Georgia
Tech |/

Preventing Use-after-free with
Dangling Pointers Nullification

Byoungyoung Lee, Chengyu Song, Yeongjin Jang
Tielei Wang, Taesoo Kim, Long Lu, Wenke Lee

Georgia Institute of Technology
Stony Brook University

Emerging Threat: Use-after-free

90% 1
60%

50%

40%

30%
20%
10%
H =

2006 2007 2008 2009 2010 2011 2012
B Stack Corruption Heap Corruption Use After Free B Type Confusion
B Command Execution B Unsafe DLL Load Uninitialized Use Invalid Free
B Memory Read B Other W XSS Cryptography

Unsafe Control Transfer

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

90% 1
60%

50%

40%

30%
20%
10%
H =

2006 2007 2008 2009 2010 2011 2012
B Stack Corruption Heap Corruption B Type Confusion
B Command Execution B Unsafe DLL Load Uninitialized Use Invalid Free
B Memory Read B Other W XSS Cryptography

Unsafe Control Transfer

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

90%
I
80%
70%
60%
50%
40%
30%
20%
10%
H =
2006 2007 2008 2009 2010 2011 2012
B Stack Corruption Heap Corruption B Type Confusion
B Command Execution B Unsafe DLL Load Uninitialized Use Invalid Free
B Memory Read B Other W XSS Cryptography

Unsafe Control Transfer

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

13

582

@ Security-Critical
O Security-High

Use-after-free

107
0 12 0
Stack Heap
Overflow Overflow

The number of reported vulnerabilities in Chrome (2011-2013)

3

Emerging Threat: Use-after-free

@ Security-Critical
O Security-High

107
0 12 0
Use-after-free Stack Heap
Overflow Overflow

The number of reported vulnerabilities in Chrome (2011-2013)

3

Use-after-free

* A dangling pointer
— A pointer points to a freed memory region

* Using a dangling pointer leads to undefined
program states

— May lead to arbitrary code executions
— so called use-after-free

Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

class Doc : public Element {
/] ..
Element *child;

).

class Body : public Element {
/] ..
Element *child;

).

Doc *doc = new Doc();
Body *body = new Body():;

doc->child = body:
delete body;

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

Doc

Allocate objects

*doc

Vv

*child

Doc *doc = new Doc();
Body *body = new Body():

Body

*child

*body /

doc->child = body:

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Doc

Allocate objects

*doc

Vv

*child

Doc *doc = new Doc();
Body *body = new Body():

Body

Propagate pointers

doc->child = body;

*child

*body /

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc " *child
Body
. L
*body child

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Free an object

delete body:

Doc
x S
doc ”*chﬂd
Body
. L
*body child

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc " *child
Body
freed
*body

Free an object

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc " *child
Body
freed
*body

Free an object

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc ”*chﬂd
Body
freed
*body

Free an object

delete body:

Use a dangling pointer

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Doc

Allocate objects

*doc

*child

Doc *doc = new Doc();
Body *body = new Body():

Body

freed

*body /

Propagate pointers

doc->child = body;

Free an object

delete body:

Use a dangling pointer

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Why use-after-free is challenging

Doc
Doc *doc = new Doc(); “doc x 1
Body *body = new Body(); ditld
Div *div = new Div();
doc->child = body: Body

body->child = div;

delete body:;
gy | child
ody

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification

Why use-after-free is challenging

Doc
Doc *doc = new Doc(); *d
oc
*child
if (doc->child)
doc->child->getAlign();
Body

doc->child = body;

delete body; body " | *child

Body *body = new Body():

Preventing Use-after-free with Dangling Pointers Nullification

Why use-after-free is challenging

Doc

Doc *doc = new Doc();

*doc

*child
v Reconstructing object relationships is challenging
v’ Static analysis
v" Modules are disconnected and scattered
v' Difficult to serialize execution orders
v" Dynamic analysis
v Tracing pointer semantics is non-trivial

Preventing Use-after-free with Dangling Pointers Nullification

Contributions

* Present DangNull, which detects use-after-free

— (sometimes) even surviving from use-after-free

e Stop sophisticated attacks
— Immediately eliminate security impacts of use-after-free

e Support large-scale software
— Protect popular apps including web browsers

Preventing Use-after-free with Dangling Pointers Nullification 8

Designs

* Tracking Object Relationships
— Intercept allocations/deallocations
— Instrument pointer propagations

* Nullify dangling pointers
— A value in dangling pointers has no semantics

— Dereferencing nullified pointers will turn into safe-null
dereference

Preventing Use-after-free with Dangling Pointers Nullification 9

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Preventing Use-after-free with Dangling Pointers Nullification 10

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree

* Red-Black tree to efficiently keep object layout information

* Node: (base address, size) pair

Doc *doc = new Doc();

Preventing Use-after-free with Dangling Pointers Nullification

10

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree

* Red-Black tree to efficiently keep object layout information

* Node: (base address, size) pair

Doc *doc = new Doc();

Insert shadowobj:\>

- Base address of allocation
- Size of Doc

Preventing Use-after-free with Dangling Pointers Nullification

10

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime

— Maintain Shadow Object Tree

* Red-Black tree to efficiently keep object layout information

* Node: (base address, size) pair

Doc *doc = new Doc();

Insert shadowobj:\>

- Base address of allocation
- Size of Doc

Preventing Use-after-free with Dangling Pointers Nullification

delete body:

10

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Doc *doc = new Doc(): Remove shadow obj:

\) - Using base address (body)
Insert shadow obj:

- Base address of allocation
- Size of Doc

delete body:

Preventing Use-after-free with Dangling Pointers Nullification 10

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

doc->child = body;

Doc

*doc—>
*child

Body

*body 7

Preventing Use-after-free with Dangling Pointers Nullification 11

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

doc->child = body;
trace(&doc- >child, body):

Doc

*doc—>
*child

Body

*body 7

Preventing Use-after-free with Dangling Pointers Nullification 11

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;

trace(&doc- >child, body): & &

Doc

*doc—> . J
child Shadow obj. of Body

Preventing Use-after-free with Dangling Pointers Nullification 11

*body 7

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc
doc->child = body;
trace(&doc- >child, body): &
Doc P
*doc—> L J
child Shadow obj. of Body

Preventing Use-after-free with Dangling Pointers Nullification 11

*body %

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;
trace(&doc- >child, body): &

Doc

*doc—>
*child

Body Backward

Shadow obj. of Body

*body %

Preventing Use-after-free with Dangling Pointers Nullification 11

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;
trace(&doc- >child, body):

This is heavily abstracted pointer semantic tracking,
but enough to identify all dangling pointers.

/ % " ee
*body Pt Powin

Preventing Use-after-free with Dangling Pointers Nullification 11

Nullifying Dangling Pointers

* Nullify all backward pointers of Body, once it is deleted.

— All backward pointers of Body are dangling pointers

— Dangling pointers have no semantics
— Immediately eliminate dangling pointers

* Using nullified pointers later will turn into
safe-null dereference.

Preventing Use-after-free with Dangling Pointers Nullification

delete body:;

Doc

*doc—>
*child

x

Body
7 Freed

*body

12

Nullifying Dangling Pointers

* Nullify all backward pointers of Body, once it is deleted.
— All backward pointers of Body are dangling pointers
— Dangling pointers have no semantics

W [NP I N T R P I S Ldtoae et |

No need to check the pointer validity
at the time of use!

Body

Freed
*body /

Preventing Use-after-free with Dangling Pointers Nullification 12

Implementation

* Prototype DangNull
— Instrumentation: LLVM pass, +389 LoC
— Runtime: compiler-rt, +3,955 LoC

* To build target applications,
— SPEC CPU 2006: one extra compiler and linker flag
— Chromium: +27 LoC to .gyp build configuration file

Preventing Use-after-free with Dangling Pointers Nullification

13

Performance Evaluation

* Chromium browser
— JavaScript benchmarks

 4.8% overheads

— Rendering benchmarks
* 53.1% overheads

— A page loading time for the Alexa top 100 websites
* 7% increased load time

Preventing Use-after-free with Dangling Pointers Nullification

14

Conclusion

* Presented DangNull, which detects use-after-free in
runtime

* Applications
— Use-after-free prevention for end-users
— Debugging use-after-free vulnerability
— Backend new use-after-free vulnerability finding

Preventing Use-after-free with Dangling Pointers Nullification 15

Demo

Running Chromium browser (version 29.0.1547.65)
— Hardened using DangNull
* 140k/16,831k (0.8%) instructions were instrumented

— Testing use-after-free exploit (PoC)

* CVE-2013-2909: Heap-use-after-free in
WebCore::RenderBlock::determineStartPosition

Preventing Use-after-free with Dangling Pointers Nullification 16

Backup slides

Preventing Use-after-free with Dangling Pointers Nullification

17

Interception / Instrumentation of
DangNull

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body:

Free an object

doc->child = body;
trace(&doc- >child, body);

delete body;

Use a dangling pointer

delete body;

if (doc->child)
doc->child->getAlign();

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification

18

Use-after-free and dangling pointers

Use-after-free != dangling pointer
— Use-after-free happens iif a dangling pointer is used.

Dangling pointers
— A pointer points to the freed memory region
— No data semantics

Benign dangling pointers
— Never dereferenced dangling pointers

Unsafe dangling pointers
— Dereferenced dangling pointers

Preventing Use-after-free with Dangling Pointers Nullification

19

Emerging Threat: Use-after-free

KEY FINDINGS

The key findings that were made through this analysis of historical exploitation trends are:
The number of RCE vulnerabilities that are known to be exploited per year appears to be decreasing.

Vulnerabilities are most often exploited only after a security update is available, although recent years have shown an upward
trend in the percentage of vulnerabilities that are exploited before a security update is available.

Windows 7 and Internet Explorer 9 are being increasingly targeted by exploits.

Stack corruption vulnerabilities were historically the most commonly exploited vulnerability class, but now they are rarely
exploited.

Use after free vulnerabilities are currently the most commonly exploited vulnerability class.

Exploits increasingly rely on techniques that can be used to bypass the Data Execution Prevention (DEP) and Address Space
Layout Randomization (ASLR).

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

e Use after free vulnerabilities are

currently the most commonly exploited vulnerability class.

Software Vulnerability Exploitation Trends, Microsoft, 2013

20

