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Use-after-free 

• A dangling pointer 

– A pointer points to a freed memory region 

 

• Using a dangling pointer leads to undefined 
program states 

– May lead to arbitrary code executions 

– so called use-after-free 
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class Doc : public Element {  
    // …  
    Element *child;  
};  
 
class Body : public Element {  
    // …  
    Element *child;  
};  

Doc *doc = new Doc();  
Body *body = new Body();  
 
doc->child = body;  
 
delete body;  
 
if (doc->child)  
    doc->child->getAlign(); 

Understanding Use-after-free 
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Why use-after-free is challenging 
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 Reconstructing object relationships is challenging 
 Static analysis 
 Modules are disconnected and scattered 
 Difficult to serialize execution orders 

 Dynamic analysis 
 Tracing pointer semantics is non-trivial 
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Contributions 

• Present DangNull, which detects use-after-free 

– (sometimes) even surviving from use-after-free 

 

• Stop sophisticated attacks 

– Immediately eliminate security impacts of use-after-free 

 

• Support large-scale software 

– Protect popular apps including web browsers 
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Designs 

• Tracking Object Relationships 

– Intercept allocations/deallocations 

– Instrument pointer propagations 

 

• Nullify dangling pointers 

– A value in dangling pointers has no semantics 

– Dereferencing nullified pointers will turn into safe-null 
dereference 
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Tracking Object Relationships 

• Intercept allocations/deallocations in runtime 

– Maintain Shadow Object Tree 

• Red-Black tree to efficiently keep object layout information 

• Node: (base address, size) pair 
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Tracking Object Relationships 

• Intercept allocations/deallocations in runtime 
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• Red-Black tree to efficiently keep object layout information 
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Tracking Object Relationships 
• Instrument pointer propagations 

– Maintain backward/forward pointer trees for a shadow obj. 

doc->child = body;  
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This is heavily abstracted pointer semantic tracking, 

but enough to identify all dangling pointers. 
 



Nullifying Dangling Pointers 

• Nullify all backward pointers of Body, once it is deleted. 

– All backward pointers of Body are dangling pointers 

– Dangling pointers have no semantics 

– Immediately eliminate dangling pointers 

 

• Using nullified pointers later will turn into  

   safe-null dereference. 
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No need to check the pointer validity  

at the time of use! 
 



Implementation 

• Prototype DangNull 

– Instrumentation: LLVM pass, +389 LoC 

– Runtime: compiler-rt, +3,955 LoC 

 

• To build target applications, 

– SPEC CPU 2006: one extra compiler and linker flag 

– Chromium: +27 LoC to .gyp build configuration file 
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Performance Evaluation 

• Chromium browser 

– JavaScript benchmarks 

• 4.8% overheads 

– Rendering benchmarks 

• 53.1% overheads 

 

– A page loading time for the Alexa top 100 websites 

• 7% increased load time 

Preventing Use-after-free with Dangling Pointers Nullification 14 



Conclusion 

• Presented DangNull, which detects use-after-free in 
runtime 

 

• Applications 

– Use-after-free prevention for end-users 

– Debugging use-after-free vulnerability 

– Backend new use-after-free vulnerability finding 
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Demo 
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• Running Chromium browser (version 29.0.1547.65) 

– Hardened using DangNull 

• 140k/16,831k (0.8%) instructions were instrumented 

 

– Testing use-after-free exploit (PoC) 

• CVE-2013-2909: Heap-use-after-free in 
 WebCore::RenderBlock::determineStartPosition 

 



Backup slides 
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Interception / Instrumentation of 
DangNull 

Doc *doc = new Doc();  
Body *body = new Body();  
 
 
 
doc->child = body;  
 
 
 
delete body;  
 
 
if (doc->child)  
    doc->child->getAlign(); 

Use a dangling pointer 

Free an object 

Propagate pointers 

Allocate objects 

if (doc->child)  
    doc->child->getAlign(); 

delete body;  

Doc *doc = new Doc();  
Body *body = new Body();  

doc->child = body;  
trace(&doc->child, body); 
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Use-after-free and dangling pointers 

• Use-after-free != dangling pointer 
– Use-after-free happens iif a dangling pointer is used. 

 
• Dangling pointers 

– A pointer points to the freed memory region 
– No data semantics 

• Benign dangling pointers 
– Never dereferenced dangling pointers 

• Unsafe dangling pointers 
– Dereferenced dangling pointers 
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