
Practical and Effective
Sandboxing for Non-root users

Taesoo Kim and Nickolai Zeldovich

MIT CSAIL

2

Why yet another sandbox for
desktop applications?

● There are many existing sandbox mechanisms
– Chroot / Lxc (Unix/Linux)

– Jail (Freebsd)

– Seatbelt (Mac OS X)

– VM?

...

● Difficult-to-use, requiring root privilege, or slow!

3

Unknown binary
downloaded from the
Internet

Our tool TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 > N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>

4

Where to connect?

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 > N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>

5

Protecting the host filesystem
from modification

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 > N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>

6

Revision-control-system like interface

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 > N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>

7

TL;DR

$ mbox -- ./downloaded-bin

...

Network Summary:

 > [11279] -> 173.194.43.51:80

 > [11279] Create socket(PF_INET,...)

 > [11279] -> a00::2607:f8b0:4006:803:0

 ...

Sandbox Root:

 > /tmp/sandbox-11275

 > N:/tmp/index.html

[c]ommit, [d]iff, [i]gnore, [l]ist, [s]hell, [q]uit ?>

Without root privilege!

8

Design overview

● Layered sandbox filesystem
– Overlaying the host filesystem
– Confining modification made by sandboxed processes
– Persistent storage: in fact, just a regular directory

● System call interposition
– Commodity OSes provide one for non-root users
– Enabling a variety of applications: installing pkgs,

restricting network, build/dev. env ...

9

Design overview

● Layered sandbox filesystem
– Overlaying the host filesystem
– Confining modification made by sandboxed processes
– Persistent storage: in fact, just a regular directory

● System call interposition
– Commodity OSes provide one for non-root users
– Enabling a variety of applications: installing pkgs,

restricting network, build/dev. env ...

10

Installing packages as normal user

● Mbox provides a writable sandbox layer on top of the
host filesystem
– User owns the sandbox directory

– Contain newly installed files, and package databases

● Mbox emulates a fakeroot environment
– Use standard package managers without modification

– Support: apt-get (Ubuntu), dpkg (Debian), pip (Python)

$ mbox -R -- apt-get install git

(-R: emulate a fakeroot environment)

11

Running unknown binary safely

● Mbox protects the host filesystem from modifications
● Mbox restricts or monitors network accesses

– Interpret socket-like system calls

– Summarize network activity when terminated

$ mbox -n -- ./downloaded-bin

(-n: disable remote network accesses)

12

Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem
~/.emacs

13

Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem

Edit .emacs

~/.emacs
Sandbox FS

~/.emacs

Sandbox

Write Read

14

Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem

Edit .emacs

~/.emacs
Sandbox FS

~/.emacs

Sandbox

Write Read

Read

15

Checkpointing filesystem
$ mbox -i -- emacs ~/.emacs

(-i: enable interactive commit-mode)

Host Filesystem

Edit .emacs

~/.emacs
Sandbox FS

~/.emacs

Sandbox

Write Read

Read

Commit

16

Build/development environment

● Mbox can separate out the generated obj files
– make clean == rm -rf outdir

● Mbox can also be used for virtual dev. env.
– Install packages with standard package managers

$ tree linux-git

 ...

 +--mm--mmap.c

 +-mlock.c

$ mbox -r outdir -- make

(-r dir: specify a sandbox directory)

Host Filesystem

*.o
Sandbox FS

linux-git

17

Outline
● Motivation / use cases

● Layered sandbox filesystem

● System call interposition (using seccomp/BPF)

● Implementation / evaluation

● Related work

● Summary

18

Sandbox filesystem supports
copy-on-write

Sandboxed process

Host
filesystem

Sandbox
filesystem

.emacs

19

Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, R)

Host
filesystem

Sandbox
filesystem

.emacs

Read

20

Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

.emacs

21

Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

.emacs

.emacs Copy

22

Sandbox filesystem supports
copy-on-write

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

.emacs

Read/Write

.emacs Copy

23

Copy-on-write by rewriting path
arguments

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

.emacs

Read/Write

/tmp/sbox/
.emacs Copy

24

Copy-on-write by rewriting path
arguments

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

.emacs

Read/Write

/tmp/sbox/

/tmp/sbox/home/taesoo/.emacs

.emacs Copy

25

All subsequent read/write should
happen on the sandbox filesystem

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

Read

open(“.emacs”, R)
...

.emacs

.emacs

26

/tmp/sbox/home/taesoo/.emacs

All subsequent read/write should
happen on the sandbox filesystem

Sandboxed process

open(“.emacs”, RW)

Host
filesystem

Sandbox
filesystem

Read

open(“.emacs”, R)
...

/tmp/sbox/

.emacs

.emacs

27

Sandbox filesystem keeps track of
deleted files

Sandboxed process

unlink(“.emacs”)

Host
filesystem

Sandbox
filesystem

.emacs

...

Hashmap of
deleted files

.emacs

...

Mbox

28

Sandbox filesystem keeps track of
deleted files

Sandboxed process

unlink(“.emacs”)

Host
filesystem

Sandbox
filesystem

.emacs

Read

.emacs

...

/tmp/sbox/home/taesoo/.emacs

/tmp/sbox/

open(“.emacs”, R)

deleted

Hashmap of
deleted files

.emacs

...

Mbox

29

Mbox doesn't have to interpose on
every system call

read(fd, buf, size) write(fd, buf, size)

fd = open(“.emacs”, R) fd = open(“.emacs”, RW)

● After redirecting the path in open(), we don't have to
interpose on read/write() system calls

● Mbox needs to interpose on 48 system calls getting a path
argument to provide a layered sandbox filesystem

30

Mechanism: system call interposition

● Ptrace is a common technique, but slow
– Interpose entry/exit of every system call
– Serialize system calls of child processes

● Using seccomp/BPF (>= Linux 3.5)
– Seccomp is a security mechanism for isolating a

process by allowing a certain set of system calls
– Seccomp/BPF uses BPF (Berkeley Packet Filter) to

specify rules for filtering system calls

31

BPF program for interposition

Mbox

Kernel

User space

32

BPF program for interposition

Mbox

Kernel

User space

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

Seccomp/BPF

33

BPF program for interposition

Mbox

Kernel

User space

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

Seccomp/BPF

34

BPF program for interposition

Mbox

Kernel

User space

Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

②

Seccomp/BPF

35

BPF program for interposition

Mbox

open(“/a", RW)

Kernel

User space

Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()①

②

③

Seccomp/BPF

36

BPF program for interposition

Mbox

open(“/a", RW)

Kernel

User space

Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()

EVENT_SECCOMP

wait() ①

②

③

④

Seccomp/BPF

37

BPF program for interposition

Mbox

open(“/a", RW)

Kernel

User space

ptrace (PEEK/POKE)
“/a” “/tmp/sbox/a”→Sandboxed process

exec()

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET, TRACE)

…

BPF_STMT(RET, ALLOWED)

BPF

prctl()

EVENT_SECCOMP

wait() ①

②

③

④

⑤

Seccomp/BPF

38

More story to come ...

● How to avoid time-of-check-to-time-of-use?
● How to avoid replicating OS state?
● ...

Please, check the paper!

39

Implementation

● Mbox: a prototype for Linux (>= 3.5, x86-64)
– Using seccomp/BPF and ptrace
– Extending strace 4.7
– 1,500 Lines of code
– Distributions: Ubuntu 12.04 and Arch 64bit

40

Performance evaluation

● How much overhead does Mbox exhibit?
● How much faster is seccomp/BPF than ptrace?

41

Benchmark

● Following the benchmark from Apiary
● Run each benchmark in three configurations

– Normal
– Mbox with ptrace
– Mbox with seccomp/BPF

Task Description

Octave Octave Benchmark calculating matrix

Zip Compress source files of Linux 3.8

Untar Decompress source files of Linux 3.8

Build Linux (-j1) Compile Linux 3.8 kernel

42

Mbox imposes modest end-to-end
performance overhead

Task Normal
Mbox

Seccomp/BPF

Octave 2.1s 2.1s 0.1%

Zip 15.6s 17.4s 12.0%

Untar 13.6s 16.4s 20.9%

Build Linux (-j1) 43.6s 49.7s 13.9%

● 0.1% ~ 20.9% overhead
● Octave: a computation-heavy workload

– Exhibits negligible performance overhead (0.1%)
– Spends 98% of its execution in userspace

43

Seccomp/BPF reduces the
interposition overhead

● Compare overheads of using ptrace and seccomp/BPF
● Seccomp/BPF reduces overhead up to 24.5%

Task Normal
Mbox

Ptrace Seccomp/BPF

Octave 2.1s 2.1s 0.1% 2.1s 0.1%

Zip 15.6s 21.2s 36.5% 17.4s 12.0%

Untar 13.6s 19.0s 40.3% 16.4s 20.9%

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9%

44

Seccomp/BPF has better
concurrency than ptrace

● When compiling the Linux kernel with 4 parallel jobs,
performance improves 64.9% compared to ptrace

● By avoiding unnecessary serialization of system calls,
multiple processes execute system calls concurrently

Task Normal
Mbox

Ptrace Seccomp/BPF

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9%

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 45.2%

45

Seccomp/BPF has better
concurrency than ptrace

● When compiling the Linux kernel with 4 parallel jobs,
performance improves 64.9% compared to ptrace

● By avoiding unnecessary serialization of system calls,
multiple processes execute system calls concurrently

Task Normal
Mbox

Ptrace Seccomp/BPF

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9%

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 45.2%

46

Related work
● Layered filesystems: UnionFS [Quigley '06] / Aufs

– Following unification rules / copy-on-write

 → Require no modifications in commodity OSes

● System call interposition: Ostia [Garfinkel '04]
– Enforcing security policies / studied common pitfalls

 → Summarize our experience of using seccomp/BPF

● Namespace: Plan9 [Pike '90] / Lxc container (Docker)
– Private namespace for each process

 → Enabling various applications via system call interposition

47

Summary

Mbox: a lightweight sandboxing mechanism
– Layered sandbox filesystem
– Revision-control-system like sandbox usage model
– Interposing on system calls with seccomp/BPF
– Enabling a variety of applications for non-root users

http://pdos.csail.mit.edu/mbox

48

Questions (if you don't have any)
● What if files are modified by other processes running

outside of Mbox?

● Why 20% on tar? just rewriting path arguments doesn't
seem to be demanding work.

● How complicated the BPF program? Why not implement
everything in BPF then?

● Why does Mbox support only 64bit? and is Mbox ready
for users (not developers)?

● Can Mbox be used for A, B and C … ?

	Slide 1
	Slide 2
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	page4 (1)
	page4 (2)
	Slide 10
	Slide 11
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	Slide 16
	Slide 17
	page10 (1)
	page10 (2)
	page11 (1)
	page11 (2)
	page11 (3)
	page12 (1)
	page12 (2)
	page13 (1)
	page13 (2)
	page14 (1)
	page14 (2)
	Slide 29
	Slide 30
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page17 (5)
	page17 (6)
	page17 (7)
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	page24 (1)
	page24 (2)
	Slide 46
	Slide 47
	Slide 48

