• CVE-2013-2909: Heap-use-after-free in
 WebCore::RenderBlock::determineStartPosition

Backup slides

17 Preventing Use-after-free with Dangling Pointers Nullification

Interception / Instrumentation of
DangNull

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

if (doc->child)
 doc->child->getAlign();

Use a dangling pointer

Free an object

Propagate pointers

Allocate objects

if (doc->child)
 doc->child->getAlign();

delete body;

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;
trace(&doc->child, body);

18 Preventing Use-after-free with Dangling Pointers Nullification

Use-after-free and dangling pointers

• Use-after-free != dangling pointer
– Use-after-free happens iif a dangling pointer is used.

• Dangling pointers

– A pointer points to the freed memory region
– No data semantics

• Benign dangling pointers
– Never dereferenced dangling pointers

• Unsafe dangling pointers
– Dereferenced dangling pointers

19 Preventing Use-after-free with Dangling Pointers Nullification

Emerging Threat: Use-after-free

20

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

20

Software Vulnerability Exploitation Trends, Microsoft, 2013

