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Abstract
Cloud-based file synchronization services, such as Drop-
box, are a worldwide resource for many millions of users.
However, individual services often have tight resource
limits, suffer from temporary outages or even shutdowns,
and sometimes silently corrupt or leak user data.

We design, implement, and evaluate MetaSync, a se-
cure and reliable file synchronization service that uses
multiple cloud synchronization services as untrusted
storage providers. To make MetaSync work correctly,
we devise a novel variant of Paxos that provides efficient
and consistent updates on top of the unmodified APIs
exported by existing services. Our system automatically
redistributes files upon reconfiguration of providers.

Our evaluation shows that MetaSync provides low up-
date latency and high update throughput while being
more trustworthy and available. MetaSync outperforms
its underlying cloud services by 1.2-10× on three realis-
tic workloads.

1 Introduction
Cloud-based file synchronization services have become
tremendously popular. Dropbox reached 300M users in
May 2014, adding 100M customers in six months [15].
Many competing providers offer similar services, includ-
ing Google Drive, Microsoft OneDrive, Box, and Baidu.
These services provide very convenient tools for users,
especially given the increasing diversity of user devices
needing synchronization. With such resources and tools,
mostly available for free, users are likely to upload ever
larger amounts of personal and private data.

Unfortunately, not all services are trustworthy or reli-
able in terms of security and availability. Storage ser-
vices routinely lose data due to internal faults [6] or
bugs [13, 23, 30], leak users’ personal data [12, 31], and
alter user files by adding metadata [7]. They may block
access to content (e.g., DMCA takedowns [38]). From
time to time, entire cloud services may go out of busi-
ness (e.g., Ubuntu One [9]).

Our work is based on the premise that users want
file synchronization and the storage that existing cloud
providers offer, but without the exposure to fragile, unre-
liable, or insecure services. In fact, there is no fundamen-
tal need for users to trust cloud providers, and given the
above incidents our position is that users are best served
by not trusting them. Clearly, a user may encrypt files be-
fore storing them in the cloud for confidentiality. More

generally, Depot [27] and SUNDR [26] showed how to
design systems from scratch in which users of the cloud
storage obtain data confidentiality, integrity, and avail-
ability without trusting the underlying storage provider.
However, these designs rely on fundamental changes to
both client and server; our question was whether we
could use existing services for these same ends?

Instead of starting from scratch, MetaSync provides
file synchronization on top of multiple existing storage
providers. We thus leverage resources that are mostly
well-provisioned, normally reliable, and inexpensive.
While each service provides unique features, their com-
mon purpose is to synchronize a set of files between
personal devices and the cloud. By combining multiple
providers, MetaSync provides users larger storage capac-
ity, but more importantly a more highly available, trust-
worthy, and higher performance service.

The key challenge is to maintain a globally consistent
view of the synchronized files across multiple clients, us-
ing only the service providers’ unmodified APIs with-
out any centralized server. We assume no direct client-
client or server-server communication. To this end, we
devise two novel methods: 1) pPaxos, an efficient client-
based Paxos algorithm that maintains globally consistent
state among multiple passive storage backends (§3.3),
and 2) a stable deterministic replication algorithm that
requires minimal reshuffling of replicated objects on ser-
vice re-configuration, such as increasing capacity or even
adding/removing a service (§3.4).

Putting it all together, MetaSync can serve users bet-
ter in all aspects as a file synchronization service; users
need trust only the software that runs on their own com-
puters. Our prototype implementation of MetaSync, a
ready-to-use open source project, currently works with
five different file synchronization services, and it can be
easily extended to work with other services.

2 Goals and Assumptions
The usage model of MetaSync matches that of existing
file synchronization services such as Dropbox. A user
configures MetaSync with account information for the
underlying storage services, sets up one or more direc-
tories to be managed by the system, and shares each di-
rectory with zero or more other users. Users can connect
these directories with multiple devices (we refer to the
devices and software running on them as clients in this
paper), and local updates are reflected to all connected
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clients; conflicting updates are flagged for manual reso-
lution. This usage model is supported by a background
synchronization daemon (MetaSyncd in Figure 1).

For users desiring explicit control over the merge pro-
cess, we also provide a manual git-like push/pull inter-
face with a command line client. In this case, the user
creates a set of updates and runs a script to apply the
set. These sets of updates are atomic with respect to con-
current updates by other clients. The system accepts an
update only if it has been merged with the latest version
pushed by any client.

Our baseline design assumes the backend services to
be curious, as well as potentially unreachable, and unreli-
able. The storage services may try to discover which files
are stored along with their content. Some of the services
may be unavailable due to network or system failures;
some may accidentally corrupt or delete files. However,
we assume that service failures are independent, services
implement their own APIs correctly (except for losing
and corrupting user data), and communications between
client and server machines are protected. We also con-
sider extensions to this baseline model where the services
have faulty implementations of their APIs or are actively
malicious (§3.6). Finally, we assume that clients sharing
a specific directory are trusted, similar to a shared Drop-
box directory today.

With this threat model, the goals of MetaSync are:

• No direct client-client communication: Clients co-
ordinate through the synchronization services without
any direct communication among clients. In particu-
lar, they never need to be online at the same time.

• Availability: User files are always available for both
read and update despite any predefined number of ser-
vice outages and even if a provider completely stops
allowing any access to its previously stored data.

• Confidentiality: Neither user data nor the file hierar-
chy is revealed to any of the storage services. Users
may opt out of confidentiality for better performance.

• Integrity: The system detects and corrects any cor-
ruption of file data by a cloud service, to a configurable
level of resilience.

• Capacity and Performance: The system should ben-
efit from the combined capacity of the underlying
services, while providing faster synchronization and
cloning than any individual service.

3 System Design
This section describes the design of MetaSync as illus-
trated by Figure 1. MetaSync is a distributed, synchro-
nization system that provides a reliable, globally con-
sistent storage abstraction to multiple clients, by using
untrusted cloud storage services. The core library de-
fines a generic cloud service API; all components are
implemented on top of that abstraction. This makes it

MetaSync MetaSyncd

MetaSync Core

(command line) (sync daemon)

Synchronization
manager

Storage service
manager Translators

(e.g., encryption)(e.g., pPaxos) (e.g., replication)

Local storage

OneDrive Dropbox Google Drive
Remote services

...

(e.g., object store)
Backend abstractions

Sync. abstraction
Storage abstraction

Figure 1: MetaSync has three main components: a storage service
manager to coordinate replication; a synchronization manager to or-
chestrate cloud services; and translators to support data encryption.
They are implemented on top of an abstract cloud storage API, which
provides a uniform interface to storage backends. MetaSync supports
two front-end interfaces: a command line interface and a synchroniza-
tion daemon for automatic monitoring and check-in.

easy to incorporate a new storage service into our sys-
tem (§3.7). MetaSync consists of three major compo-
nents: synchronization manager, storage service man-
ager, and translators. The synchronization manager en-
sures that every client has a consistent view of the user’s
synchronized files, by orchestrating storage services us-
ing pPaxos (§3.3). The storage service manager imple-
ments a deterministic, stable mapping scheme that en-
ables the replication of file objects with minimal shared
information, thus making our system resilient to recon-
figuration of storage services (§3.4). The translators im-
plement optional modules for encryption and decryption
of file objects in services and for integrity checks of re-
trieved objects, and these modules can be transparently
composed to enable flexible extensions (§3.5).
3.1 Data Management
MetaSync has a similar underlying data structure to that
of git [20] in managing files and their versions: objects,
units of data storage, are identified by the hash of their
content to avoid redundancy. Directories form hash trees,
similar to Merkle trees [29], where the root directory’s
hash is the root of the tree. This root hash uniquely de-
fines a snapshot. MetaSync divides and stores each file
into chunks, called Blob objects, in order to maintain and
synchronize large files efficiently.
Object store. In MetaSync’s object store, there are
three kinds of objects—Dir, File and Blob—each
uniquely identified by the hash of its content (with an ob-
ject type as a prefix in Figure 2). A File object contains
hash values and offsets of Blob objects. A Dir object
contains hash values and names of File objects.

In addition to the object store, MetaSync maintains
two kinds of metadata to provide a consistent view of
the global state: shared metadata, which all clients can
modify; and per-client metadata, which only the single
owner (writer) client of the data can modify.
Shared metadata. MetaSync maintains a piece of
shared metadata, called master, which is the hash value
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Figure 2: File management in a client’s local directory. The object
store maintains user files and directories with content-based address-
ing, in which the name of each object is based on the hash of its content.
MetaSync keeps two kinds of metadata: shared, which all clients up-
date; and per-client, for which the owner client is the only writer. The
object store and per-client files can be updated without synchroniza-
tion, while updates to the shared files require coordinated updates of
the backend stores; this is done by the synchronization manager (§3.3).

of the root directory in the most advanced snapshot. It
represents a consistent view of the global state; every
client needs to synchronize its status against the master.
Another shared piece of metadata is the configuration
of the backend services including information regarding
the list of backends, their capacities, and authenticators.
When updating any of the shared metadata, we invoke
a synchronization protocol built from the APIs provided
by existing cloud storage providers (§3.3).
Per-client data. MetaSync keeps track of clients’
states by maintaining a view of each client’s status.
The per-client metadata includes the last synchronized
value, denoted as prev clientID, and the current value
representing the client’s recent updates, denoted as
head clientID. If a client hasn’t changed any files since
the previous synchronization, the value of prev clientID

is equal to that of head clientID. As this data is updated
only by the corresponding client, it does not require any
coordinated updates. Each client stores a copy of its per-
client metadata into all backends after each update.

3.2 Overview
MetaSync’s core library maintains the above data struc-
tures and exposes a reliable storage abstraction to appli-
cations. The role of the library is to mediate accesses and
updates to actual files and metadata, and further interacts
with the backend storage services to make file data per-
sistent and reliable. The command line wrapper of the
APIs works similarly with version control systems.

Initially, a user sets up a directory to be managed by
MetaSync; files and directories under that directory will
be synchronized. This is equivalent to creating a reposi-
tory in typical version control systems. Then, MetaSync
creates a metadata directory (.metasync as shown in
Figure 2) and starts the synchronization of file data to
backend services.

Each managed directory has a name (called names-
pace) in the system to be used in synchronizing with
other clients. Upon initiation, MetaSync creates a folder

Paxos Disk Paxos pPaxos

Proposer Proposer Proposer

Acceptor Acceptor Acceptor

a register

...

disk blocks

Propose Accept Propose  Check
① ② ① ②

append-only 
list

Propose  Check
① ②

(a) (b) (c)

Figure 3: Comparison of operations between a proposer and an accep-
tor in Paxos [25], Disk Paxos [19], and pPaxos. Each acceptor in Paxos
makes a local decision to accept or reject a proposal and then replies
with the result. Disk Paxos assumes acceptors are passive; clients write
proposals into per-client disk blocks at each acceptor. Proposers need
to check every per-client block (at every acceptor) to determine if their
proposal was accepted, or preempted by another concurrent proposal.
With pPaxos, the append-only log allows clients to efficiently check the
outcome at the passive acceptor.

with the name in each backend. The folder at the back-
end storage service stores the configuration information
plus a subset of objects (§3.4). A user can have multiple
directories with different configurations and composition
of backends.

When files in the system are changed, an update hap-
pens as follows: (1) the client updates the local objects
and head client to point to the current root (§3.1); (2)
stores the updated data blocks on the appropriate back-
end services (§3.4)); and (3) proposes its head client

value as the new value for master using pPaxos (§3.3)).
The steps (1) and (2) do not require any coordination,
as (1) happens locally and (2) proceeds asynchronously.
Note that these steps are provided as separate functions
to applications, thus each application or user can decide
when to run each step; crucially, a client does not have to
update global master for every local file write.

3.3 Consistent Update of Global View: pPaxos
The file structure described above allows MetaSync to
minimize the use of synchronization operations. Each
object in the object store can be independently uploaded
as it uses content-based addressing. Each per-client data
(e.g., head client *) is also independent since we ensure
that only the owning client modifies the file. Thus, syn-
chronization to avoid potential race conditions is neces-
sary only when a client wants to modify shared data (i.e.,
master and configuration).
pPaxos. In a distributed environment, it is not straight-
forward to coordinate updates to data that can be modi-
fied by multiple clients simultaneously. To create a con-
sistent view, clients must agree on the sequence of up-
dates applied to the shared state, by agreeing on the next
update applied at a given point.

Clients do not have communication channels between
each other (e.g., they may be offline), so they need to rely
on the storage services to achieve this consensus. How-
ever, these services do not communicate with each other,
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nor do they implement consensus primitives. Instead, we
devise a variant of Paxos [25], called pPaxos (passive
Paxos) that uses the exposed APIs of these services.

We start our overview of pPaxos by relating it to the
classic Paxos algorithm (see Figure 3(a)). There, each
client works as a proposer and learner; the next state is
determined when a majority accepts a given proposal.
Acceptors act in concert to prevent inconsistent propos-
als from being accepted; failing proposals are retried. We
cannot assume that the backend services will implement
the Paxos acceptor algorithm. Instead, we only require
them to provide an append-only list that atomically ap-
pends an incoming message at the end of the list. This
abstraction is either readily available or can be layered
on top of the interface provided by existing storage ser-
vice providers (Table 3). With this append-only list ab-
straction, backend services can act as passive acceptors.
Clients determine which proposal was “accepted” by ex-
amining the log of messages to determine what a normal
Paxos acceptor would have done.
Algorithm. With an append-only list, pPaxos becomes
a simple adaptation of classic Paxos, where the deci-
sion as to what proposal was accepted is performed by
proposers. Each client keeps a data structure for each
backend service, containing the state it would have if it
processed its log as a Paxos acceptor (Figure 4 Lines 1-
4). To propose a value, a client sends a PREPARE to ev-
ery storage backend with a proposal number (Lines 7-8);
this message is appended to the log at every backend.
The proposal number must be unique (e.g., client IDs are
used to break ties). The client determines the result of
the prepare message by fetching and processing the logs
at each backend (Lines 25-29). It aborts its proposal if
another client inserted a larger proposal number in the
log (Line 10). As in Paxos, the client proposes as the
new root the value in the highest numbered proposal “ac-
cepted” by any backend server (Lines 12-15), or its own
new root if none has been accepted. It sends this value in
an ACCEPT REQ message to every backend (Lines 18-19)
to be appended to its log; the value is committed if no
higher numbered PREPARE message intervenes in the log
(Lines 20-21, 30-32). When the new root is accepted by
a majority, the client can conclude it has committed the
new updated value (Line 23). In case it fails, to avoid
repeated conflicts the client chooses a random exponen-
tial back-off and tries again with an increased proposal
number (Lines 33-36).

This setting is similar to the motivation behind Disk
Paxos [19]; indeed, pPaxos can be considered as an op-
timized version of Disk Paxos (Figure 3(b)). Disk Paxos
assumes that the storage device provides only a simple
block interface. Clients write proposals to their own
block on each server, but they must check everyone else’s
blocks to determine the outcome. Thus, Disk Paxos takes

1: struct Acceptor
2: round: promised round number
3: accepted: all accepted proposals
4: backend: associated backend service

[Proposer]
5: procedure PROPOSEROUND(value, round, acceptors)

prepare:
6: concurrently
7: for all a ← acceptors do
8: SEND(〈PREPARE,round〉 → a.backend)
9: UPDATE(a)

10: if a.round > round then abort
11: wait until done by a majority of acceptors

accept:
12: accepted ←∪a∈acceptorsa.accepted
13: if |accepted|> 0 then
14: p ← argmax{p.round|p ∈ accepted}
15: value ← p.value
16: proposal ← 〈round,value〉
17: concurrently
18: for all a ← acceptors do
19: SEND(〈ACCEPT REQ, proposal〉 → a.backend)
20: UPDATE(a)
21: if proposal /∈ a.accepted then abort
22: wait until done by a majority of acceptors

commit:
23: return proposal
24: procedure UPDATE(acceptor)
25: log ← FETCHNEWLOG(acceptor.backend)
26: for all msg ∈ log do
27: switch msg do
28: case 〈PREPARE,round〉
29: acceptor.round ← max(round,acceptor.round)
30: case 〈ACCEPT REQ, proposal〉
31: if proposal.round ≥ acceptor.round then
32: acceptor.accepted.append(proposal)
33: procedure ONRESTARTAFTERFAILURE(round)
34: INCREASEROUND
35: WAITEXPONENTAILLY
36: PROPOSEROUND(value,round,acceptors)

[Passive Acceptor]
37: procedure ONNEWMESSAGE(〈msg,round〉)
38: APPEND(〈msg,round〉 → log)

Figure 4: pPaxos Algorithm.

time proportional to the product of the number of servers
and clients; pPaxos is proportional to number of servers.

pPaxos in action. MetaSync maintains two types of
shared metadata: the master hash value and service con-
figuration. Unlike a regular file, the configuration is
replicated in all backends (in their object stores). Then,
MetaSync can uniquely identify the shared data with a
three tuple: (version, master hash, config hash).

Version is a monotonically increasing number
which is uniquely determined for each master hash,
config hash pair. This tuple is used in pPaxos to de-
scribe the status of a client and is stored in head client
and prev client.

The pPaxos algorithm explained above can determine
and store the next value of the three tuple. Then, we build
the functions listed in Table 1 by using a pPaxos instance
per synchronized value. Each client keeps the last value
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APIs Description

propose(
prev, next)

Propose a next value of prev. It returns the
accepted next value, which could be next or
some other value proposed by another client.

get recent() Retrieve the most recent value.

Table 1: Abstractions for consistent update.

(v10, Dab.., ce..)

prev_client1 head_client1

(v11, Dg2.., ce..)

(v11, De1.., ce..)
prev_client2

(v12, De1.., f0..)

head_client2

Current Master

configs/ce..
     /f0..Client1 (C1)

Global View

Client2 (C2) Same value
Next version

Figure 5: An example snapshot of pPaxos status with two clients. Each
circle indicates a pPaxos instance. C1 synchronized against v10. It
modified some files but the changes have not been synchronized yet
(head client1). C2 changed some files and the changes were made into
v11, then made changes in configuration and synchronized it (v12).
Then, it hasn’t made any changes. If C1 tries to propose the next value
of v10 later, it fails. It needs to merge with v12 and creates v13 head.
In addition, C1 can learn configuration changes when getting v12.

with which it synchronized (prev client). To proposes a
new value, the client runs pPaxos to update the previous
value with the new value. If another value has already
been accepted, it can try to update the new value after
merging with it. It can repeat this until it successfully
updates the master value with its proposed one. This data
structure can be logically viewed as a linked list, where
each entry points the next hash value, and the tail of the
list is the most up-to-date. Figure 5 illustrates an example
snapshot of pPaxos status.
Merging. Merging is required when a client synchro-
nizes its local changes (head) with the current master that
is different from what the client previously synchronized
(prev). In this case, proposing the current head as the
next update to prev returns a different value than the pro-
posed head as other clients have already advanced the
master value. The client has to merge its changes with
the current master into its head. To do this, MetaSync
employs three-way merging as in other version control
systems. This allows many conflicts to be automati-
cally resolved. Of course, three-way merging cannot re-
solve all conflicts, as two clients may change the same
parts of a file. In our current implementation, for exam-
ple, MetaSync generates a new version of the file with
.conflict.N extension, which allows for users to resolve
the conflict manually.

3.4 Replication: Stable Deterministic Mapping
MetaSync replicates objects (in the object store) redun-
dantly across R storage providers (R is configurable, typ-
ically R = 2) to provide high availability even when a

service is temporarily inaccessible. This also provides
potentially better performance over wide area networks.
Since R is less than the number of services, it is required
to maintain information regarding the mapping of ob-
jects to services. In our settings, where the storage ser-
vices passively participate in the coordination protocol,
it is particularly expensive to provide a consistent view
of this shared information. Not only that, MetaSync re-
quires a mapping scheme that takes into account storage
space limits imposed by each storage service; if handled
poorly, lack of storage at a single service can block the
entire operation of MetaSync, and typical storage ser-
vices vary in the (free) space they provide, ranging from
2 GB in Dropbox to 2 TB in Baidu. In addition, the
mapping scheme should consider a potential reconfigu-
ration of storage services (e.g., increasing storage capac-
ity); upon changes, the re-balancing of distributed ob-
jects should be minimal.

Goals. Instead of maintaining the mapping informa-
tion of each object, we use a stable, deterministic map-
ping function that locates each object to a group of ser-
vices over which it is replicated; each client can calcu-
late the same result independently given the same ob-
ject. Given a hash of an object (mod H), the mapping is:
map: H →{s : |s|= R,s⊂ S}, where H is the hash space,
S is the set of services, and R is the number of replicas.
The mapping should meet three requirements:

R1 Support variations in storage size limits across dif-
ferent services and across different users.

R2 Share minimal information amongst services.
R3 Minimize realignment of objects upon removal or

addition of a service.

To provide a balanced mapping that takes into account
of storage variations of each service (R1), we may use a
mapping scheme that represents storage capacity as the
number of virtual nodes in a consistent hashing algo-
rithm [24, 36]. Since it deterministically locates each
object onto an identifier circle in the consistent hash-
ing scheme, MetaSync can minimize information shared
among storage providers (R2).

However, using consistent hashing in this way has two
problems: an object can be mapped into a single service
over multiple vnodes, which reduces availability even
though the object is replicated, and a change in service’s
capacity—changing the number of virtual nodes, so the
size of hash space—requires to reshuffle all the objects
distributed across service providers (R3). To solve these
problems, we introduce a stable, deterministic mapping
scheme that maps an object to a unique set of virtual
nodes and also minimizes reshuffling upon any changes
to virtual nodes (e.g., changes in configurations). This
construction is challenging because our scheme should
randomly map each service to a virtual node and balance
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1: procedure INIT(Services, H)
2: � H: HashSpace size, bigger values produce better mappings
3: N ←{(sId,vId) : sId ∈ Services,0 ≤ vId < Cap(sId)}
4: � Cap: normalized capacity of the service
5: for all i < H do map[i] = Sorted(N, key = md5(i,sId,vId))
6: return map
7: procedure GETMAPPING(ob ject,R)
8: i ← hash(ob ject) mod H
9: return Uniq(map[i], R) � Uniq: the first R distinct services

Figure 6: The deterministic mapping algorithm.

object distribution, but at the same time, be stable enough
to minimize remapping of replicated objects upon any
change to the hashing space. The key idea is to achieve
the random distribution via hashing, and achieve stability
of remapping by sorting these hashed values; for exam-
ple, an increase of storage capacity will change the order
of existing hashed values by at most one.
Algorithm. Our stable deterministic mapping scheme
is formally described in Figure 6. For each backend stor-
age provider, it utilizes multiple virtual storage nodes,
where the number of virtual nodes per provider is pro-
portional to the storage capacity limit imposed by the
provider for a given user. (The concept of virtual nodes
is similar to that used in systems such as Dynamo [14].)
Then it divides the hash space into H partitions. H is
configurable, but remains fixed even as the service con-
figuration changes. H can be arbitrary large but need to
be larger than the sum of normalized capacity, with larger
values producing better-balanced mappings for hetero-
geneous storage limits. During initialization, the map-
ping scheme associates differently ordered lists of vir-
tual nodes with each of the H partitions. The ordering
of the virtual nodes in the list associated with a partition
is determined by hashing the index of the partition, the
service ID, and the virtual node ID. Given an object hash
n, the mapping returns the first R distinct services from
the list associated with the (n mod H)th partition, similar
to Rendezvous hashing [37].

The mapping function takes as input the set of stor-
age providers, the capacity settings, value of H, and a
hash function. Thus, it is necessary to share only these
small pieces of information in order to reconstruct this
mapping across different clients sharing a set of files.
The list of services and the capacity limits are part of
the service configuration and shared through the config

file. The virtual node list is populated proportionally to
service capacity, and the ordering in each list is deter-
mined by a uniform hash function. Thus, the resulting
mapping of objects onto services should be proportional
to service capacity limits with large H. Lastly, when N
nodes are removed from or added to the service list, an
object needs to be newly replicated into at most N nodes.
Example. Figure 7 shows an example of our mapping
scheme with four services (|S| = 4) providing 1GB or
2GB of free spaces–for example, A(1) means that ser-

S = {A(1), B(2), C(2), D(1)}
N = {A1, B1, B2, C1, C2, D1}

m[0] = [A1, C2, D1, B1, B2, C1] = [A, C]
...
m[19] = [C2, B1, D1, A1, B2, C1] = [C, B

H=20
]

S = {A(1),  C(2), D(1)}
N = {A1,  C1, C2, D1}
m[0] = [A1, C2, D1,  C1] = [A, C]
...
m[19] = [C2,  D1, A1,  C1] = [C, D]

S = {A(1),  C(2), D(1), E(3)}
N = {A1,  C1, C2, D1, E1, E2, E3}

m[0] = [A1, E2, E1, C2, D1,  C1,E3 ] = [A, E C]
...
m[19] = [C2, E3, E2,  D1, E1, A1,  C1] = [C, E D]

(a) New mapping after service B(2) is removed 

(b) New mapping after service E(3) is added

R=2

Service D has 1GB storage

: Service config
: Normalized config
: Hash space
: Replication

S
N
H
R

Figure 7: An example of deterministic mapping and its reconfigura-
tions. The initial mapping is deterministically generated by Figure 6,
given the configuration of four services, A(1),B(2),C(2),D(1) where
the number represents the capacity of each service. (a) and (b) show
new mappings after configuration is changed. The grayed mappings
indicate the new replication upon reconfiguration, and the dotted rect-
angle in (b) represents replications that will be garbage collected.

vice A provides 1GB of free space. Given the replication
requirement (R = 2) and the hash space (H = 20), we
can populate the initial mapping with Init function from
Figure 6. Subfigures (a) and (b) illustrate the realign-
ment of objects upon the removal of service B(2) and the
inclusion of a new service E(3).

3.5 Translators
MetaSync provides a plugin system, called Translators,
for encryption and integrity check. Translators is highly
modular so can easily be extended to support a variety
of other transformations such as compression. Plugins
should implement two interfaces, put and get, which
are invoked before storing objects to and after retriev-
ing them from backend services. Plugins are chained, so
that when an object is stored, MetaSync invokes a chain
of put calls in sequence. Similarly, when an object is
retrieved, it goes through the same chain but in reverse.

Encryption translator is currently implemented using a
symmetric key encryption (AES-CBC). MetaSync keeps
the encryption key locally, but does not store on the back-
ends. When a user clones the directory in another de-
vice, the user needs to provide the encryption key. In-
tegrity checker runs hash function over retrieved object
and compares the digest against the file name. If it does
not match, it drops the object and downloads the object
by using other backends from the mapping. It needs to
run only in the get chain.

3.6 Fault Tolerance
To operate on top of multiple storage services that are
often unreliable (they are free!), faulty (they scan and
tamper with your files), and insecure (some are outside
of your country), MetaSync should tolerate faults.
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Data model. By replicating each object into multiple
backends (R in §3.4), MetaSync can tolerate loss of file
or directory objects, and tolerate temporal unavailability
or failures of R−1 concurrent services.

File integrity. Similarly with other version control sys-
tems [20], the hash tree ensures each object’s hash value
is valid from the root (master, head). Then, each ob-
ject’s integrity can be verified by calculating the hash
of the content and comparing with the name when it
is retrieved from the backend service. The value of
master can be signed to protect against tampering. When
MetaSync finds an altered object file, it can retrieve the
data from another replicated service through the deter-
ministic mapping.

Consistency control. MetaSync runs pPaxos for se-
rializing updates to the shared value for config and
master. The underlying pPaxos protocol requires 2 f +1
acceptors to ensure correctness if f acceptors may fail
under the fail-stop model.

Byzantine Fault Tolerant pPaxos. pPaxos can be eas-
ily extended to make it resilient to other forms of service
failures, e.g., faulty implementations of the storage ser-
vice APIs and even actively malicious storage services.
Note that even with Byzantine failures, each object is
protected in the same way through replication and in-
tegrity checks. However, updates of global view need
to be handled more carefully. We assume that clients
are trusted and work correctly, but backend services may
have Byzantine behavior. When sending messages for
proposing values, a client needs to sign it. This ensures
that malicious backends cannot create arbitrary log en-
tries. Instead, the only possible malicious behavior is to
break consistency by omitting log entries and reordering
them when clients fetch them; a backend server may send
any subset of the log entries in any order. Under this set-
ting, pPaxos works similarly with the original algorithm,
but it needs 3 f + 1 acceptors when f may concurrently
fail. Then, for each prepare or accept, a proposing client
needs to wait until 2 f +1 acceptors have prepared or ac-
cepted, instead of f + 1. It is easy to verify the correct-
ness of this scheme. When a proposal gets 2 f + 1 ac-
cepted replies, even if f of the acceptors are Byzantine,
the remaining f + 1 acceptors will not accept a compet-
ing proposal. As a consequence, competing proposals
will receive at most 2 f acceptances and will fail to com-
mit. Note that each file object is still replicated at only
f +1 replicas, as data corruption can be detected and cor-
rected as long as there is a single non-Byzantine service.
As a consequence, the only additional overhead of mak-
ing the system tolerate Byzantine failures is to require a
larger quorum (2 f + 1) and a larger number of storage
services (2 f + 1) for implementing the synchronization
operation associated with updating master.

APIs Description

(a) Storage abstraction
get(path) Retrieve a file at path
put(path, data) Store data at path
delete(path) Delete a file at path
list(path) List all files under path directory
poll(path) Check if path was changed

(b) Synchronization abstraction
append(path, msg) Append msg to the list at path
fetch(path) Fetch a log from path

Table 2: Abstractions for backend storage services.

3.7 Backend abstractions
Storage abstraction. Any storage service having an
interface to allow clients to read and write files can be
used as a storage backend of MetaSync. More specifi-
cally, it needs to provide the basis for the the functions
listed in Table 2(a). Many storage services provide a
developer toolkit to build a customized client accessing
user files [16, 21]; we use these APIs to build MetaSync.
Not only cloud services provide these APIs, it is also
straightforward to build these functions on user’s private
servers through SSH or FTP. MetaSync currently sup-
ports backends with the following services: Dropbox,
GoogleDrive, OneDrive, Box.net, Baidu, and local disk.

Synchronization abstraction. To build the primitive
for synchronization, an append-only log, MetaSync can
use any services that provide functions listed in Ta-
ble 2(b). How to utilize the underlying APIs to build the
append-only log varies across services. We summarize
how MetaSync builds it for each provider in Table 3.

3.8 Other Issues
Sharing. MetaSync allows users to share a folder and
work on the folder. While not many backend services
have APIs for sharing functions—only Google Drive and
Box have it among services that we used—others can be
implemented through browser emulation. Once sharing
invitation is sent and accepted, synchronization works
the same way as in the one-user case. If files are en-
crypted, we assume that all collaborators share the en-
cryption key.

Collapsing directory. All storage services manage in-
dividual files for uploading and downloading. As we see
later in Table 4, throughput for uploading and download-
ing small files are much lower than those for larger files.
As an optimization, we collapse all files in a directory
into a single object when the total size is small enough.

4 Implementation
We have implemented a prototype of MetaSync in
Python, and the total lines of code is about 7.5K. The
current prototype supports five backend services includ-
ing Box, Baidu, Dropbox, Google Drive and OneDrive,
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and works on all major OSes including Linux, Mac and
Windows. MetaSync provides two front-end interfaces
for users, a command line interface similar to git and a
synchronization daemon similar to Dropbox.
Abstractions. Storage services provide APIs equiva-
lent to MetaSync’s get() and put() operations defined
in Table 2. Since each service varies in its support for the
other operations, we summarize the implementation de-
tails of each service provider in Table 3. For implement-
ing synchronization abstractions, append() and fetch(),
we utilized the commenting features in Box, Google and
OneDrive, and versioning features in Dropbox. If a ser-
vice does not provide any efficient ways to support syn-
chronization APIs, MetaSync falls back to the default
implementation of those APIs that are built on top of
their storage APIs, described for Baidu in Table 3. Note
that for some services, there are multiple ways to imple-
ment the synchronization abstractions. In that case, we
chose to use mechanisms with better performance.
Front-ends. The MetaSync daemon monitors file
changes by using inotify in Linux, FSEvents and kQueue

in Mac and ReadDirectoryChangesW in Windows, all ab-
stracted by the Python library watchdog. Upon notifi-
cation, it automatically uploads detected changes into
backend services. It batches consecutive changes by
waiting 3 more seconds after notification so that all mod-
ified files are checked in as a single commit to reduce
synchronization overhead. It also polls to find changes
uploaded from other clients; if so, it merges them into
the local drive. The command line interface allows users
to manually manage and synchronize files. The usage of
MetaSync commands is similar to that of version control
systems (e.g., metasync init, clone, checkin, push).

5 Evaluation
This section answers the following questions:
• What are the performance characteristics of pPaxos?
• How quickly does MetaSync reconfigure mappings as

services are added or removed?
• What is the end-to-end performance of MetaSync?

Each evaluation is done on Linux servers connected to
campus network except for synchronization performance
in §5.3. Since most services do not have native clients
for Linux, we compared synchronization time for native
clients and MetaSync on Windows desktops.

Before evaluating MetaSync, we measured the perfor-
mance variance of services in Table 4 via their APIs. One
important observation is that all services are slow in han-
dling small files. This provides MetaSync the opportu-
nity to outperform them by combining small objects.

5.1 pPaxos performance
We measure how quickly pPaxos reaches consensus as
we vary the number of concurrent proposers. The re-
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sults of the experiment with 1-5 proposers over 5 stor-
age providers are shown in Figure 8. A single run
of pPaxos took about 3.2 sec on average under a sin-
gle writer model to verify acceptance of the proposal
when using all 5 storage providers. This requires at
least four round trips: PREPARE (Send, FetchNewLog)
and ACCEPT REQ (Send, FetchNewLog) (Figure 4) (there
could be multiple rounds in FetchNewLog depending on
the implementation for each service). It took about 7.4
sec with 5 competing proposers. One important thing to
emphasize is that, even with a slow connection to Baidu,
pPaxos can quickly be completed with a single winner
of that round. Also note that when compared to a single
storage provider, the latency doesn’t degrade with the in-
creasing number of storage providers—it is slower than
using a certain backend service (Google), but it is similar
to the median case as the latency depends on the proposer
getting responses from the majority.

Next, we compare the latency of a single round for
pPaxos with that for Disk Paxos [19]. We build Disk
Paxos with APIs by assigning a file as a block for each
client. Figure 9 shows the results with varying number
of clients when only one client proposes a value. As we
explain in §3.3, Disk Paxos gets linearly slower with in-
creasing number of clients even when all other clients are
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Service Synchronization API Storage API
append(path, msg) fetch(path) poll(path)

Box
Google
OneDrive

Create an empty path file and add msg as comments
to the path file.

Download the entire comments
attached on the path file.

Use events API, allowing long polling.
(Google, OneDrive: periodically list
pPaxos directory to see if any changes)

Baidu Create a path directory, and consider each file as a
log entry containing msg. For each entry, we cre-
ate a file with an increasing sequence number as its
name. If the number is already taken, we will get
an exception and try with a next number.

List the path directory, and down-
load new log entries since last
fetch (all files with subsequent se-
quence numbers).

Use diff API to monitor if there is any
change over the user’s drive.

Dropbox Create a path file, and overwrite the file with a new
log entry containing msg, relying on Dropbox’s ver-
sioning.

Request a list of versions of the
path file.

Use longpoll delta, a blocked call, that
returns if there is a change under path.

Disk† Create a path file, and append msg at the end of the
file.

Read the new entries from the
path file.

Emulate long polling with a condition
variable.

Table 3: Implementation details of synchronization and storage APIs for each service. Note that implementations of other storage APIs (e.g., put())
can be directly built with APIs provided by services, with minor changes (e.g., supporting namespace). Disk† is implemented for testing.

Services 1 KB 1 MB 10 MB 100 MB
U.S. China U.S. China U.S. China U.S. China

Baidu 0.7 / 0.8 1.8 / 2.6 0.21 / 0.22 0.12 / 1.48 0.22 / 0.94 0.13 / 2.64 0.24 / 1.07 0.13 / 3.38
Box 1.4 / 0.6 0.8 / 0.2 0.73 / 0.44 0.11 / 0.12 4.79 / 3.38 0.13 / 0.68 17.37 / 15.77 0.13 / 1.08

Dropbox 1.2 / 1.3 0.5 / 0.5 0.59 / 0.69 0.10 / 0.20 2.50 / 3.48 0.09 / 0.41 3.86 / 14.81 0.13 / 0.68
Google 1.4 / 0.8 - 1.00 / 0.77 - 5.80 / 5.50 - 9.43 / 26.90 -

OneDrive 0.8 / 0.5 0.3 / 0.1 0.45 / 0.34 0.01 / 0.05 3.13 / 2.08 0.11 / 0.12 7.89 / 6.33 0.11 / 0.44

KB/s MB/s MB/s MB/s

Table 4: Upload and download bandwidths of four different file sizes on each service from U.S. and China. This preliminary experiment explains
three design constrains of MetaSync. First, all services are extremely slow in handling small files, 7k/34k times slower in uploading/downloading
1 KB files than 100 MB on Google storage service. Second, the bandwidth of each service approaches its limit at 100 MB. Third, performance
varies with locations, 30/22 times faster in uploading/downloading 100 MB when using Dropbox in U.S. compared to China.

inactive, since it must read the current state of all clients.

5.2 Deterministic mapping
We then evaluate how fairly our deterministic mapping
distributes objects into storage services with different ca-
pacity, in three replication settings (R = 1,2). We test
our scheme by synchronizing source tree of Linux ker-
nel 3.10.38, consisting of a large number of small files
(464 MB), to five storage services, as detailed in Table 5.
We use H = (5×sum of normalized space) = 10,410 for
this testing. In R = 1, where we upload each object once,
MetaSync locates objects in balance to all services—it
uses 0.02% of each service’s capacity consistently. How-
ever, since Baidu provides 2TB (98% of MetaSync’s ca-
pacity in this configuration), most of the objects will be
allocated into Baidu. This situation improves for R = 2,
since objects will be placed into other services beyond
Baidu. Baidu gets only 6.2 MB of more storage when in-
creasing R = 1 → 2, and our mapping scheme preserves
the balance for the rest of services (using 1.3%).

The entire mapping plan is deterministically derived
from the shared config. The size of information to be
shared is small (less than 50B for the above example),
and the size of the populated mapping is about 3MB.

Reconfiguration #Objects Time (sec)
Added / Removed Replication / GC

S = 4,R = 2 → 3 101 / 0 33.7 / 0.0
S = 4 → 3,R = 2 54 / 54 19.6 / 40.6
S = 3 → 4,R = 2 54 / 54 29.8 / 14.7

Table 6: Time to relocate 193 MB amount of objects (photo-sharing
workloads in Table 7) on increasing the replication ratio, removing an
existing service, and adding one more service. MetaSync quickly re-
balances its mapping (and replication) based on its new config. We
used four services, Dropbox, Box, GoogleDrive, and OneDrive (S = 4)
for experimenting with the replication, including (S = 3 → 4) and ex-
cluding OneDrive (S = 4 → 3) for re-configuring storage services.

The relocation scheme is resilient to changes as well,
meaning that redistribution of objects is minimal. As in
Table 6, when we increased the configured replication
by one (R = 2 → 3) with 4 services, MetaSync repli-
cated 193 MB of objects in about half a minute. When
we removed a service from the configuration, MetaSync
redistributed 96.5 MB of objects in about 20 sec. Af-
ter adding and removing a storage backend, MetaSync
needs to delete redundant objects from the previous con-
figuration, which took 40.6/14.7 sec for removing/adding
OneDrive in our experiment. However, the garbage col-
lection will be asynchronously initiated during idle time.
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Repl. Dropbox Google Box OneDrive Baidu Total
(2 GB) (15 GB) (10 GB) (7 GB) (2048 GB) (2082 GB)

R = 1 77 (0.09%) 660 (0.75%) 475 (0.54%) 179 (0.20%) 86,739 (98.42%) 88,130 (100%)
0.34 MB (0.02%) 2.87 MB (0.02%) 2.53 MB (0.02%) 0.61 MB (0.01%) 463.8 MB (0.02%) 470.1 MB (0.02%)

R = 2 5,297 (3.01%) 39,159 (22.22%) 25,332 (14.37%) 18,371 (10.42%) 88,101 (49.98%) 176,260 (100%)
27.4 MB (1.34%) 206.4 MB (1.34%) 138.2 MB (1.35%) 98.3 MB (1.37%) 470.0 MB (0.02%) 940.3 MB (0.04%)

Table 5: Replication results by our deterministic mapping scheme (§3.4) for Linux kernel 3.10.38 (Table 7) on 5 different services with various
storage space, given for free. We synchronized total 470 MB of files, consisting of 88k objects, and replicated them across all storage backends.
Note that for this mapping test, we turned off the optimization of collapsing directories. Our deterministic mapping distributed objects in balance:
for example, in R = 2, Dropbox, Google, Box and OneDrive used consistently 1.35% of their space, even with 2-15 GB of capacity variation. Also,
R = 1 approaches to the perfect balance, using 0.02% of storage space in all services.

5.3 End-to-end performance
We selected three workloads to demonstrate performance
characteristics. First, Linux kernel source tree (2.6.1)
represents the most challenging workload for all stor-
age services due to its large volume of files and direc-
tory (920 directories and 15k files, total 166 MB). Sec-
ond, MetaSync’s paper represents a causal use of syn-
chronization service for users (3 directories and 70 files,
total 1.6 MB). Third, sharing photos is for maximizing
the throughput of each storage service with bigger files
(50 files, total 193 MB).

Table 7 summarizes our results for end-to-end perfor-
mance for all workloads, comparing MetaSync with the
native clients provided by each service. Each workload
was copied into one client’s directory before synchro-
nization is started. The synchronization time was mea-
sured as the length of interval between when one desktop
starts to upload files and the creation time of the last file
synced on the other desktop. We also measured the syn-
chronization time for all workloads by using MetaSync
with different settings. MetaSync outperforms any indi-
vidual service for all workloads. Especially for Linux
kernel source, it took only 12 minutes when using 4 ser-
vices (excluding Baidu located outside of the country)
compared to more than 2 hrs with native clients. This
improvement is possible due to using concurrent connec-
tions to multiple backends, and optimizations like col-
lapsing directories. Although these native clients may
not be optimized for the highest possible throughput,
considering that they may run as a background service,
it would be beneficial for users to have a faster option.
It is also worth noting that replication helps sync time,
especially when there is a slower service, as shown in
the case with S = 5,R = 1,2; a downloading client can
use faster services while an uploading client can upload
a copy in the background.
Clone. Storage services often limit their download
throughput: for example, MetaSync can download at
5.1 MB/s with Dropbox as a backend, and at 3.4 MB/s
with Google Drive, shown in Figure 10. Note that down-
loading is done already by using concurrent connections
even to the same service. By using multiple storage ser-
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Figure 10: Time to clone 193 MB photos. When using individual ser-
vices as a backend (Dropbox, Google, and OneDrive), MetaSync took
40-70 sec to clone, but improved the performance, 25-30 sec (30%) by
leveraging the distributions of objects across multiple services.

vices, MetaSync can fully exploit the bandwidth of local
connection of users, not limited by the allowed through-
put of each service. For example, MetaSync with both
services and R=2 took 25.5 sec for downloading 193 MB
data, which is at 7.6 MB/s.

6 Related Work
A major line of related work, starting with Farsite [2]
and SUNDR [26] but carrying through SPORC [17], Fri-
entegrity [18], and Depot [27], is how to provide tamper
resistance and privacy on untrusted storage server nodes.
These systems assume the ability to specify the client-
server protocol, and therefore cannot run on unmodified
cloud storage services. A further issue is equivocation;
servers may tell some users that updates have been made,
and not others. Several of these systems detect and re-
solve equivocations after the fact, resulting in a weaker
consistency model than MetaSync’s linearizable updates.
A MetaSync user knows that when a push completes,
that set of updates is visible to all other users and no
conflicting updates will be later accepted. Like Farsite,
we rely on a stronger assumption about storage system
behavior—that failures across multiple storage providers
are independent, and this allows us to provide a simpler
and more familiar model to applications and users.

Likewise, several systems have explored composing a
storage layer on top of existing storage systems. Syn-
dicate [32] is designed as an API for applications; thus,
they delegate design choices such as how to manage files
and replicate to application policy. SCFS [5] imple-
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Workload Dropbox Google Box OneDrive Baidu MetaSync
S = 5,R = 1 S = 5,R = 2 S = 4,R = 1 S = 4,R = 2

Linux kernel source 2h 45m > 3hrs > 3hrs 2h 03m > 3hrs 1h 8m 13m 51s 18m 57s 12m 18s
MetaSync paper 48 42 148 54 143 55 50 27 26
Photo sharing 415 143 536 1131 1837 1185 180 137 112

Table 7: Synchronization performance of 5 native clients provided by each storage service, and with four different settings of MetaSync. For
S = 5,R = 1, using all of 5 services without replication, MetaSync provides comparable performance to native clients–median speed for MetaSync
paper and photo sharing, but outperforming for Linux kernel workloads. However, for S = 5,R = 2 where replicating objects twice, MetaSync
outperform >10 times faster than Dropbox in Linux kernel and 2.3 times faster in photo sharing; we can finish the synchronization right after
uploading a single replication set (but complete copy) and the rest will be scheduled in background. To understand how slow straggler (Baidu)
affects the performance (R = 1), we also measured synchronization time on S = 4 without Baidu, where MetaSync vastly outperforms all services.

ments a sharable cloud-backed file system with multiple
cloud storage services. Unlike MetaSync, Syndicate and
SCFS assume separate services for maintaining metadata
and consistency. RACS [1] uses RAID-like redundant
striping with erasure coding across multiple cloud stor-
age providers. Erasure coding can also be applied to
MetaSync and is part of our future work. SpanStore [39]
optimizes storage and computation placement across a
set of paid data centers with differing charging models
and differing application performance. As they are tar-
geting general-purpose infrastructure like EC2, they as-
sume the ability to run code on the server. BoxLeech [22]
argues that aggregating cloud services might abuse them
especially given a user may create many free accounts
even from one provider, and demonstrates it with a file
sharing application. GitTorrent [3] implements a decen-
tralized GitHub hosted on BitTorrent. It uses BitCoin’s
blockchain as a method of distributed consensus.

Perhaps closest to our intent is DepSky [4]; it proposes
a cloud of clouds for secure, byzantine-resilient storage,
and it does not require code execution on the servers.
However, they assume a more restricted use case. Their
basic algorithm assumes at most one concurrent writer.
When writers are at the same local network, concur-
rent writes are coordinated by an external synchroniza-
tion service like ZooKeeper. Otherwise, it has a possible
extension that can support multiple concurrent updates
without an external service, but it requires clock syn-
chronization between clients. MetaSync makes no clock
assumptions about clients, it is designed to be efficient
in the common case where multiple clients are making
simultaneous updates, and it is non-blocking in the pres-
ence of either client or server failures. DepSky also only
provides strong consistency for individual data objects,
while MetaSync provides strong consistency across all
files in a repository.

Our implementation integrates and builds on the ideas
in many earlier systems. Obviously, we are indebted to
earlier work on Paxos [25] and Disk Paxos [19]; we ear-
lier provided a detailed evaluation of these different ap-
proaches. We maintain file objects in a manner similar
to a distributed version control system like git [20]; the
Ori file system [28] takes a similar approach. However,

MetaSync can combine or split each file object for more
efficient storage and retrieval. Content-based addressing
has been used in many file systems [8, 11, 26, 28, 35].
MetaSync uses content-based addressing for a unique
purpose, allowing us to asynchronously uploading or
downloading objects to backend services. While algo-
rithms for distributing or replicating objects have also
been proposed and explored by past systems [10, 33, 34],
the replication system in MetaSync is designed to mini-
mize the cost of reconfiguration to add or subtract a stor-
age service and also to respect the diverse space restric-
tions of multiple backends.

7 Conclusion
MetaSync provides a secure, reliable, and performant file
synchronization service on top of popular cloud storage
providers. By combining multiple existing services, it
enables a highly available service during the outage or
even shutdown of a service provider. To achieve a con-
sistent update among cloud services, we devised a client-
based Paxos, called pPaxos, that can be implemented
without modifying any existing APIs. To minimize the
redistribution of replicated files upon a reconfiguration of
services, we developed a deterministic, stable replication
scheme that requires minimal amount of shared infor-
mation among services (e.g., configuration). MetaSync
supports five commercial storage backends (in current
open source version), and outperforms the fastest indi-
vidual service in synchronization and cloning, by 1.2-
10× on our benchmarks. MetaSync is publicly avail-
able for download and use (http://uwnetworkslab.
github.io/metasync/).
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