
Asynchronous 
intrusion recovery for 

interconnected web services

Ramesh Chandra, Taesoo Kim, Nickolai Zeldovich

MIT CSAIL



Today's web services are 
highly interconnected

● Many web services provide APIs to other sites

● Many websites integrate those APIs:
— Authentication: Facebook Connect, Google+ ...
— Data sharing: Dropbox ...
— Business process management: Salesforce …
— ...



Example: online shopping mall

Customer Relationship 
Management (CRM)

...



Example: online shopping mall

...

CRM

Financial Force
(Accounting Service)

Adobe Echo Sign
(E-Signature Service)

Bill.ON
(Invoices and Billing Service)



Example: online shopping mall

Allow Facebook users 
to buy our products 
without registration

...

CRM

Facebook Twitter

Financial Force
(Accounting Service)

Adobe Echo Sign
(E-Signature Service)

Bill.ON
(Invoices and Billing Service)



Example: online shopping mall

Allow Facebook users 
to buy our products 
without registration

...

CRM

Facebook Twitter

Financial Force
(Accounting Service)

Adobe Echo Sign
(E-Signature Service)

Bill.ON
(Invoices and Billing Service)

Address in Facebook



Attack in one service can spread 
between services

Financial Force
(Accounting Service)

Adobe Echo Sign
(E-Signature Service)

Bill.ON
(Invoices and Billing Service)

Facebook Twitter

...

CRM

Address modified 
by Attacker

Ship purchased
products to ... 



Bugs in web services are 
commonplace

● Facebook (Mar 29th 2013): 

— Attackers can intercept full permission access tokens



Bugs in web services are 
commonplace

● Facebook (Mar 29th 2013): 

— Attackers can intercept full permission access tokens
● Many web services have similar bugs

— Twitter (Aug 20th 2013)

— Instagram (May 2nd 2013)

— Microsoft Yammer (Aug 4th 2013)



Goal
● Recovering integrity in interconnected services

— Repair the state of affected services as if the attack 
never occurred

● State-of-the-art: manual recovery
— Admin doesn't trust other sites for recovery
— Require manual interaction (e.g., email other admin)



General plan for automatic recovery

● Use rollback-and-replay for recovering integrity 
in single machine

— Prior works: Retro [OSDI '10], Warp [SOSP '11]

● Extend rollback-and-replay to many web services!



Challenges

● Rollback-and-replay requires global coordinator
— Each service cannot decide what to do for repair

● All services must be available during recovery
— We want to repair some services even if others are down
— Consistency problem: some services are not repaired yet



Contributions

1. Repair protocol between services

• No central coordinator
• Each service controls its repair

2. Asynchronous repair

• Proceed repair even with unavailable services
• Consistency in partially repair state

Enable automatic intrusion recovery in 
distributed web services



Running example of an attack

Financial Force
(Accounting Service)

Adobe Echo Sign
(E-Signature Service)

Bill.ON
(Invoices and Billing Service)

Facebook Twitter

...

CRM

Address modified 
by Attacker

Ship purchased
products to ... 



Running example of an attack

Bill.ON
(Invoices and Billing Service)

Facebook

...

CRM



Running example of an attack

Bill.ON
(Invoices and Billing Service)

Facebook

...

CRM

Victim

Attacker

http://bit.ly/1xoTn



Running example of an attack

Bill.ON
(Invoices and Billing Service)

Facebook

...

CRM

Victim

Attacker

http://bit.ly/1xoTn



Running example of an attack

Bill.ON
(Invoices and Billing Service)

Facebook

...

CRM

Victim

Attacker

http://bit.ly/1xoTn



Running example of an attack

Bill.ON
(Invoices and Billing Service)

Facebook

...

CRM

Victim

Attacker Modify address 

http://bit.ly/1xoTn



Running example of an attack

Bill.ON
(Invoices and Billing Service)

Facebook

...

CRM

Victim

Attacker

Address modified 
by Attacker

Modify address 

http://bit.ly/1xoTn



Timeline of the attack
Attacker Victim Facebook

Shopping Mall Bill.ON



Timeline of the attack
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e



Timeline of the attack
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e



Timeline of the attack
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e



Goal: attack did not take place
Attacker Facebook

Shopping Mall Bill.ON

Ti
m

e

Victim



Goal: attack did not take place
Attacker Facebook

Shopping Mall Bill.ON

Ti
m

e

Victim



Overview of system execution
● Normal execution:

— Record enough information for rollback-and-replay

● Repair:

— Identify an attack to initiate repair
— Repair local state: rollback and replay recorded requests
— Propagate repair whenever local repair affects others



Overview of system execution
● Normal execution:

— Record enough information for rollback-and-replay

● Repair:

— Identify an attack to initiate repair
— Repair local state: rollback and replay recorded requests
— Propagate repair whenever local repair affects others



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Identify an attack for repair



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Rollback state before 
the attack occurred



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Rollback state before 
the attack occurred



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Rollback state before 
the attack occurred



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Rollback state before 
the attack occurred

Original address



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Rollback state before 
the attack occurred

Original address



Strawman: repair with global 
coordinator using rollback-and-replay

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

  Remove access token

Restore victim's address



Problems in Strawman design

● P1. All services must be available

 → Support asynchronous repair with speculation

● P2. Require global coordinator

 → Define repair APIs between services



Problems in Strawman design

● P1. All services must be available

 → Support asynchronous repair with speculation

● P2. Require global coordinator

 → Define repair APIs between services



Challenge: cooperating with 
unavailable web services

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Error

Error

Offline Unavailable

Wait for other services 
to come up?



Solution: asynchronous repair

● Asynchronously deliver repair requests 
● Speculatively proceed local repair with past responses 

(or timeout responses)
● Expose repaired state after local repair

● Intuition: why asynchronous repair works?

— Many web services are designed for independent 
operation, prepared for handling others failures



Example: asynchronous repair
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Error

Error

Repair queues



Example: asynchronous repair
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Error

Error

Repair queues

Asynchronously deliver 
new response

Speculatively proceed
with past request 



Example: asynchronous repair
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Error

Error

Repair queues

Asynchronously deliver 
new response

Speculatively proceed
with past request 



Example: asynchronous repair
Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

Error

Error

Error

Error

Repair queues

Asynchronously deliver 
new response

Speculatively proceed
with past request 



Example: exposing state 
after local repair

Attacker Victim Facebook Shopping Mall Bill.ON

Ti
m

e

...

Another 
web service

Two services are 
still repairing



What if speculation fails?

● If service responds differently,
— Restart local repair with the new response 
— In fact, it is not different from initiating new repair 

● Asynchronous repair will converge to the correctly 
repaired state at the end



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:

Following request depends 
on previous request 



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:

Mall

Ready for shipping to: 

Message:

Respond with 
different result



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:



Example: speculation failure
Facebook Shopping Mall

ok

Mall

Ready for shipping to: 

Message:Asynchronous repair makes forward 
progress in time-line graph, so it will converge 

to the correctly repaired state at the end



Consistency problem: 
partially repaired state

Attacker Victim Facebook Shopping Mall Bill.ON

Ti
m

e

...

Another 
web service

Two services are 
still repairing

Repaired state

?



Consistency problem: 
partially repaired state

● Exposing partially repaired state might diverge global state

— But it is not something new that our recovery 
mechanism introduces more

— Most of web services already cope with this problem



Exposing partially repaired state 
might violate service invariants

● Service invariants: guarantees by service provider

(e.g., locking serivce: when lock is held, no concurrent access)

● In theory: yes (for arbitrary tightly coupled systems)
● In practice: no

— RESTful APIs usually provide consistency per API
— Web services are in nature loosely coupled



Consistency: partial repair state

● Services and clients already deal with concurrency
● Repair of a service is modeled as:

— Being performed by a concurrent repair actor client
— That uses the service's regular API calls

● So, partially repaired state can be considered as state 
resulting from yet another concurrent operations



Problems in Strawman design

● P1. All services must be available

 → Support asynchronous repair with speculation

● P2. Require global coordinator

 → Define repair APIs between services



How to propagate repair requests 
without global coordinator?

Attacker Victim Facebook

Shopping Mall Bill.ON

Ti
m

e

ErrorErrorHow to ask services to 
initiate repair?



Requesting repair with APIs (RPC)

replace_response(#7,                        )
From: Facebook
To: Shopping Mall

Facebook

From: Facebook
To: Shopping Mall

Tagged: #7

API: modify the 
previous response

New response 
(repaired)

Tag

Shopping Mall

● Tag each request in normal exec.

● Each service runs repair controller



Repair APIs (RPC)

● No centralized coordinator, each server invokes 
following repair APIs to recover from the attack
— replace_response(tag, resp): replace past response
— replace_request(tag, req): replace past request
— delete(tag): delete past request
— create(req, before, after): execute new requests in the past



Repair APIs (RPC)

● No centralized coordinator, each server invokes 
following repair APIs to recover from the attack
— replace_response(tag, resp): replace past response
— replace_request(tag, req): replace past request
— delete(tag): delete past request
— create(req, before, after): execute new requests in the past

If service supports those 4 APIs, 
it can participate in decentralized recovery



Authentication of repair APIs

● Too application specific
— (e.g. Email service: sender can delete recipient's emails?)

● Delegate authentication to original web services
— Implement application specific policy 

  (e.g. ask admin for confirmation of repair)
— Assign a credential to repair requests



Summary of design

1. Asynchronous repair

• Proceed repair with offline or unavailable services
• Consistency in partially repair state

2. Repair APIs between services

• No central coordinator
• Each service controls its repair
• Delegate authentication



Implementation
● Prototype implementation: Aire

— Extend Django web framework
— Support existing Django app. with few modifications

• Support Askbot, Django-OAuth, and Dpaste

• e.g., Askbot's authentication policy: 55 LoC

— Total: 5700 lines of Python code



Evaluation questions

● Can Aire support real web services?
● Can Aire recover from distributed attacks?
● What are the runtime overheads of Aire?



Aire supports real web services
OAuth Provider

Dpaste

Askbot



Aire supports real web services
OAuth Provider

Dpaste

Askbot



Aire supports real web services
OAuth Provider

Dpaste

Askbot



Aire supports real web services
OAuth Provider

Dpaste

Askbot

...



Aire supports real web services

Share link: http://dpaste.com/4324

OAuth Provider

Dpaste

Askbot

Append a link to Dpaste

...

Post code



Aire supports real web services

Share link: http://dpaste.com/4324

OAuth Provider

Dpaste

Askbot

Append a link to Dpaste

...

Post code

Askbot + OAuth + Dpaste
= 183K LoC!

Aire can support large Django web applications



Aire enables automatic recovery

Share link: http://dpaste.com/4324

Dpaste
...

Askbot OAuth Provider

Post code

Append a link to Dpaste



Aire enables automatic recovery

Share link: http://dpaste.com/4324

Dpaste
...

Askbot OAuth Provider

Post code

Append a link to Dpaste



Aire enables automatic recovery

Share link: http://dpaste.com/4324

Dpaste
...

Askbot OAuth Provider

Post code

Append a link to Dpaste



Aire enables automatic recovery
● Askbot, OAuth, and Dpaste are correctly recovered

— Even when Dpaste is temporary unavailable
— Even when Dpaste goes offline

● More examples in paper: 

— Intrusion recovery (synthetic)
— Mistakes on ACL setting
— Misconfigured versioning spreadsheet



Aire has moderate runtime 
overheads

● 19-30% throughput reduction
● 5-9KB/req storage overheads

 → Moderate overheads for websites which care
    integrity more than performance

Workload
Req/s

without Aire
Req/s

with Aire
Logs / req
With Aire

Reading 21.58 17.58 5.52 KB

Writing 23.26 16.20 9.24 KB



Aire's repair is efficient

● Experiment setting:

— Attacker logins as a victim user and writes a post
— 100 legitimate users post 5 questions and navigate
— All users are affected by the attack (read attacker's post)

Askbot OAuth DPaste

 Repaired Reqs 105 / 2196 2 / 9 1 / 496

 Remote repair reqs 1 1 0

 Local repair time 84.06 sec 0.10 sec 3.91 sec

 Normal exec. time 177.58 sec 0.01 sec 0.02 sec



Aire's repair is efficient

● Experiment setting:

— Attacker logins as a victim user and writes a post
— 100 legitimate users post 5 questions and navigate
— All users are affected by the attack (read attacker's post)

Askbot OAuth DPaste

 Repaired Reqs 105 / 2196 2 / 9 1 / 496

 Remote repair reqs 1 1 0

 Local repair time 84.06 sec 0.10 sec 3.91 sec

 Normal exec. time 177.58 sec 0.01 sec 0.02 sec

Repair in Askbot propagates 
to OAuth and Dpaste



Aire's repair is efficient

● Experiment setting:

— Attacker logins as a victim user and writes a post
— 100 legitimate users post 5 questions and navigate
— All users are affected by the attack (read attacker's post)

Askbot OAuth DPaste

 Repaired Reqs 105 / 2196 2 / 9 1 / 496

 Remote repair reqs 1 1 0

 Local repair time 84.06 sec 0.10 sec 3.91 sec

 Normal exec. time 177.58 sec 0.01 sec 0.02 sec

5% of requests
are repaired



Aire's repair is efficient

● Experiment setting:

— Attacker logins as a victim user and writes a post
— 100 legitimate users post 5 questions and navigate
— All users are affected by the attack (read attacker's post)

Askbot OAuth DPaste

 Repaired Reqs 105 / 2196 2 / 9 1 / 496

 Remote repair reqs 1 1 0

 Local repair time 84.06 sec 0.10 sec 3.91 sec

 Normal exec. time 177.58 sec 0.01 sec 0.02 sec

Total repair takes x2 shorter than normal execution, 
although x10 slower in replaying 

a request for repair



Related work

● Intrusion recovery with selective re-execution:
— Retro [OSDI'10], Warp [SOSP'11]

 → Use them as building blocks for asynchronous repair

● Intrusion recovery in distributed systems: 
— Heat-ray [SOSP'09], Polygraph [EuroSys'09], Dare [APsys'12]

  → Automatic recovery in loosely coupled web services



Summary

● Aire recovers integrity of distributed web services
— Define a repair protocol
— Support asynchronous and decentralized repair
— Propose partial repair consistency


	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page4 (3)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	page14 (5)
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	Slide 25
	Slide 26
	page18 (1)
	page18 (2)
	Slide 29
	page20 (1)
	page20 (2)
	page20 (3)
	page20 (4)
	page20 (5)
	Slide 35
	page22 (1)
	page22 (2)
	Slide 38
	Slide 39
	page25 (1)
	page25 (2)
	Slide 42
	page25 (3)
	page26 (2)
	Slide 45
	page28 (1)
	page28 (2)
	Slide 48
	Slide 49
	page31 (1)
	page31 (2)
	page31 (3)
	page32 (2)
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	page39 (1)
	page39 (2)
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	page44 (1)
	page44 (2)
	page44 (3)
	page44 (4)
	page44 (5)
	page44 (6)
	page45 (1)
	page45 (2)
	page45 (3)
	Slide 75
	Slide 76
	page48 (1)
	page48 (2)
	page48 (3)
	page48 (4)
	Slide 81
	Slide 82

