A First Step Towards Leveraging Commodity Trusted Execution Environments for Network Applications

Seongmin Kim Youjung Shin Jaehyung Ha Taesoo Kim* **Dongsu Han**

KAIST * Georgia Tech

Trend 1: Security and Privacy Critical Factors in Technology Adoption

- Demands for "security" and "privacy" are increasing
 - Widespread use of Transport Layer Security (TLS)
 - Popularity of anonymity networks (e.g., Tor)
 - Use of strong authentication/encryption in WiFi
- Expectation on security and privacy impacts design decisions:
 - Operating system (iOS, Android)
 - Apps/services (e.g., messenger, adblocker)
 - Network infrastructure (inter-domain SDN)

Trend 1: Security and Privacy

y Adoption

TOR JUST LA EASIEST API ANONYMOUS

LINE, the WhatsApp of Japan, Is Adding Some Pretty Serious Encryption

October 13, 2015 // 10:23 AM EST

Snapchat Prompts Privacy Concerns As Terms Allow Company To 'Publicly Display' Content

The Huffington Post UK | By Nitya Rajan 🔀 💆 🖒
Posted: 30/10/2015 12:40 GMT | Updated: 30/10/2015 12:59 GMT

BlackBerry's Android
Priv Phone Targets
High-End Privacy Needs

Posted October 23, 2015

Trend 2: Commoditization of Trusted Execution Environment

- Trusted Execution Environment (TEE)
 - Isolated execution: integrity of code, confidentiality
 - Remote attestation

Commoditization of TEE

The commoditization of TEE brings new opportunities for network applications.

z. companismity with xoo

Network Applications + TEE = ?

What impact does TEE have on networking?

- Previous efforts: Adopting TEE to cloud platform
 - Haven [OSDI'14]: Protects applications from an untrusted cloud
 - VC3 [S&P'15]: Trustworthy data analytics in the cloud

SGX: Isolated Execution

CPU Package Enclave Access from OS/VMM Engine (MEE) System Memory Enclave Code/data

- Application keeps its data/code inside the "enclave"
 - Smallest attack surface by reducing TCB (App + processor)
 - Protect app's secret from untrusted privilege software (e.g., OS, VMM)

SGX: Remote Attestation

- Attest an application on remote platform
- Check the identity of enclave (hash of code/data pages)
- Can establish a "secure channel" between enclaves

Case Studies: Three Applications

- Network infrastructure: Software-defined interdomain routing
- 2. Peer-to-peer systems: Tor anonymity network
- 3. Middlebox: TLS and "secure" middleboxes

- Offers new properties
 - Fast convergence, application-specific peering, flexibility, what-if analysis [hotnets2011]
- Reveals private information: topology and policy

Prior work [hotnets2011] uses Secure Multi-Party Computation (SMPC) to solve this, but the computational complexity is prohibitive.

- Enclose private information inside the enclave
- Communication through a secure channel after attestation

ASes agree upon a common code base.

Makes sure that it does not leak private information [Moat]. It becomes the TCB of the inter-domain routing infrastructure.

- 1. Mutually attest/authenticate using remote attestation
- 2. Collect policy and topology through a secure channel
- 3. Main controller computes routing path
- 4. Sends routes for each AS through a secure channel

Extending Features: Policy verification

- Enabling verification on routing decisions
 - Want to verify whether the promise is being kept [SPIDeR]

Extending Features: Policy verification

- Enabling verification on routing decisions
 - Want to verify whether the promise is being kept [SPIDeR]

Tor: Anonymity Network

Tor network: uses 3-hop onion routing

Tor: Anonymity Network

- Tor network : uses 3-hop onion routing
 - Directory servers : Advertise available onion routers, vote for bad exit nodes

Application of TEE to Tor

- 1) SGX-enabled directory servers
- 2) SGX-enabled directory servers & ORs

Application of TEE to Tor

- 1) SGX-enabled directory servers
- 2) SGX-enabled directory servers & ORs
- 3) Fully SGX-enabled setting
 - → Eliminate directory servers altogether

Each Tor components can check the integrity of target program (Tor binary)

Implementation

- OpenSGX [NDSS'16]: Open source SGX emulator
 - Fully functional, instruction-compatible emulator of SGX build on top of QEMU
 - Emulates system software and provide SGX libraries

Preliminary Evaluation: Overhead

- Estimate the overhead in terms of additional CPU cycles
 - Each SGX instruction = 10 k cycles [Haven]

<Cost of remote attestation>

Cost of remote attestation:

3% of 1024-bit Diffie-Hellman

<Cost of packet transmission>

For each I/O operations,

- 2 Mode switches
- + SGX library calls

- 30 ASes with the centralized inter-domain controller
- Inter-domain controller : 90% more CPU cycles
- AS-local controllers : 70% more CPU cycles

<# of CPU cycles consumed in the inter-domain controller>

Conclusion

- Commoditization of TEE brings new opportunities for network applications
- Cases studies show wide range of impact:
 - Policy privacy of SDN-based inter-domain routing
 - New design space of Tor anonymity network
 - Secure in-network functions
- SDN-based inter-domain routing:
 - Characterize and measure the overhead of using SGX
 - Consumes 70-90% more CPU cycles

- 30 ASes with the centralized inter-domain controller
- Inter-domain controller : 90% more CPU cycles
- AS-local controllers : 70% more CPU cycles

<# of CPU cycles consumed in the inter-domain controller>

Secure Multi-party Execution

- SGX Program owner can remotely verify the integrity of code
- Publicly available programs (e.g., git) can validate the integrity of project by sharing the private key for the attestation
- Creates signature of program through shared private key

In-network Functions (Middleboxes)

- Use of TLS protocol disrupts in-network processing
 → Only endpoints of communication can access the plain-text
- SGX enables opportunity for secure in-network functions

Trend 2: Commoditization of Trusted Execution Environment

- Trusted Execution Environment (TEE)
 - Isolated execution: integrity of code, confidentiality
 - Remote attestation

Commoditization of TEE

The commoditization of TEE brings new opportunities for network applications.

z. compatibility with xoo