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Why yet another sandbox for 
desktop applications?

● There are many existing sandbox mechanisms
– Chroot / Lxc (Unix/Linux)

– Jail (Freebsd)

– Seatbelt (Mac OS X)

– VM?

...

● Difficult-to-use, requiring root privilege, or slow!
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Unknown binary 
downloaded from the 
Internet

Our tool TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 >   N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>
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Where to connect?

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 >   N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>
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Protecting the host filesystem 
from modification

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 >   N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>
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Revision-control-system like interface

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 >   N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>
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TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 >   N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>

Without root privilege!



8

Design overview

● Layered sandbox filesystem
– Overlaying the host filesystem
– Confining modification made by sandboxed processes
– Persistent storage: in fact, just a regular directory

● System call interposition
– Commodity OSes provide one for non-root users
– Enabling a variety of applications: installing pkgs, 

restricting network, build/dev. env ...
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Installing packages as normal user

● Mbox provides a writable sandbox layer on top of the 
host filesystem
– User owns the sandbox directory

– Contain newly installed files, and package databases

● Mbox emulates a fakeroot environment
– Use standard package managers without modification

– Support: apt-get (Ubuntu), dpkg (Debian), pip (Python)

$ mbox -R -- apt-get install git

(-R: emulate a fakeroot environment)
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Running unknown binary safely

● Mbox protects the host filesystem from modifications
● Mbox restricts or monitors network accesses

– Interpret socket-like system calls

– Summarize network activity when terminated

$ mbox -n -- ./downloaded-bin

(-n: disable remote network accesses)
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Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem
~/.emacs
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Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem

Edit .emacs

~/.emacs
Sandbox FS

~/.emacs

Sandbox

Write Read
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Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem
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~/.emacs
Sandbox FS
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Sandbox

Write Read
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Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem

Edit .emacs

~/.emacs
Sandbox FS

~/.emacs

Sandbox

Write Read

Read

Commit
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Build/development environment

● Mbox can separate out the generated obj files
– make clean == rm -rf outdir

● Mbox can also be used for virtual dev. env.
– Install packages with standard package managers 

$ tree linux-git

  ...

  +--mm--mmap.c

       +-mlock.c

$ mbox -r outdir -- make

(-r dir: specify a sandbox directory)

Host Filesystem

*.o
Sandbox FS

linux-git
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Outline
● Motivation / use cases

● Layered sandbox filesystem

● System call interposition (using seccomp/BPF)

● Implementation / evaluation

● Related work

● Summary
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Sandbox filesystem supports
copy-on-write

Sandboxed process

Host 
filesystem

Sandbox 
filesystem

.emacs
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Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, R)

Host 
filesystem

Sandbox 
filesystem

.emacs

Read
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Sandbox filesystem supports
copy-on-write

Sandboxed process
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Host 
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Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, RW)

Host 
filesystem

Sandbox 
filesystem
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.emacs Copy
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Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, RW)

Host 
filesystem

Sandbox 
filesystem

.emacs

Read/Write

.emacs Copy
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Copy-on-write by rewriting path 
arguments

Sandboxed process

open(“.emacs”, RW)

Host 
filesystem

Sandbox 
filesystem

.emacs

Read/Write

/tmp/sbox/
.emacs Copy
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Copy-on-write by rewriting path 
arguments

Sandboxed process

open(“.emacs”, RW)

Host 
filesystem

Sandbox 
filesystem

.emacs

Read/Write

/tmp/sbox/

/tmp/sbox/home/taesoo/.emacs

.emacs Copy
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All subsequent read/write should 
happen on the sandbox filesystem

Sandboxed process

open(“.emacs”, RW)

Host 
filesystem

Sandbox 
filesystem

Read

open(“.emacs”, R)
...

.emacs

.emacs
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/tmp/sbox/home/taesoo/.emacs

All subsequent read/write should 
happen on the sandbox filesystem

Sandboxed process

open(“.emacs”, RW)

Host 
filesystem

Sandbox 
filesystem

Read

open(“.emacs”, R)
...

/tmp/sbox/

.emacs

.emacs
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Sandbox filesystem keeps track of 
deleted files

Sandboxed process

unlink(“.emacs”)

Host 
filesystem

Sandbox 
filesystem

.emacs

...

Hashmap of 
deleted files

.emacs

...

Mbox
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Sandbox filesystem keeps track of 
deleted files

Sandboxed process

unlink(“.emacs”)

Host 
filesystem

Sandbox 
filesystem

.emacs

Read

.emacs

...

/tmp/sbox/home/taesoo/.emacs

/tmp/sbox/

open(“.emacs”, R)

deleted

Hashmap of 
deleted files

.emacs

...

Mbox
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Mbox doesn't have to interpose on 
every system call

read(fd, buf, size) write(fd, buf, size)

fd = open(“.emacs”, R) fd = open(“.emacs”, RW)

● After redirecting the path in open(), we don't have to 
interpose on read/write() system calls

● Mbox needs to interpose on 48 system calls getting a path 
argument to provide a layered sandbox filesystem
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Mechanism: system call interposition

● Ptrace is a common technique, but slow
– Interpose entry/exit of every system call
– Serialize system calls of child processes

● Using seccomp/BPF (>= Linux 3.5)
– Seccomp is a security mechanism for isolating a 

process by allowing a certain set of system calls
– Seccomp/BPF uses BPF (Berkeley Packet Filter) to 

specify rules for filtering system calls
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BPF program for interposition

Mbox

Kernel

User space



32

BPF program for interposition

Mbox

Kernel

User space

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

Seccomp/BPF
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BPF program for interposition

Mbox

Kernel

User space

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

Seccomp/BPF
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BPF program for interposition

Mbox

Kernel

User space

Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

②

Seccomp/BPF
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BPF program for interposition

Mbox

open(“/a", RW)

Kernel

User space

Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

②

③

Seccomp/BPF
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BPF program for interposition

Mbox

open(“/a", RW)

Kernel

User space

Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()

EVENT_SECCOMP

wait() ①

②

③

④

Seccomp/BPF
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BPF program for interposition

Mbox

open(“/a", RW)

Kernel

User space

ptrace (PEEK/POKE)
“/a”  “/tmp/sbox/a”→Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()

EVENT_SECCOMP

wait() ①

②

③

④

⑤

Seccomp/BPF
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More story to come ...

● How to avoid time-of-check-to-time-of-use?
● How to avoid replicating OS state?
● ...

Please, check the paper!
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Implementation

● Mbox: a prototype for Linux (>= 3.5, x86-64)
– Using seccomp/BPF and ptrace
– Extending strace 4.7
– 1,500 Lines of code
– Distributions: Ubuntu 12.04 and Arch 64bit
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Performance evaluation

● How much overhead does Mbox exhibit?
● How much faster is seccomp/BPF than ptrace?
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Benchmark

● Following the benchmark from Apiary
● Run each benchmark in three configurations

– Normal
– Mbox with ptrace
– Mbox with seccomp/BPF

Task Description

Octave Octave Benchmark calculating matrix

Zip Compress source files of Linux 3.8

Untar Decompress source files of Linux 3.8

Build Linux (-j1) Compile Linux 3.8 kernel
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Mbox imposes modest end-to-end 
performance overhead

Task Normal
Mbox

Seccomp/BPF

Octave 2.1s 2.1s 0.1%

Zip 15.6s 17.4s 12.0%

Untar 13.6s 16.4s 20.9%

Build Linux (-j1) 43.6s 49.7s 13.9%

● 0.1% ~ 20.9% overhead
● Octave: a computation-heavy workload

– Exhibits negligible performance overhead  (0.1%)
– Spends 98% of its execution in userspace
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Seccomp/BPF reduces the 
interposition overhead

● Compare overheads of using ptrace and seccomp/BPF
● Seccomp/BPF reduces overhead up to 24.5%

Task Normal
Mbox

Ptrace Seccomp/BPF

Octave 2.1s 2.1s 0.1% 2.1s 0.1%

Zip 15.6s 21.2s 36.5% 17.4s 12.0%

Untar 13.6s 19.0s 40.3% 16.4s 20.9%

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9%
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Seccomp/BPF has better 
concurrency than ptrace

● When compiling the Linux kernel with 4 parallel jobs, 
performance improves 64.9% compared to ptrace

● By avoiding unnecessary serialization of system calls, 
multiple processes execute system calls concurrently

Task Normal
Mbox

Ptrace Seccomp/BPF

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9%

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 45.2%
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Seccomp/BPF has better 
concurrency than ptrace

● When compiling the Linux kernel with 4 parallel jobs, 
performance improves 64.9% compared to ptrace

● By avoiding unnecessary serialization of system calls, 
multiple processes execute system calls concurrently

Task Normal
Mbox

Ptrace Seccomp/BPF

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9%

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 45.2%
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Related work
● Layered filesystems: UnionFS [Quigley '06] / Aufs

– Following unification rules / copy-on-write

  → Require no modifications in commodity OSes

● System call interposition: Ostia [Garfinkel '04]
– Enforcing security policies / studied common pitfalls

  → Summarize our experience of using seccomp/BPF

● Namespace: Plan9 [Pike '90] / Lxc container (Docker)
– Private namespace for each process

  → Enabling various applications via system call interposition
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Summary

Mbox: a lightweight sandboxing mechanism
– Layered sandbox filesystem
– Revision-control-system like sandbox usage model
– Interposing on system calls with seccomp/BPF
– Enabling a variety of applications for non-root users

http://pdos.csail.mit.edu/mbox
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Questions (if you don't have any)
● What if files are modified by other processes running 

outside of Mbox?

● Why 20% on tar? just rewriting path arguments doesn't 
seem to be demanding work.

● How complicated the BPF program? Why not implement 
everything in BPF then?

● Why does Mbox support only 64bit? and is Mbox ready 
for users (not developers)?

● Can Mbox be used for A, B and C … ?
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